

LNA with Bypass Mode for LTE Mid-High Band

Description

MXD8011HF high gain, low noise amplifier (LNA) is dedicated to LTE middle band and high band receive using advanced RFCMOS process. This product has two operation modes, low noise mode and bypass mode.

MXD8011HF works under a 1.6V to 3.0V single power supply while consumes 7.5 mA current in low noise mode, in bypass mode, the power consumption will be reduced to less than 1uA. MXD8011HF uses a small 1.1mm×0.7mm×0.45mm LGA 6-pin package.

Applications

■ LTE high-mid band receiving

Features

- Broadband frequency range: 1.8 to 2.7 GHz
- High Gain
- 14.0 dB gain at 1.8GHz to 2.2GHz
- 13.0 dB gain at 2.3GHz to 2.7GHz
- Low noise figure
- 0.8 dB noise figure at 1.8GHz to 2.2GHz
- 0.9 dB noise figure at 2.3GHz to 2.7GHz
- Operation current 7.5 mA
- Small, LGA (6-pin, 1.1mm x 0.7mm x 0.45mm) package , MSL1
- No DC blocking capacitors required.

Pin Configuration/Application Diagram

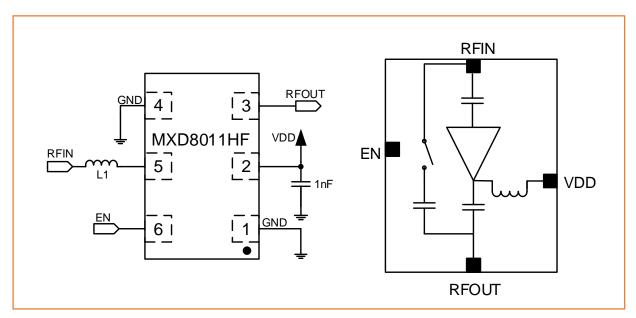


Figure 1 Pin Configuration/Application Diagram (Top View)

Pin No. Name 1/0 **Pin Description** 1 **GND** AG **Analog VSS** 2 **VDD** ΑP Power supply 3 **RFOUT** AO **LNA** output **GND** 4 AG **Analog VSS** 5 **RFIN** ΑI LNA input from antenna

Table 1 Pin Descriptions

Note: DI (digital input), DO (digital output), DIO (digital bidirectional), AI (analog input), AO (analog output), AIO (analog bidirectional), AP (analog power), AG (analog ground),

DI

Table 2 Input matching inductance

Component	Matching Band	Vendor Type		Part Number & value
	1800MHz – 2200MHz	Murata	Wired inductor, high Q	LQW15AN4N7, 4.7nH
L1	1800WHZ - 2200WHZ	various	Ceramic inductor, low Q	4.3nH
	2300MHz – 2700MHz	Murata	Wired inductor, high Q	LQW15AN3N9, 3.9nH
	ZOUNINZ – Z/UUNINZ	various	Ceramic inductor, low Q	3.6nH

6

ΕN

Pull high into low noise mode, pull low into bypass mode

Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings

Parameters	Symbol	Ranges	Units
Supply voltage	V _{DD}	-0.3∼+3.3	v
Digital control voltage	V _{CTL}	-0.3∼VDD+0.3, Max:3.3	v
RF input power	P _{IN}	+22	dBm
Operating temperature	T _{OP}	-40∼+90	င
Storage temperature	T _{STG}	- 65∼+150	င
Human Body Mode ESD	ESD_HBM	1500	v
Charge Device Mode ESD	ESD_CDM	1000	V

Note1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Note2: According to ESDA/JEDECJS-001-2014
Note3: According to ESDA/JEDECJS-002-2014

DC Characteristics

Table 4 DC Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
Farailletei	Syllibol	Min.	Тур.	Max.	Units	rest Condition
Power supply	V _{DD}	1.6	2.8	3.0	V	
Summly accurant	I _{DD_HG}	5.5	7.5	11.0	mA	High Gain Mode
Supply current						VDD = 2.8V, VEN=high
Summit augument				Bypass Mode		
Supply current	I _{DD_BY}	-	0.05	1.0	uA	VDD = 2.8 V, VEN=low
Control Voltage High	V _{CTL_H}	1.0	1.8	VDD	V	
Control Voltage Low	V _{CTL_L}	0.0	0.0	0.3	٧	

AC Characteristics

Typically TA=25℃ VDD=2.8V, All data measured on Maxscend's EVB, unless otherwise noted

Table 5 High Gain mode Electrical Specifications

Specification Links Test Condition						Toot Condition
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Condition
DC Specifications		1800	-	2700	MHz	
Power goin	G	12.5	14.0	15.5	dB	1800-2200MHz
Power gain		11.5	13.0	14.5	dB	2300-2700MHz
Naine Garage	NE		0.8	1.4	dB	1800-2200MHz
Noise figure	NF	-	0.9	1.5	dB	2300-2700MHz
Input Return loss	S11	-	-10	-5	dB	1800 to 2700MHz
Output Return loss	S22	-	-10	-6	dB	1800 to 2700MHz
Stability factor	Kf	1.2	-	-		
Input 1 dB compression		-8	-3		dBm	1800 to 2200MHz
point	P1dB	-4	0	-	dBm	2300 to 2700MHz
		-2	3		dBm	Note1
Input IP3	IIP3	-3	2	-	dBm	Note2
		-3	2		dBm	Note3
Out-of band Input 3rd		-62	-68		dBm	Note4
order intermodulation		-61	-67		dBm	Note5
Input 2nd order intercept		-32	-37		dBm	Note6
intermodulation		-33	-38		dBm	Note7
Startup time		-	-	1	με	Shutdown state to
Startup time						power on state

Note1: Pin=Pin2=-25dBm, F1=1960MHz, F2=1961MHz

Note2: Pin=Pin2=-25dBm, F1=2100MHz, F2=2101MHz

Note3: Pin=Pin2=-25dBm, F1=2600MHz, F2=2601MHz

Note4: F1=2700MHz, F2=2400MHz, two tone input power -25dBm, measure 3rd order intermodulation at 2100MHz

Note5: F1=2100MHz, F2=2400MHz, two tone input power -25dBm, measure 3rd order intermodulation at 2700MHz

Note6: F1=2650MHz, F2=950MHz, two tone input power -25dBm, measure 2nd order intermodulation at 1700MHz

Note7: F1=950MHz, F2=1700MHz, two tone input power -25dBm, measure 2nd order intermodulation at 2650MHz

Table 6 Bypass Mode Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Ullits	rest Condition
Insertion loss	IL	-5	-2	-	dB	1800 to 2700MHz
Input Return loss	S11	-	-10	-6	dB	1800 to 2700MHz
Output Return loss	S22	-	-10	-6	dB	1800 to 2700MHz
Input 1 dB	P1dB	10	15	-	dBm	1800 to 2700MHz
compression point						

Package Outline Dimensions

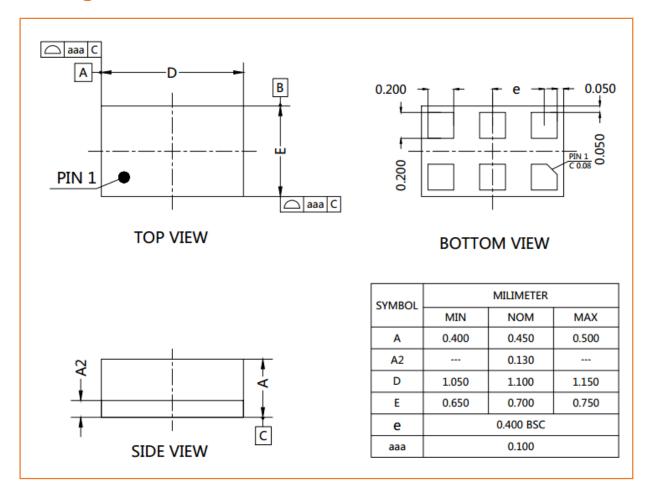


Figure 2 Package outline dimension

Marking Specifications

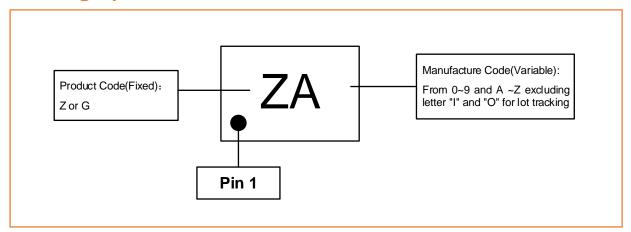


Figure 3 Marking Specification (Top View)

Tape and Reel Dimensions

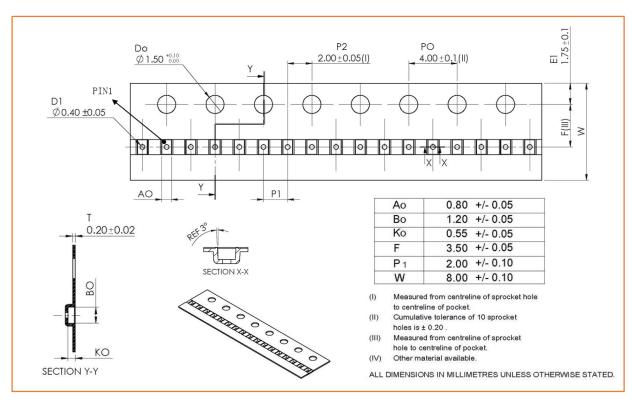


Figure 4 Tape and Reel Dimensions

Reflow Chart

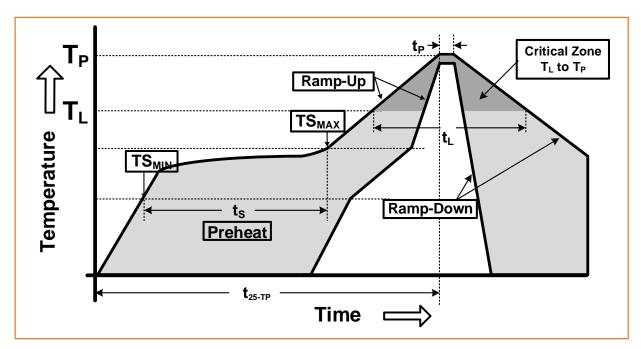


Figure 5 Recommended Lead-Free Reflow Profile

Table 7 Reflow Chart Parameters

Reflow Profile	Parameter		
Preheat Temperature(TS _{MIN} to TS _{MAX})	150℃ to 200℃		
Preheat Time(t _s)	60 to180 Seconds		
Ramp-Up Rate(TS _{MAX} to T _P)	3°C/s MAX		
Time Above T _L 217°C(t _L)	60 to 150 Seconds		
Peak Temperature (T _P)	260℃		
Time within 5°C of Peak Temperature(t _P)	20 to 40 Seconds		
Ramp-Down Rate(TS _{MAX} to T _P)	6°C/s MAX		
Time for 25°C to Peak Temperature(t _{25-TP})	8 Minutes MAX		

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be applied when devices are operated.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E