XRP6142
Synchronous Step-Down Controller with DDR Memory Termination

GENERAL DESCRIPTION

The XRP6142 is a synchronous step down switching controller for over 15 Amps point-ofloads converters and optimized to generate and support DDR I, II and III memory voltages requirements.

Optimized to operate from standard 3.3 V and 5 V rails, the XRP6142 supports conversions down to 0.5 V from an input voltage as low as 1 V and can reach efficiencies of up to 96%. Based on a constant on-time control scheme and operating at a constant switching frequency over the whole input voltage range, it provides excellent load transient response while requiring no external compensation components. Three selectable on-time options allow for further switching frequency, solution footprint and efficiency optimization.

Dedicated support for DDR I, II and II memories is also provided. The XRP6142 easily generates $\mathrm{V}_{\mathrm{DDQ}}\left(\mathrm{V}_{\mathrm{DD}}\right)$ or $\mathrm{V}_{T T}$ voltages while an on board buffer provides the buffered V_{π} reference voltage.

Under-voltage Lock out, short-circuit and over-current and over-temperature protection insure safe operations under abnormal operating conditions.
The XRP6142 is available in a compact RoHS compliant "green"/halogen free 16 -pin QFN package.

APPLICATIONS

- High-Power Point-of-Loads Converters
- Audio-Video Equipments
- FPGA and DSP Power Supplies
- DDR Memory Based Embedded Systems

FEATURES

- Over 15A Point-of-Load Capable
- Down to 0.5V Output Voltage Conversion
- Up to 96\% Efficiency
- Wide 1.0V-5.5V Input Voltage Range Conversions
- Single Input 3.3V and 5 V rails Operations
- Constant On-Time Operations
- Constant Frequency Operations
- No External Compensation
- DDR I, II \& III Termination Support
- $V_{D D Q} / V_{D D}$ or $V_{T T}$ Voltages Generation
- Buffered V_{T} Ref. Voltage Generation
- Soft-Start and Enable Functions
- UVLO, Short Circuit and Over Current Protection
- RoHS Compliant "Green"/Halogen Free 3mm x 3mm 16-Pin QFN Package

TYPICAL APPLICATION DIAGRAM

Figure. 1: XRP6142 as a Step-Down Converter or a DDR Supply

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only, and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
$V_{C c}$ 7.0V
$V_{\text {IN }}$ 7.0 V

BST 13.5 V

SW ..-1V to 7.0V
BST-SW -0.3 V to 6 V
All other pins -0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Storage Temperature.............................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation Internally Limited
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
ESD Rating (HBM - Human Body Model).................... 2 kV
ESD Rating (MM - Machine Model)500V

OPERATING RATINGS

ELECTRICAL SPECIFICATIONS

Specifications are for an Operating Junction Temperature of $\mathrm{T}_{3}=25^{\circ} \mathrm{C}$; limits applying over the full Operating Junction Temperature range are denoted by a " \bullet ". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and are provided for reference purposes only. Unless otherwise indicated, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$.

Parameter	Min.	Typ.	Max.	Units		Conditions
$V_{\text {REF }}$, Reference Voltage	0.495	0.5	0.505	V		
	0.492	0.5	0.508	V	-	
$\mathrm{V}_{\text {FB }}$ offset		7		mV		$\mathrm{V}_{\text {Refin }}=\mathrm{V}_{\text {REF }}$
$\mathrm{V}_{\text {REFIN }}$, Voltage Range	VREF		1.3	V		
$\mathrm{V}_{\mathrm{DDQ} / 2}$, Input Impedance		60		$\mathrm{M} \Omega$		
$\mathrm{V}_{\text {TTREF }}$, Output Error	-1.25		+1.25	\%	-	$\mathrm{V}_{\mathrm{DDQ} / 2}=0.75 \mathrm{~V}, \mathrm{I}_{\mathrm{VTTR}}=0 \mathrm{~mA}$
$\mathrm{V}_{\text {Tr Ref }}$ Current Limit	± 20	± 40	± 65	mA	-	Sourcing: $\mathrm{V}_{\text {TTREF }}=0, \mathrm{~V}_{\mathrm{DDQ} / 2}=\mathrm{V}_{\text {REF }}$ Sinking: $V_{\text {TTREF }}=2 \mathrm{~V}$
I_{Q}, Operating Quiescent Current		400	600	$\mu \mathrm{A}$		Not switching, $\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {REFIN }}+0.1 \mathrm{~V}$
Ioff, Shutdown current		0.1		$\mu \mathrm{A}$		EN=0V
Ton, Switch On-Time	0.4	0.5	0.6	$\mu \mathrm{s}$	-	XR6142ELO-5-F (${ }_{\text {ON }}=500 \mathrm{~ns}$)
	0.8	1.0	1.2		-	XR6142EL1-0-F ($\mathrm{T}_{\text {ON }}=1000 \mathrm{~ns}$)
	1.6	2.0	2.4		-	XR6142EL2-0-F ($\mathrm{T}_{\text {ON }}=2000 \mathrm{~ns}$)
Toff_min, Minimum Off-Time		300	400	ns	-	All Ton options
T_{D}, Gate Drive Dead-Time		50		ns		
$\mathrm{V}_{\text {IH_EN, }}$ EN Pin Rising Threshold	1.15	1.2	1.25	V	-	
$\mathrm{V}_{\text {EN_HY, }}$ EN Pin Hysteresis		50	200	mV		
$\mathrm{I}_{\text {FB, }}$, Feedback Pin Bias Current		50		nA		$\mathrm{V}_{\mathrm{FB}}=2.0 \mathrm{~V}$
$\mathrm{V}_{\text {cCuvLo, }}$ Under-Voltage Lockout		2.8	3.0	V	-	V_{CC} rising edge
$\mathrm{V}_{\text {ccuvLo_hys, }}$ Under-Voltage Lock out Hysteresis		500		mV		
$\mathrm{V}_{\text {sc_TH, }}$ Feedback Pin Short Circuit Latch Threshold	55	65	75	\%	-	\% of VREFIN
ILIM Pin Source Current	42.5	50	57.5	$\mu \mathrm{A}$		
ILIM Current Temperature Coefficient		0.3		\%/C		
$\mathrm{V}_{\text {ILIM }}$ Current Limit Trip Level	-20	0	+20	mV	-	
Current Limit Blanking		130		ns		GL Rising > 1.0V

XRP6142 Synchronous Step-Down Controller with DDR Memory Termination

Parameter	Min.	Typ.	Max.	Units	Conditions
Hiccup Timeout		110		ms	$0.5 \mu \mathrm{~s}, 1 \mu \mathrm{~s}$ and $2 \mu \mathrm{~s}$ option, $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$
Soft Start time	3	5	10	ms	
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 1}, \mathrm{GH}$ FET driver pull-up On resistance		2.5		Ω	$\mathrm{I}_{\mathrm{GH}}=20 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 2}$, GH FET driver pull-down On resistance		2		Ω	$\mathrm{I}_{\mathrm{GH}}=20 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N}) 3}, \mathrm{GL}$ FET driver pull-up On resistance		2.5		Ω	$\mathrm{I}_{\mathrm{GL}}=20 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 4}, \mathrm{GL}$ FET driver pull-down On resistance		2		Ω	$\mathrm{I}_{\mathrm{GL}}=20 \mathrm{~mA}$

BLOCK DIAGRAM

Figure. 2: XRP6142 Block Diagram

PIN ASSIGNMENT

Figure. 3: XRP6142 Pin Assignment

PIN DESCRIPTION

Name	Pin Number	Description
AGND	1	Analog Ground
VTTREF	2	Buffered output of VDDQ/2 V_{T} reference voltage for DDR applications.
VDDQ/2	3	Buffer input voltage. Voltage used for the input to the V ${ }_{\text {TRREF }}$ buffer
V $_{\text {REF }}$	4	Precision reference output
REFIN	5	Reference input to the switching-regulator feedback comparator
FB	6	Feedback input to feedback comparator
CSGND	7	Current-sense ground
ILIM	8	Connect a resistor between this pin and the low-side current-sense element in order to set the current-limit-trip threshold. See applications section for instructions on how to set this resistor
PGND	9	Gate driver GND.
GL	10	Low-side N-channel MOSFET driver
SW	11	Switch node for floating-high-side gate drive
GH	12	High-side N-channel MOSFET driver
BST	13	Bootstrap capacitor to drive the high-side gate driver, GH
$V_{\text {IN }}$	14	Input voltage for the power train
Vcc	15	Input voltage for the XRP6142 internal circuitry and gate drives. $V_{\text {IN }}$ and $V_{\text {CC }}$ can be tied together when $V_{\text {IN }} \geq 3.0 V$
EN	16	Precision enable pin. Pulling this pin above 1.2V will turn the part on
Thermal pad	-	Internally connected to AGND

ORDERING INFORMATION

Part Number	Temperature Range	Marking	Package	Packing Quantity	Note 1	Note 2
XRP6142EL0-5-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{3} \leq+125^{\circ} \mathrm{C}$	$\begin{array}{r} 6142 \mathrm{E} \\ \text { YYWW05 } \\ X \end{array}$	16-pin QFN	Bulk	RoHS Compliant Halogen Free	$0.5 \mu \mathrm{~s}$ on time
XRP6142ELTR0-5-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$	$\begin{array}{r} 6142 \mathrm{E} \\ \mathrm{YYWW} 05 \\ \mathrm{X} \end{array}$	16-pin QFN	3K/Tape \& Reel	RoHS Compliant Halogen Free	$0.5 \mu \mathrm{~s}$ on time
XRP6142EL1-0-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{3} \leq+125^{\circ} \mathrm{C}$	$\begin{array}{r} 6142 \mathrm{E} \\ \text { YYWW10 } \\ X \end{array}$	16-pin QFN	Bulk	RoHS Compliant Halogen Free	$1.0 \mu \mathrm{~s}$ on time
XRP6142ELTR1-0-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$	$\begin{array}{r} 6142 \mathrm{E} \\ \mathrm{YYWW} 10 \\ X \end{array}$	16-pin QFN	3K/Tape \& Reel	RoHS Compliant Halogen Free	$1.0 \mu \mathrm{~s}$ on time
XRP6142EL2-0-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$	$\begin{array}{r} 6142 \mathrm{E} \\ \text { YYWW20 } \\ X \end{array}$	16-pin QFN	Bulk	RoHS Compliant Halogen Free	$2.0 \mu \mathrm{~s}$ on time
XRP6142ELTR2-0-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$	$\begin{array}{r} 6142 \mathrm{E} \\ \text { YYWW20 } \\ X \end{array}$	16-pin QFN	3K/Tape \& Reel	RoHS Compliant Halogen Free	$2.0 \mu \mathrm{~s}$ on time
XRP6142EVB	XRP6142 Evaluation Board - XRP6142EL2-0-F based					

"YY" = Year - "WW" = Work Week - "X" = Lot Number

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

Fig. 4: T_{ON} versus V_{IN}

Fig. 6: Efficiency versus $\mathrm{I}_{\text {out }}$

Fig. 8: Line regulation

Fig. 5: $\mathrm{T}_{\text {on }}$ versus V_{IN}

Fig. 7: Load regulation

Fig. 9: Frequency versus $\mathrm{I}_{\text {out }}$

Fig. 10: Frequency versus V_{IN}

Fig. 12: Power-up into a 15 A load, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=2.5 \mathrm{~V}$

Fig. 14: Steady state, output ripple is 30 mV p-p, $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

Fig. 11: IOCP versus RLIM

Fig. 13: Power-down from a 15 A load, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$

Fig. 15: Transient response, 250 mV p-p, 15A load step

THEORY OF OPERATION

The XRP6142 synchronous buck controller utilizes the constant-on-time principle. The ontime is internally set and is available in three different set points to allow for different frequency options. The XRP6142 automatically adjusts the on-time during operation inversely with the input voltage V_{IN}, to maintain a constant frequency. Therefore, the switching frequency is independent of the inductor and capacitor size, unlike hysteretic controllers.
At the beginning of the cycle, the XRP6142 turns on the high-side FET for a fixed duration. The on time is internally set and adjusted by $\mathrm{V}_{\text {IN }}$. At the end of the on time, the high-side FET is turned off, for a predetermined minimum off time (nominally 300 ns). After Toff-min has expired, the high-side FET will stay off until the feedback comparator trip point of 0.5 V has been reached. Then the high-side FET turns on again and the cycle repeats. The operation of the low-side FET is complementary to the high-side FET. A short dead-time prevents shoot-through from occurring.

Timing Options

Three versions of XRP6142 (Timing Options) are identified by their on times at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$. For each version, T_{ON} is inversely proportional to V_{IN}. The constant of proportionality K , is shown in the table below. Variation of T_{ON} versus $\mathrm{V}_{\text {IN }}$ is shown graphically in figures 4 and 5.

Part Number	$\mathbf{T}_{\text {ON }}$ at $\mathbf{V}_{\text {IN }}=\mathbf{3 . 3 V}$	$\mathbf{K = T _ { \text { ON } }} \mathbf{x} \mathbf{V}_{\text {IN }}$ $(\mu \mathrm{S} . \mathrm{V})$
XRP6142EL0.5-F	$0.5 \mu \mathrm{~s}$	1.65
XRP6142EL1.0-F	$1.0 \mu \mathrm{~s}$	3.3
XRP6142EL2.0-F	$2.0 \mu \mathrm{~s}$	6.6

Note that for a Buck converter the switching frequency is given by:

$$
f=\frac{V_{O U T}}{V_{I N} \times T_{O N}}
$$

Since for each XRP6142 Timing Option, the product of $\mathrm{V}_{\text {IN }}$ and $\mathrm{T}_{\text {ON }}$ is a constant, then
frequency is determined by $\mathrm{V}_{\text {Out }}$ as shown in the following table.

$\mathbf{V}_{\text {out }}$	$\mathbf{f (k H z)}$ for each Timing Option		
	$\mathbf{0 . 5} \boldsymbol{\mu s}$	$\mathbf{1 . 0 \mu s}$	$\mathbf{2 . 0 \mu s}$
0.8	485	242	121
1.0	606	303	152
1.2	727	364	182
1.5	909	455	227
1.8	1091	545	273
2.5	---	758	379
3.3	---	---	500

Internal Soft-Start

Soft-start time is internally set at 5 ms (nominal). This removes the need for external components associated with soft-start function, and helps save cost and reduce PCB space.

EnAble

A precision enable function is provided (1.20V $\pm 0.05 \mathrm{~V}$). EN should be tied to V_{cc} in applications that do not require this function.

Internal Reference Voltage

A high-precision 0.5 V internal reference is provided at the $\mathrm{V}_{\text {REF }}$ pin. This is normally tied to the REFIN pin, thus setting the threshold of the voltage comparator.

Internal Bootstrap Diode

XRP6142 includes an internal low-Vf bootstrap diode. Place a 0.1 uF capacitor between BST and SW pins to provide drive voltage for the high-side FET.

Under-Voltage Lockout

UVLO monitors V_{cc} and ensures adequate voltage exists before starting to switch the FETs.

Short Circuit Protection

An internal short-circuit comparator monitors the feedback voltage. If feedback voltage falls below 65\% of reference voltage (this is equivalent to output voltage falling below 65\% of nominal value) the IC will latch off. V_{CC} has

XRP6142
Synchronous Step-Down Controller with DDR
Memory Termination
to be recycled in order for IC to resume operation.

Overcurrent Protection (OCP)

OCP function is implemented by monitoring the voltage across the low-side FET when it is on. OCP is programmed via a resistor RLIM connected between ILIM and SW pins. An internal constant-current source ILIM (50uA nominal) establishes a voltage across RLIM. This voltage sets the trip point of the OCP comparator. If the OCP comparator is triggered for eight consecutive switching cycles, then a hiccup timeout, as described in the next section, is initiated. Calculate RLIM from:

$$
R L I M=\frac{\left[\left(I O C P+\frac{\Delta I L}{2}\right) \times R_{D S(O N)}\right]+20 m V}{42.5 \mu A}
$$

Where:

IOCP is the output current at which overcurrent protection is activated (usually set 20% above maximum $\mathrm{I}_{\text {Out }}$)
$\Delta \mathrm{IL}$ is inductor current ripple nominally set at 30% of $\mathrm{I}_{\text {OUT }}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is the maximum rated on resistance of the FET

20 mV is the OCP comparator offset spec
$42.5 \mu \mathrm{~A}$ is the minimum spec of the ILIM source
The actual IOCP is 50% to 100% higher than expected IOCP as seen in figure 11. This is because RLIM in the above equation is calculated based on worst case parameters.
A temperature coefficient of $0.3 \% /{ }^{\circ} \mathrm{C}$ has been designed into ILIM. This useful feature nulls out the positive temperature coefficient of the FET $\mathrm{R}_{\mathrm{DS}(O N)}$ to a first order. Thus IOCP should be largely independent of operating temperature.

Hiccup Timeout

When an over current condition is detected, the internal FET drivers are turned off for

110 ms , following which, a soft-start is attempted. If the OCP condition is still present, then the timeout and soft-start cycle repeat. This is referred to as hiccup timeout.

Programming Vout

A pair of output resistors is used to set the output voltage $V_{\text {out }}$. Calculate R1 from:

$$
R 1=R 2\left(\frac{V_{O U T}}{V_{R E F}}-1\right)
$$

Where:
$R 2$ is nominally set at 10k (bottom resistor)
$\mathrm{V}_{\text {REF }}$ is reference voltage (0.5 V)
Note that $V_{\text {out }}$ must contain some voltage ripple in order for XRP6142 to regulate the output. Since XRP6142 regulates the bottom of the output ripple the average value will be higher (see figure 16).

Fig. 16: Vout Voltage Ripple
$V_{\text {OUT }}$ can be programmed more precisely from:

$$
R 1=R 2\left(\frac{V_{\text {OUT }}-\left(0.5 \times V_{\text {OUT }}, \text {,ripple }\right)}{V_{\text {REF }}}-1\right)
$$

Where:

$$
V_{\text {OUT }}, \text { ripple }=\Delta I L \times E S R
$$

ESR is the output capacitor's Equivalent Series Resistance.

OUtPut Capacitor

Cout is the most critical component for proper operation, since the XRP6142 relies on Vout
voltage ripple for regulating the output. To ensure stable operation two constraints must be met:

First the Cout must have sufficient ESR in order to get enough voltage ripple at feedback pin. It is recommended that XRP6142 be operated with at least 25 mV ripple at feedback pin. Assuming majority of output voltage ripple is from ESR, we get:

$$
\begin{equation*}
E S R \geq \frac{25 m V}{\Delta I L} \tag{1}
\end{equation*}
$$

Where $\Delta I L$ is inductor current ripple nominally set at 30% of $I_{\text {out }}$.

Note that $\mathrm{V}_{\text {out }}$ ripple, is attenuated by the resistor divider R1/R2, and a smaller ripple is seen at FB pin. For example if $\mathrm{V}_{\text {out }}$ ripple is 25 mV and $\mathrm{R} 1=\mathrm{R} 2=10 \mathrm{k}$, then the voltage ripple at FB is only 12.5 mV . One solution to this problem is to increase the output ripple accordingly, such that ripple at FB is 25 mV . A more desirable solution is to provide a high-frequency/low-impedance path for the output ripple to be transmitted to FB without attenuation. This can be done by placing a small feed-forward capacitor CFF in parallel with R1. As a starting point calculate CFF from:

$$
C F F=\frac{10}{2 \times \pi \times R 1 \times f_{S}}
$$

Where fs is the switching frequency
In general, a CFF of 1 nF should provide satisfactory feed-forward for most applications based on the XRP6142.

The second constraint for stability establishes a relation between ESR and Cout.

$$
\begin{equation*}
E S R \geq \frac{T o n}{C_{O U T}} \tag{2}
\end{equation*}
$$

Once $E S R$ is calculated from equation (1), equation (2) can be used to calculate $\mathrm{C}_{\text {оut }}$.
The aforementioned are in addition to the usual requirements for $\mathrm{C}_{\text {out }}$ for a buck converter. The usual constraint in order to meet load step transient requirement is given by:

$$
C_{\text {OUT }} \geq \frac{I_{2}^{2}-I_{1}^{2}}{V_{o s}{ }^{2}-V_{\text {OUT }}{ }^{2}}
$$

Where:
I_{2} is load step high-level current
I_{1} is load step low-level current
$V_{\text {OUT }}$ is output voltage including transient (nominally this is set 3% higher than $\mathrm{V}_{\text {out }}$)

In general, the best capacitors are the ones with known and consistent ESR across operating temperature range. Examples include POSCAPs, Tantalums and certain Aluminum Electrolytics.

OUTPUT INDUCTOR

Select the output inductor for inductance and current rating. As a rule of thumb the DC current rating and saturation current should be at least 50% higher than maximum output current. Calculate the inductance from:

$$
L=\frac{\left(V_{I N}-V_{\text {OUT }}\right) \times D}{\Delta I L \times f_{S}}
$$

Where:
D is duty cycle
fs is switching frequency
$\Delta I L$ is inductor current ripple nominally set at 30% of $\mathrm{I}_{\text {OUt }}$.

InPut CAPACITOR

Select the input capacitor for capacitance, voltage rating and RMS current rating. As a rule of thumb, the voltage rating should be twice the maximum input voltage of the converter. RMS current rating can be approximated from:

$$
I_{R M S}=I_{O U T} \times \sqrt{D(1-D)}
$$

Calculate C_{IN} such that input voltage ripple does not exceed 2% of $\mathrm{V}_{\text {IN }}$. Ceramic input capacitors are recommended. This choice minimizes input voltage ripple due to ESL and ESR. Thus a simplified expression for C_{IN} can be written:

$$
C_{I N}=\frac{I_{\text {OUT }, \text { MAX }} \times V_{\text {OUT }} \times\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{f_{S} \times 0.02 V_{I N} \times V_{I N}{ }^{2}}
$$

Synchronous FET (Low-SIDe FET)

Select the synchronous FET for voltage rating $B V_{\text {DSS, }}$, on resistance rating $R_{D S(O N)}$ and gate drive rating $\mathrm{V}_{G S}$. As a rule of thumb, voltage rating should be at least twice the converter input voltage. FETs with voltage rating of up to 30V should provide satisfactory performance. Drive voltage of 4.5 V is sufficient for applications with minimum input voltage of 4.5 V . For applications with a lower input voltage a FET with 2.5 V gate drive should be selected. Switching losses of the Synchronous FET are negligible in comparison to its conduction losses. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is calculated based on conduction losses from:

$$
R_{D S(O N)} \leq \frac{P_{\text {Condection }}}{(1-D) \times I_{\text {OUT }}{ }^{2}}
$$

It is common practice to allocate 50% of the total FET losses to the synchronous FET. As an example, consider a 10W buck converter with a target efficiency of 90%. Therefore, the target total power loss is 1.1 W . Assume that the only significant non-FET loss is the inductor loss estimated at 0.1 W . Thus the maximum conduction loss of the synchronous FET should not exceed 0.5 W . By using this value in the above equation $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ can be calculated and a suitable FET selected.

Switching FET (High-side FET)

Select the switching FET for voltage rating $B V_{\text {DSS }}$, on-resistance rating $R_{\text {DS(ON), }}$, gate drive rating $V_{G S}$, rise time t_{r} and fall time t_{f}. $B V_{D S S}$ and $V_{G S}$ selection guidelines are the same as Synchronous FET. The switching FET incurs switching (i.e., transitional) as well as conduction losses. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is calculated based on conduction losses from:

$$
R_{D S(O N)} \leq \frac{P_{\text {Conduction }}}{D \times I_{\text {OUT }}{ }^{2}}
$$

It is common practice to allocate 50% of the total high-side FET losses to conduction. Proceeding with the example from previous
section the total target loss is 0.5 W , and thus target conduction loss equals 0.25 W . By using this value in the above equation $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ can be calculated. Rise and fall time can be approximated from:

$$
t_{r}+t_{f}=\frac{P_{\text {Switching }}}{V_{I N} \times I_{\text {out }} \times f_{s}}
$$

Since the allotted switching loss budget is $0.25 \mathrm{~W}, \mathrm{t}_{\mathrm{r}}$ and t_{f} can be calculated from the above equation.
For a detailed explanation of FET losses and FET selection procedure refer to EXAR application note ANP-20.

R-C Snubber (Optional)

An R-C snubber placed across the synchronous FET eliminates the ringing and reduces the amplitude of overshoot at SW node. Use surface-mount components and place them close to the FET drain-source. Calculate the value of snubber capacitor Csnb from:

$$
\text { Csnb }=3 \times \text { Coss }
$$

Coss is the output capacitance of the synchronous FET corresponding to V_{IN}.

Calculate the value of the snubber resistor Rsnb from:

$$
R s n b=\frac{2 \times V_{\text {OUT }}}{I_{\text {OUT }}}
$$

DDR MEMORY POWER APPLICATIONS

XRP6142 can be used to generate the required $V_{D D Q}\left(V_{D D}\right)$ or V_{T} Reference voltages for DDR I, II and III memories and provides a 40 mA buffered V_{T} Reference voltage. When used in conjunction with Exar's SP2996 DDR Memory Termination, the XRP6142 provides a complete DDR power management solution. A costeffective DDR2 solution is shown on page 15. XRP6142 provides the VDDQ and VTTREF voltages. SP2996 provides the VTT voltage. Please note that the current output of VDDQ can be increased up to 10A by using a larger QT/QB MOSFET and scaling the L1 and C3 accordingly.

XRP6142
 Synchronous Step-Down Controller with DDR Memory Termination

PCB LAYOUT GUIDELINES

The following guidelines will help attain stable operation and reduce jitter:

1- Place all the power components; C_{IN}, QT, QB, L1 and $\mathrm{C}_{\text {out }}$ on the same side of the board if possible.

2- Make the loop between C_{IN}, QT and QB as small as possible and use lowimpedance traces.

3- Make the loop between QB, L1 and Cout as small as possible and use lowimpedance traces.

4- Place the source of QT, drain of QB and input connection of L1 as close as possible and use low-impedance traces.

5- Use a short trace and connect AGND to the thermal pad. This forms the signal ground.

6- Use a short trace and connect PGND to AGND.

7- Use a low-impedance trace and connect the PGND pin to the Cout.
8- Place CFF, R1 and R2 close to the IC, and connect R2 to signal ground. Use a short trace and connect R1 to Cout.

9- Bypass the V_{cc} pin to signal ground with a ceramic capacitor(s) as close to the IC as possible. Connect the V_{cc} pin to V_{IN} or an independent V_{CC} source through a 10Ω resistor. This will help filter out noise from V_{cc}.

Synchronous Step-Down Controller with DDR Memory Termination

DESIGN EXAMPLES

5V Step-Down Converter

Note: The data shown in figures 6 trough 15 was collected using this circuit.

XRP6142

3.3V Step-Down Converter

DDR2 MEMORY SOLUTION

PACKAGE SPECIFICATION

16-PIN QFN

REVISION HISTORY

Revision	Date	
1.0 .0	$03 / 24 / 2010$	Initial release of datasheet

FOR FURTHER ASSISTANCE

Email:
Exar Technical Documentation:

customersupport@exar.com
http://www.exar.com/TechDoc/default.aspx?

Exar Corporation

Headquarters and Sales Offices
48720 Kato Road
Fremont, CA 94538 - USA
Tel.: +1 (510) 668-7000
Fax: +1 (510) 668-7030
www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by MaxLinear manufacturer:
Other Similar products are found below :
EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LM2734YEVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZ-REDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250-S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM ISL85033EVAL2Z UCC28810EVM-002 XILINXPWR-083

