XRP2525 - XRP2526

Single/Dual Channel USB 3.0 Power Distribution Switch

November 2019

GENERAL DESCRIPTION

The XRP2525 and XRP2526 devices are respectively single and dual channel integrated high-side power distribution switches with independent enables and fault flags. A wide 1.8 V to 5.5 V input voltage range allows for operations from industry standard $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5V power rails.

Optimized for USB V ${ }_{\text {BUS }}$ power distribution, the XRP2525 and XRP2526 are compliant with the latest USB 3.0 specification and can be used in any self or bus powered USB applications. The power-switch rise and fall times are controlled to minimize current surges during turn on/off.

The XRP2525 and XRP2526 are pin and function compatible to respectively Exar's SP2525A and SP2526A.

Built-in over current, under voltage lockout (UVLO), reverse current and over temperature protections insure safe operations under abnormal operating conditions.

XRP2525 and XRP2526 are offered in a RoHS compliant "green"/halogen free 8-pin NSOIC package.

APPLICATIONS

- Self Powered USB 2.0 and 3.0 Hubs
- USB Compliant Vbus Power Distribution
- Audio-Video Equipments
- Generic Power Switching

FEATURES

- Single/Dual Channel Current Switch
- 900mA per channel capable
- 1.15A Over-current Limit
- 1.8 V to 5.5 V Input Voltage Range
- USB 2.0/3.0 Compliant
- Active High or Low Individual Enable
- Individual Channel Fault Flag Indicator
- Under voltage Lockout, Reverse Current and Thermal Shutdown Protection
- RoHS Compliant, Green/Halogen Free 8-Pin NSOIC Package
XRP2526 is available, XRP2525 is obsolete

TYPICAL APPLICATION DIAGRAM

Fig. 1: XRP2526 Application Diagram

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
$V_{\text {IN }}$. \qquad -0.3V to 7.0V
$V_{\text {En, }} V_{\text {flg }}$ 7.0 V

Storage Temperature............................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation Internally Limited
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
ESD Rating (HBM - Human Body Model) 2kV
ESD Rating (MM - Machine Model)200V

OPERATING RATINGS

ELECTRICAL SPECIFICATIONS

Specifications are for an Operating Junction Temperature of $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ only; limits applying over the full Operating Junction Temperature range are denoted by a " \bullet ". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $\mathrm{T}_{3}=25^{\circ} \mathrm{C}$, and are provided for reference purposes only. Unless otherwise indicated, 1.8 V to $5.5 \mathrm{~V}, \mathrm{C}_{\text {in }}=47 \mu \mathrm{~F} / / 1 \mu \mathrm{~F}$, Cout $=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Parameter	Min.	Typ.	Max.	Units		Conditions
Input Supply Voltage	1.8		5.5	V	-	
Input Quiescent Current		80	150	$\mu \mathrm{A}$	-	XRP2526 (Both Channels enabled) $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} \text {, } \mathrm{I}_{\text {OUT } 1}=\mathrm{I}_{\text {OUT } 2}=0 \mathrm{~mA}$
Input Quiescent Current		52	100	$\mu \mathrm{A}$	-	XRP2525 \& XRP2526 (1 Channel enabled) $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {out } 1}=0 \mathrm{~mA}$
Input Shutdown Current			3	$\mu \mathrm{A}$	-	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, Channel(s) disabled
Maximum Output Current per channel	900			mA	-	XRP2525 and XRP2526
Output Leakage Current			10	$\mu \mathrm{A}$		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, Each channel, Switch off
Reverse Leakage Current			10	$\mu \mathrm{A}$		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, Each channel, Switch off
Output MOSFET Resistance		80	140	$\mathrm{m} \Omega$	-	$\mathrm{I}_{\text {out }}=0.3 \mathrm{~A}$, Each channel
Output turn-on delay		1000		$\mu \mathrm{s}$		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega$, $\mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$, each output
Output turn-on rise time		2000	4000	$\mu \mathrm{s}$		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega$, $\mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$, each output
Output turn-off delay		10	20	$\mu \mathrm{s}$		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$, each output
Output turn-off fall time		22	50	$\mu \mathrm{s}$		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$, each output
Current limit threshold	0.90	1.15	1.40	A	-	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {Out }}=0.3 \mathrm{~V}$, Internally set
Short Circuit Current Limit		0.66×1 цıм		A		$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$
Output Voltage Short Circuit Detect Threshold		925		mV		Operates in short circuit current limit mode when output voltage is below threshold.
Safe Operating Area (SOA) Current Limit		3		A		
Over temperature shutdown threshold		135		${ }^{\circ} \mathrm{C}$		Temperature rising
Over temperature shutdown threshold hysteresis		10		${ }^{\circ} \mathrm{C}$		Temperature decreasing
Under-voltage lockout threshold	1.55	1.68	1.75	V		$\mathrm{V}_{\text {IN }}$ rising or falling
Under-voltage lockout hysteresis		50		mV		
FLG output logic low voltage		100	250	mV		$\mathrm{I}_{\mathrm{FLG}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
FLG output high leakage			1	$\mu \mathrm{A}$		
FLG blanking time		10		ms		
EN input logic high voltage	1.5			V	-	
EN input logic low voltage			0.5	V	-	
EN input leakage current	-1	0	1	$\mu \mathrm{A}$		$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {EN }}=5.5 \mathrm{~V}$

BLOCK DIAGRAM

Fig. 2: XRP2525 and XRP2526 Block Diagrams

PIN ASSIGNMENT

Fig. 3: XRP2525 - XRP2526 Pin Assignment

PIN DESCRIPTION - XRP2525

Name	Pin Number	Description
EN	1	Channel Enable Input Active High for XRP2525-1 and Active Low for XRP2525-2
FLG	2	Error Flag Signal Active low open drain output. Active on over-current, over-temperature or UVLO conditions.
GND	3	Ground Signal
NC	$4,5,6$	No Connect
IN	7	Voltage Input Pin
OUT	8	Voltage Output Pin

PIN DESCRIPTION - XRP2526

Name	Pin Number	Description
EN x	1,4	Channel Enable Input Active High for XRP2526-1 and Active Low for XRP2526-2
FLG x	2,3	Error Flag Signal Active low open drain output. Active on over-current, over-temperature or UVLO conditions.
GND	6	Ground Signal
IN	7	Voltage Input Pin
OUTx	5,8	Voltage Output Pin

ORDERING INFORMATION ${ }^{(1),(2)}$

Part Number	Temperature Range	Package	Packing Method	Lead Free ${ }^{(3)}$	Note 1
XRP2526IDTR-1-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	NSOIC8	Tape \& Reel	Yes	Dual Channel Active high
XRP2526EVB	XRP2526 Evaluation Board				

NOTES:

1. Refer to www.maxlinear.com/XRP2526 for most up-to-date Ordering Information.
2. XRP2525 (Single Channel) and XRP2526-2 (Active low Dual Channel) are obsolete.
3. Visit www.maxlinear.com for additional information on Environmental Rating.

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F} / / 1 \mu \mathrm{~F}$, Cout $=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

Fig. 4: Output On-Resistance vs. Temperature (XRP2525)

Fig. 6: Off Supply Current vs. Temperature

Fig. 8: Quiescent Current vs. Temperature XRP2526 (2-channels on)

Fig. 5: Output On-Resistance vs. Temperature (XRP2526)

Fig. 7: Quiescent Current vs. Temperature XRP2525 and XRP2526 (1-channel on)

Fig. 9: FLG Logic Low Voltage vs. Temperature

Fig. 10: Quiescent Current vs. Input Voltage XRP2525 and XRP2526 (1-channel on)

Fig. 12: Output Turn-Off Delay vs. Temperature

Fig. 14: Output Fall Time vs. Temperature

Fig. 11: Quiescent Current vs. Input Voltage XRP2526 (2-channels on)

Fig. 13: Output Turn-on Delay vs. Temperature

Fig. 15: Output Rise Time vs. Temperature

Fig. 16: Output Turn-Off Delay Time vs. Input Voltage

Fig. 18: Output Fall Time vs. Input Voltage

Fig. 17: Output Turn-On Delay Time vs. Input Voltage

Fig. 19: Output Rise Time vs. Input Voltage

Fig. 20: Current Limit Threshold vs. Temperature (XRP2525) Fig. 21: Current Limit Threshold vs. Temperature (XRP2526)

Fig. 22: Under-voltage lockout trip level vs. Temperature (VIN Rising)

Fig. 24: Turn-On, Turn-Off Characteristics $($ XRP2526-1) COUT $=1 u F$, Rload $=10 \Omega$

Fig. 23: Quiescent Current vs. Enable pin Voltage XRP2525-1

Fig. 25: Turn-On, Turn-Off Characteristics $($ XRP2526-1 $)$ COUT $=1 u F$, Rload $=5.1 \Omega$

Fig. 26: Current Limit Operation (XRP2525-1): $\mathrm{VIN}=5.5 \mathrm{~V}$, Rload $=3.9 \Omega$

Fig. 27: Current Limit Operation (XRP2526-1): VIN $=1.8 \mathrm{~V}$, Rload $=1.5 \Omega$

THEORY OF OPERATION

The XRP2525 and XRP2526 devices are respectively single and dual channel integrated high-side power distribution switches that can be used in any self or bus powered USB applications. They are compliant with the latest USB 3.0 specifications. The reverse current protection feature prevents current to flow from OUT to IN when the device is disabled.

InPut \& Output

Placing bulk capacitances of at least $47 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ at the input and output pins respectively reduces power supply transients under heavy current load conditions.

It is important to place a $1 \mu \mathrm{~F}$ ceramic bypass capacitor from IN to GND as close as possible to the device in order to control supply transients.

Furthermore, bypassing the output pin with a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ ceramic capacitor improves the device response to short-circuit transients.

Error Flag

The error flag signal (FLGx output pin) is an open-drain output and is pulled low (active low) upon detection of the following conditions:

- Over-current condition
- Over-temperature condition
- Under voltage lockout condition

Over-temperature and under voltage lockout conditions are flagged immediately while the over - current condition is reported only if this condition persists continuously for longer than the blanking time of 10 ms . The blanking time prevents erroneous reporting of current faults due to brief output current spikes.
Once activated, the error flag signal remains low until all fault conditions have been removed and is independent for each individual channel.

Current Limit

The current limit threshold is preset internally. It protects the output MOSFET switches from
damages resulting from undesirable short circuit conditions or excess inrush current, which is often encountered during hot plug-in. The low limit of the current limit threshold of the XRP2525 and XRP2526 allows a minimum current of 0.9A through the MOSFET switches.

When an overcurrent condition is detected, the output current is limited to a constant current limit threshold value and output voltage is reduced accordingly. Triggering the current limit function is signaled by the Error Flag after 10 ms of blanking time period.

Under-Voltage Lockout

Under-voltage lockout function (UVLO) keeps the internal power switch from being turned on until the power supply has reached at least 1.68 V , even if the switch is enabled. Upon detection of an input voltage below approximately 1.68 V , the power switch is turned off while a fault condition is reported by the error flag signal.

Thermal Protection

Internal thermal sensing circuitry monitors the operating temperature of the device for each channel independently. Upon detection of a temperature in excess of $135^{\circ} \mathrm{C}$, the power switch for the given channel is disabled preventing any damages to the device while a fault condition is reported by the error flag signal. A built-in $10^{\circ} \mathrm{C}$ hysteresis allows the device to cool down to $125^{\circ} \mathrm{C}$ before resuming normal operations on the faulty channel at which point the error flag signal is cleared.

TEST CIRCUIT

PACKAGE SPECIFICATION

8-PIN NSOIC

XRP2525 - XRP2526
Single/Dual Channel USB 3.0 Power Distribution Switch

REVISION HISTORY

Revision	Date	Description
1.0 .0	$05 / 13 / 2011$	Initial release of datasheet
1.1 .0	$07 / 14 / 2011$	Corrections of typographical errors
1.1 .1	$11 / 04 / 2019$	Updated to MaxLinear logo. Updated Ordering Information.

Corporate Headquarters:

5966 La Place Court

Suite 100
Carlsbad, CA 92008
Tel.: +1 (760) 692-0711
Fax: +1 (760) 444-8598
www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Maxlinear, Inc. Maxlinear, Inc. Assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Maxlinear, Inc.

Maxlinear, Inc. Does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Maxlinear, Inc. Receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Maxlinear, Inc. Is adequately protected under the circumstances.
Maxlinear, Inc. May have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Maxlinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Maxlinear, the Maxlinear logo, and any Maxlinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the Maxlinear logo are all on the products sold, are all trademarks of Maxlinear, Inc. or one of Maxlinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners.
© 2011-2019 Maxlinear, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by MaxLinear manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF1504UCX TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7 MIC2043-2YTS

