

2A 5V-Adjustable Low Dropout Voltage Regulator

Rev. 1.2.2

GENERAL DESCRIPTION

The XRP6272 is a low dropout voltage regulator capable of a constant output current up to 2 Amps. A wide 1.8V to 6V input voltage range allows for single supply operations from industry standard 1.8V, 2.8V, 3.3V, and 5V power rails as well as the 5.8V rail.

With better than $\pm 2\%$ output voltage accuracy, low output noise and high Power Supply Rejection Ratio (PSRR), the XRP6272 is perfectly suited for powering RF circuitries. Optimized for use with small low cost ESR ceramic output capacitors and featuring a low 30µA quiescent current, this device is also adequate for use in battery powered portable equipments. The XRP6272 operates by default as a 5V fixed output voltage regulator while usage of an external resistors divider allows adjustable out voltages as low as 0.7V. An Enable function, Power Good flag and output noise reduction pin complete the feature set.

Built-in current limit and thermal protections insure safe operations under abnormal operating conditions.

The XRP6272 is offered in RoHS compliant, "green"/halogen free 5-pin TO-252 and 8-pin exposed pad SOIC packages.

APPLICATIONS

- Networking Equipments
- **RF Circuitry Power Supplies**
- Set-top box Equipments
- Portable Equipments

FEATURES

- Guaranteed 2A Output Current
 - Low 550mV Dropout at 3.3V/2A
- 1.8V to 6V Single Input Voltage Range
 - Fixed 5V and Adjustable Output Voltage
 - ±2% Output Voltage Accuracy
- 30µA Quiescent Current
- Power Good and Enable Functions
- 70dB Power Supply Rejection Ratio
- Low Output Noise
- 0.01µA Shutdown Current
- Current Limit and Thermal Protection
- RoHS compliant "Green"/Halogen Free 5-pin TO-252 and 8-pin Exposed pad SOIC Packages

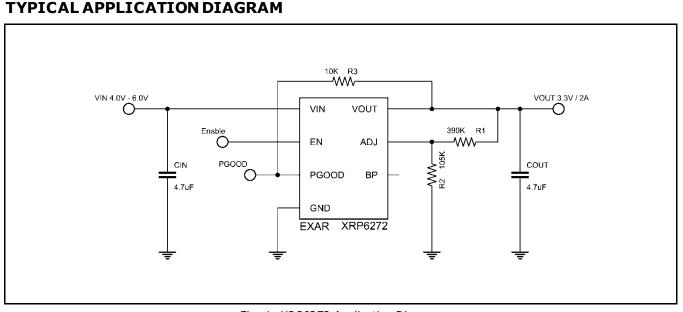


Fig. 1: XRP6272 Application Diagram

1

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{IN} , EN, BP	7.0V
Storage Temperature	65°C to 150°C
Power Dissipation	. Internally Limited
Lead Temperature (Soldering, 10 sec)	260°C
Junction Temperature	150°C
ESD Rating (HBM - Human Body Model))2kV
ESD Rating (MM - Machine Model)	500V

OPERATING RATINGS

Input Voltage Range V _{IN}	1.8V to 6V
Operating Temperature Range	40°C to 85°C
Thermal Resistance	
θ _{JA} (5-Pin TO-252)	100°C/W

θ _{JC} (5-Pin TO-252)	8°C/W
θ _{JA} (8-pin HSOIC)	60°C/W
θ _{JC} (8-pin HSOIC)	15°C/W

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Junction Temperature of $T_{\rm J} = 25$ °C only. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_{\rm J} = 25$ °C, and are provided for reference purposes only. Unless otherwise indicated, $V_{\rm IN} = V_{\rm OUT} + 1V$, $C_{\rm IN} = 4.7 \mu$ F, $C_{\rm OUT} = 4.7 \mu$ F or 10μ F (Note 1), $C_{\rm BYP} = 22$ nF, $T_{\rm J} = 25$ °C.

Parameter	Min.	Тур.	Max.	Units	Conditions
Input Voltage	1.8		6.0	V	
Output Voltage Tolerance	-2		+2	%	$I_{OUT} = 1 m A$
Continuous Output Current	2			А	$V_{IN} \ge 2.3V$
Current Current		30	50	μA	$V_{EN} \ge 1.6V$, No Load
Ground Current		30	50	μΛ	$V_{EN} \ge 1.6V$, $I_{OUT} = 300 mA$
Standby Current		0.01	0.5	μA	$V_{EN} = 0$
Line Regulation		3	15	mV	$V_{IN} = V_{OUT} + 1V$ to 6V, $I_{OUT} = 1mA$
Load Regulation		5	15	mV	$I_{OUT} = 1 \text{ mA to } 2 \text{ A}$
Output Current Limit	2.2	3.0	3.9	А	
Current Fold Back		1.0		А	
		960			$I_{OUT} = 2A, V_{OUT} = 1.2V$
Dropout Voltage (Note 2)		700	900	mV	$I_{OUT} = 2A, V_{OUT} = 1.8V$
Dropout Voltage (Note 2)		550	700	111 V	$I_{OUT} = 2A, V_{OUT} = 3.3V$
		480	600		$I_{OUT} = 2A, V_{OUT} = 5.0V$
Reference Voltage Tolerance	0.686	0.7	0.714	V	
ADJ Pin Current		10	100	nA	$V_{ADJ} = V_{REF}$
ADJ Pin Threshold	0.05	0.1	0.2	V	
Enable Turn-On Threshold	1.6			V	Output ON
Enable Turn-Off Threshold			0.4	V	Output OFF
Shutdown Pin Current		0	0.5	μA	$V_{EN} = 0$
Shutdown Exit Delay Time		100		μs	
Max Output Discharge Resistanœ to GND during Shutdown		20	100	Ω	
PGOOD Rise Threshold		90	93	%	
PGOOD Hysteresis	3	10		%	
PGOOD Delay	0.5		5	ms	
PGOOD Sink Capability		0.2	0.4	V	$I_{PGOOD} = 10 \text{mA}$
Ripple Rejection		70		dB	f=1KHz, Ripple=0.5Vp-p
Output Noise Voltage	_	24		µVrm s	C _{BP} = 22nF, f=10Hz ~100KHz
Temperature Coefficient		50		ppm/°C	
Thermal Shutdown Temperature		150		°C	$V_{IN} = V_{OUT} + 1V$

Parameter	Min.	Тур.	Max.	Units	Conditions
Thermal Shutdown Hysteresis		20		°C	

Note 1: In the case of $V_{\text{OUT}} \leq 1.8 V,$ C_{OUT} = $10 \mu F$ is recommended.

Note 2: Dropout Voltage is defined as input voltage minus output voltage when the output voltage drops by 1% of its nominal value at $V_{IN} = V_{OUT} + 1V$.

Note 3: $V_{IN(min)}$ is the higher value of (V_{OUT} + Dropout Voltage) or 1.8V.

BLOCK DIAGRAM

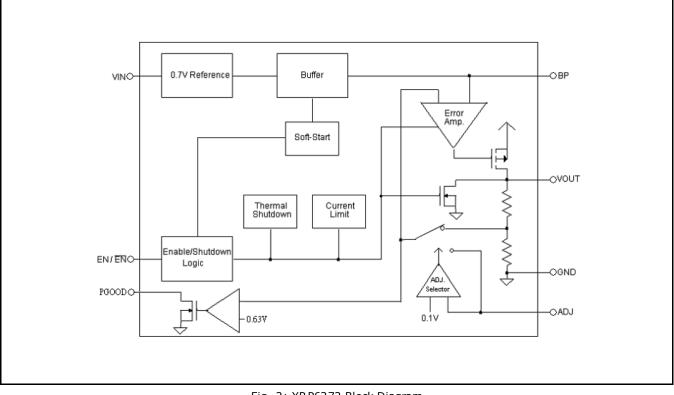


Fig. 2: XRP6272 Block Diagram

PIN ASSIGNMENT

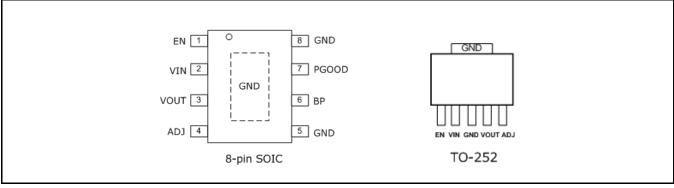


Fig. 3: XRP6272 Pin Assignment

PIN DESCRIPTION

Name	SOIC-8	TO-252	Description
EN	1	1	Enable Pin. Minimum 1.6V to enable the device. Maximum 0.4V to shutdown the device.
VIN	2	2	Power Input Pin. Must be closely decoupled to GND pin with a 4.7µF or greater ceramic capacitor.
VOUT	3	4	Regulator Output pin.
ADJ	4	5	Adjustable Pin. Output Voltage can be set by external feedback resistors when using a resistive divider. Or, connect ADJ to GND for VOUT = 5V, set by internal feedback resistors.
GND	5,8	3	Ground Signal
BP	6	-	Bypass pin. Connect a 22nF capacitor to GND to reduce output noise. Bypass pin can be left floating if not necessary.
PGOOD	7	_	Power Good open Drain Output.
GND	Exposed Pad	Tab	Connect to GND.

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Packing Method	Lead-Free
XRP6272ITC5TR-F	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	5-pin TO-252	Tape & Reel	Yes
XRP6272IDBTR-F	-40°C ≤ T _A ≤ +85°C	8-pin HSOIC	Tape & Reel	Yes

NOTES: For the most up-to-date information and additional information on environmental rating, go to <u>www.maxlinear.com/XRP6272</u>.

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $V_{IN} = V_{OUT} + 1V$, $T_J = T_A = 25$ °C, $C_{IN} = 4.7\mu$ F, $C_{OUT} = 4.7\mu$ F or 10μ F (Note 1) unless otherwise specified.

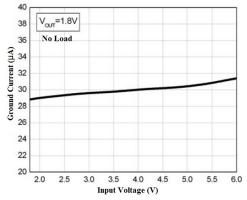


Fig. 4: GND Current vs. VIN at VOUT=1.8V, No Load

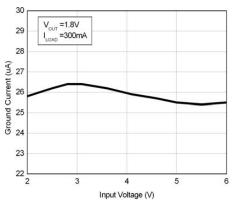


Fig. 6: GND Current vs. VIN at VOUT=1.8V, 300mA

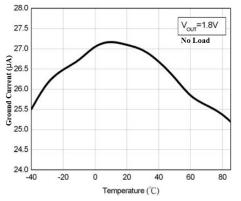
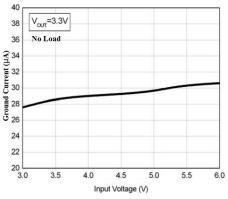



Fig. 8: GND Current vs. Temp. at VOUT=1.8V, No Load

XRP6272

Fig. 5: GND Current vs. VIN at VOUT=3.3V, No Load

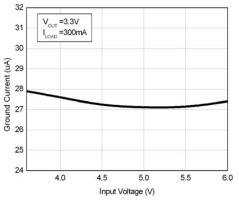


Fig. 7: GND Current vs. VIN at VOUT=3.3V, 300mA

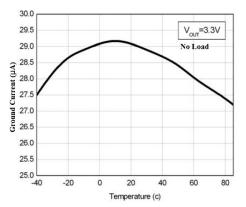


Fig. 9: GND Current vs. Temp. at VOUT=3.3V, No Load

2A 5V-Adjustable Low Dropout Voltage Regulator

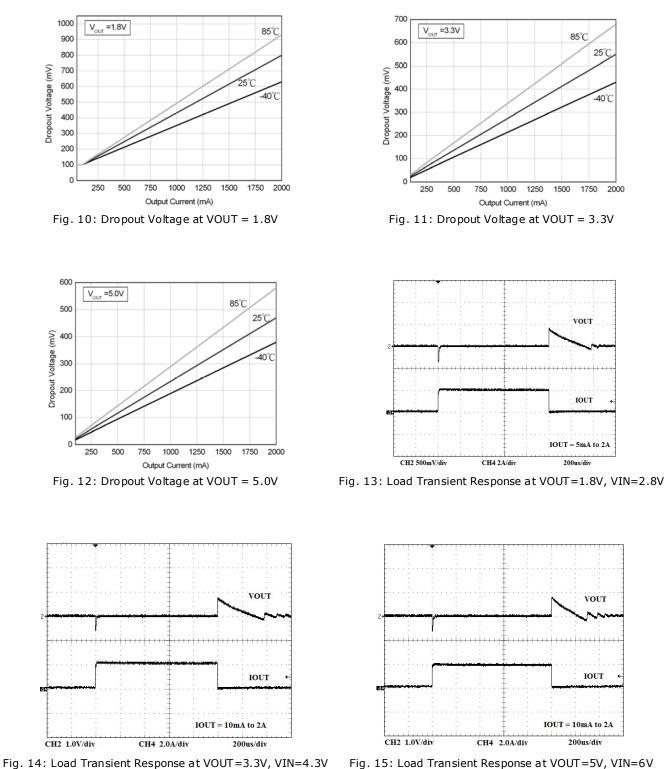
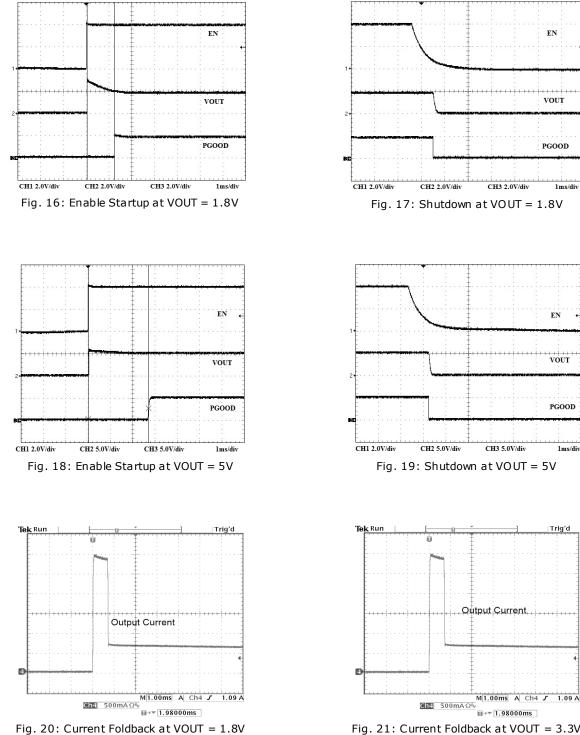
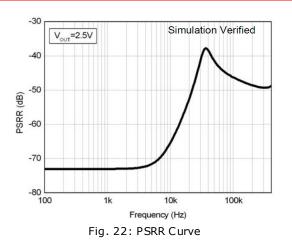
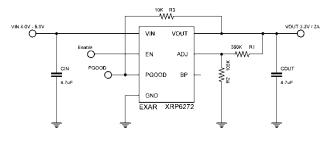



Fig. 15: Load Transient Response at VOUT=5V, VIN=6V



2A 5V-Adjustable Low Dropout Voltage Regulator


2A 5V-Adjustable Low Dropout Voltage Regulator

APPLICATION INFORMATION

The XRP6272 is a low-dropout voltage regulator with low quiescent current, low noise and high PSRR. It can support load current up to 2A. It incorporates current-limit and thermal protection features.

TYPICAL APPLICATION SCHEMATIC

PROGRAMMING THE OUTPUT VOLTAGE

XRP6272's internal feedback resistors set the output voltage V_{OUT} to 5V when the ADJ pin is connected to GND. Alternatively; the output voltage is adjustable via the external feedback resistor network R1 and R2 by calculating the following formula:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right)$$

where, V_{REF} is the reference voltage set internally at 0.7V nominal.

INPUT & OUTPUT CAPACITORS

XRP6272 is optimized for use with ceramic capacitors. To ensure stability of the device,

an output ceramic capacitor of at least 4.7μ F or 10μ F (for $V_{OUT} \le 1.8V$) is recommended. An input capacitor of 4.7μ F is recommended.

X5R or X7R ceramic capacitors are recommended as they have the best temperature and voltage characteristics.

NOISE BYPASS CAPACITOR

A 22nF bypass capacitor at BP pin can reduce output voltage noise. This pin can be left floating if it is unnecessary.

THEORY OF OPERATION

SHUTDOWN

By connecting EN pin to GND, the XRP6272 can be shutdown to reduce the supply current to $0.01\mu A$ (typ.). In this mode, the output voltage of XRP6272 is equal to 0V.

CURRENT LIMIT

The XRP6272 includes current limit protection feature, which monitors and controls the maximum output current. If the output is overloaded or shorted to ground, this can protect the device from being damaged.

THERMAL PROTECTION

The XRP6272 includes a thermal protection feature that protects the IC by turning off the pass transistor when the maximum junction temperature T_{J} exceeds 150°C.

POWER DISSIPATION

The power dissipation across the device can be calculated as:

$$P_D = I_{OUT} \times (V_{IN} - V_{OUT})$$

The total junction temperature is calculated as:

 $T_J = T_A + P_D \times \theta_{JA}$

where, T_J is the junction temperature, T_A is the ambient temperature and Θ_{JA} is the thermal resistance between junction to ambient.

There is a temperature rise associated with this power dissipated while operating in a given ambient temperature. If the calculated junction temperature exceeds maximum junction temperature specification, then the built-in thermal protection feature is triggered as described previously.

To insure reliable performance, the maximum allowable power dissipation for a given ambient temperature must be considered and it can be calculated as follows:

$$P_{D(MAX)} = (T_{J(MAX)} - (T_A)) / \theta_{JA}$$

XRP6272

where, $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature and Θ_{JA} is the thermal resistance between junction to ambient. In order to insure the best thermal flow, proper mounting of the IC is required.

LAYOUT CONSIDERATION

- 1. Connect the bottom-side pad to a large ground plane for good thermal conductivity and to reduce the thermal resistance of the device.
- 2. The input capacitor C_{IN} and output capacitor C_{OUT} must be placed as close as possible to the pins V_{IN} and V_{OUT} respectively.
- 3. Use short wires to connect the power supply to pins $V_{\rm IN}$ and GND on the board.

TYPICAL APPLICATIONS

APPLICATION 1

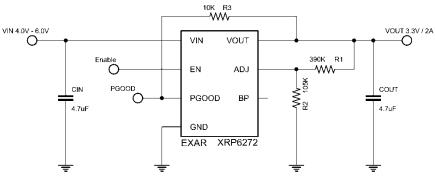


Fig. 23: 5V to 3.3V / 2A

APPLICATION 2

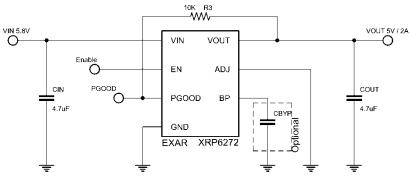
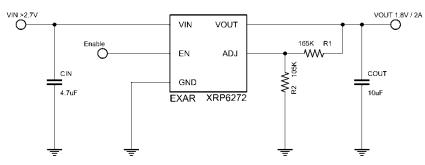
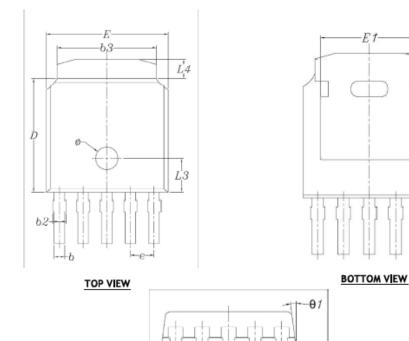


Fig. 24: 5.8V to 5V RF Stage Low Noise Power Supply

APPLICATION 3




Fig. 25: 2.7V Min to 1.8V / 2A Power Supply

D1

MECHANICAL DIMENSIONS

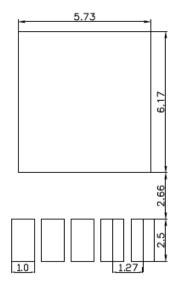
TO-252-5L

θ1	-c2
	$-A1$ $-\frac{1}{101}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$

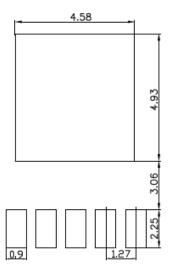
SIDE VIEW - 2

SYMBOLS	DIMENSION	IS IN INCH	DIMENSIONS	IN MILLINETER
STMBULS	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.184	2.387
A1	0.000	0.005	0.00	0.127
b	0.020	0.028	0.508	0.711
b1	0.020	0.026	0.508	0.660
b2	0.024	0.031	0.610	0.787
b3	0.204	0.215	5.184	5.461
с	0.018	0.024	0.460	0.610
c1	0.016	0.022	0.406	0.559
c2	0.018	0.024	0.460	0.610
D	0.236	0.245	6.000	6.223
D1	0.198	/	5.050	/
E	0.250	0.265	6.350	6.731
E1	0.170	/	4.318	/
е	0.046	0.053	1.170	1.370
Н	0.374	0.405	9.500	10.300
L	0.055	0.070	1.397	1.778
L1	0.094	0.118	2.400	3.000
L2	0.020 REF		0.5	io8 REF
L3	0.063	0.078	1.600	2.000
L4	0.035	0.050	0.889	1.270
0	0*	10'	0*	10'
01	0.	15*	0.	15*
ø	0.041	0.053	1.05	1.35

TERMINAL DETAILS


ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES.
 DIMENSIONS AND TOLERANCE PER JEDEC TO-252.

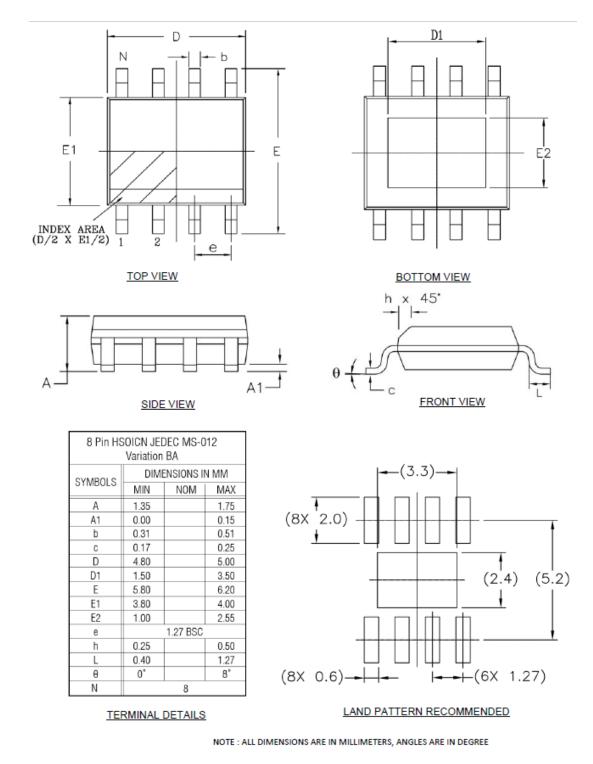
Drawing No.: POD-00000165 Revision: A



RECOMMENDED LAND PATTERN AND STENCIL

TO-252-5L

TYPICAL RECOMMENDED LAND PATTERN


TYPICAL RECOMMENDED STENCIL

Drawing No.: POD- 00000165 Revision: A

MECHANICAL DIMENSIONS AND RECOMMENDED LAND PATTERN

Exposed Pad 8-Pin SOIC

Drawing No. : POD - 00000125 Revision: A

REVISION HISTORY

Revision	Date	Description
1.1.0	10/14/2011	Initial release of Data Sheet.
1.2.0	11/30/2011	Corrected pin assignment package drawing.
1.2.1	11/01/2019	Updated to MaxLinear logo. Updated Ordering Information.
1.2.2	September 10, 2021	 Updated: TO-252-5L POD's Mechanical Dimensions. Exposed Pad 8-Pin SOIC POD's Mechanical Dimensions. Added: TO-252-5L POD's Recommended Land Pattern and Stencil. Exposed Pad 8-Pin SOIC POD's Recommended Land Pattern.

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances b its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, any MaxLinear trademarks (MxL, Full-Spectrum Capture, FSC, G.now, AirPHY, Puma, and AnyWAN), and the MaxLinear logo on the products sold are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners.

© 2021 MaxLinear, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by MaxLinear manufacturer:

Other Similar products are found below :

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR2EN18,LF(S AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5 NCV8186BMN175TAG NCP715SQ15T2G MIC5317-3.0YD5-T5 NCV563SQ18T1G MIC5317-2.8YD5-T5 NCP715MX30TBG MIC5317-2.5YD5-T5