

MXD8015HC Low Noise Amplifier for LTE Mid-High Band

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

MXD8015HC high gain, low noise amplifier (LNA) is dedicated to LTE middle band and high band receive using advanced RFCMOS process. The high linearity performance and low noise figure makes the device an ideal choice for LTE receiving Applications.

MXD8015HC works under a 1.6V to 3.3V single power supply while consumes 6 mA current in low noise mode, in power down mode, the power consumption will be reduced to less than 1uA.

MXD8015HC uses a small 1.1mm \times 0.7mm \times 0.45mm DFN 6-pin package.

Applications

LTE high-mid band receiving

Features

- Broadband frequency range: 1.8 to 2.7 GHz
- High Gain
 - 15.0dB gain at 2.8V 1.8GHz to 2.2GHz
 - 13.5dB gain at 2.8V 2.3GHz to 2.7GHz
 - 14.0dB gain at 1.8V 1.8GHz to 2.2GHz
 - 12.0dB gain at 1.8V 2.3GHz to 2.7GHz
- Low noise figure
 - 0.8dB noise figure at 2.8V 1.8GHz to 2.2GHz
 - 1.0dB noise figure at 2.8V 2.3GHz to 2.7GHz
 - 1.0dB noise figure at 1.8V 1.8GHz to 2.2GHz
 - 1.2dB noise figure at 1.8V 2.3GHz to 2.7GHz
- Operation current 6mA
- Small, DFN (6-pin, 1.1mm x 0.7mm x 0.45mm) package , MSL1
- No DC blocking capacitors required.

Pin Configuration/Application Diagram (Top view)

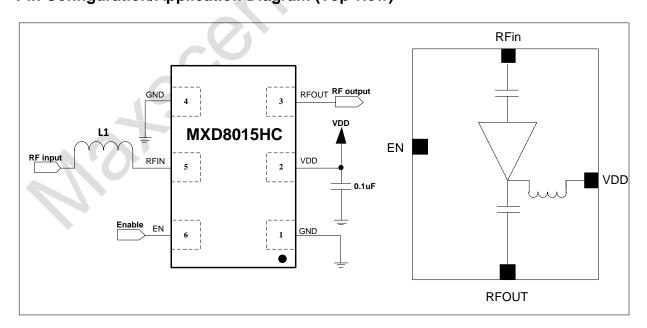


Figure 1 MXD8015HC application circuit

Pin Descriptions & Input matching inductance

Table 1

Pin	Pin Name	1/0	Pin Description
1	GND	AG	Analog VSS
2	VDD	AP	Power supply
3	RFOUT	AO	LNA output
4	GND	AG	Analog VSS
5	RFIN	Al	LNA input from antenna
6	EN	DI	Pull high into low noise mode, pull low into power down mode

Note: DI (digital input), DO (digital output), DIO (digital bidirectional), AI (analog input), AO (analog output), AIO (analog bidirectional), AP (analog power), AG (analog ground),

Table 2 Input matching inductance

Component	Matching Band	Vendor	Туре	Part Number & value
	1800MHz – 2200MHz	Murata	Wired inductor, high Q	LQW15AN6N8, 6.8nH
1.4	1600IVID2 - 2200IVID2	various	Ceramic inductor, low Q	6.2nH
L1	2300MHz – 2700MHz	Murata	Wired inductor, high Q	LQW15AN4N3, 4.3nH
	2300IVID2 - 2700IVID2	various	Ceramic inductor, low Q	3.9nH

Recommended Operation Range

Table 3

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	1800	-	2700	MHz
Power supply	V_{DD}	1.6	2.8	3.3	V
Control Voltage High	V _{CTL_H}	1.0	1.8	VDD	V
Control Voltage Low	V _{CTL_L}	0	0	0.3	V

Absolute Maximum Ratings

Table 4 Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	-0.3	+3.6	V
Digital control voltage	V _{CTL}	-0.3	VDD+0.3, Max: 3.6	V
RF input power	P _{IN}	-	+20	dBm
Operating temperature	T _{OP}	-35	+90	°C
Storage temperature	T _{STG}	-55	+150	$^{\circ}$ C
Electrostatic Discharge Human body model (HBM), Class 1C ^{Note1}	ESD_HBM		1500	
Machine Model (MM), Class A ^{Note2}	ESD_MM	-	150	V
Charged device model (CDM), Class III Note3	ESD_CDM		500	

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Note1: According to ESDA/JEDECJS-001-2014

Note2: According to JESD22-A115C

Note3: According to ESDA/JEDECJS-002-2014

Specifications

Typically T_A=25°C VDD=2.8V, All data measured on Maxscend's EVB, unless otherwise noted

Table 5 High Gain mode Electrical Specifications

Davamatav	Symbol	Specification			l lmita	Took Condition
Parameter		Min.	Typical	Max.	Units	Test Condition
DC Specifications						
Supply voltage	V_{DD}	1.6	2.8	3.3	V	_
Supply current	I _{DD}	4.5 0	6 0.05	9 1	mΑ μΑ	VDD = 2.8V, VEN=high VDD = 2.8V, VEN=low
RF Specifications						
Power gain	G	13.0 11.5	15.0 13.5	17.0 15.5	dB dB	1800-2200MHz 2300-2700MHz
Noise figure	NF	-	0.8 1.0	1.3 1.5	dB dB	1800-2200MHz 2300-2700MHz
Input Return loss	S11	-	-10	-5	dB	1800 to 2700MHz
Output Return loss	S22	-	-10	-6	dB	1800 to 2700MHz
Stability factor	Kf	1.2	-	•	-	
Input 1 dB compression point	P1dB	-10 -8	-6 -4	-	dBm dBm	1800 to 2200MHz 2300 to 2700MHz
Input IP3	IIP3	-3 -2	1 2	(-)	dBm dBm	Note1 Note2
Startup time		-	-	1	μs	Shutdown state to power on state

Note1: Pin=Pin2=-25dBm, F1=2100MHz, F2=2101MHz Note2: Pin=Pin2=-25dBm, F1=2600MHz, F2=2601MHz

Specifications

Typically T_A=25℃ VDD=1.8V, All data measured on Maxscend's EVB, unless otherwise noted

Table 6 High Gain mode Electrical Specifications

Davamatav	Symbol	Specification			l lmita	Took Condition	
Parameter		Min.	Typical	Max.	Units	Test Condition	
DC Specifications							
Supply voltage	V_{DD}	1.6	1.8	3.3	V	_	
Supply current	I _{DD}	3 0	4 0.05	6 1	mΑ μΑ	VDD = 1.8V, VEN=high VDD = 1.8V, VEN=low	
RF Specifications							
Power gain	G	12.0 10.0	14.0 12.0	15.5 13.5	dB dB	1800-2200MHz 2300-2700MHz	
Noise figure	NF	-	1.0 1.2	1.5 1.7	dB dB	1800-2200MHz 2300-2700MHz	
Input Return loss	S11	-	-10	-5	dB	1800 to 2700MHz	
Output Return loss	S22	-	-10	-6	dB	1800 to 2700MHz	
Stability factor	Kf	1.2	-	-	-		
Input 1 dB compression point	P1dB	-12 -9	-8 -5	-	dBm dBm	1800 to 2200MHz 2300 to 2700MHz	
Input IP3	IIP3	-3 -3	1		dBm dBm	Note1 Note2	
Startup time		-	- (1	μs	Shutdown state to power on state	

Note1: Pin=Pin2=-25dBm, F1=2100MHz, F2=2101MHz

Note2: Pin=Pin2=-25dBm, F1=2600MHz, F2=2601MHz

Package Outline Dimensions

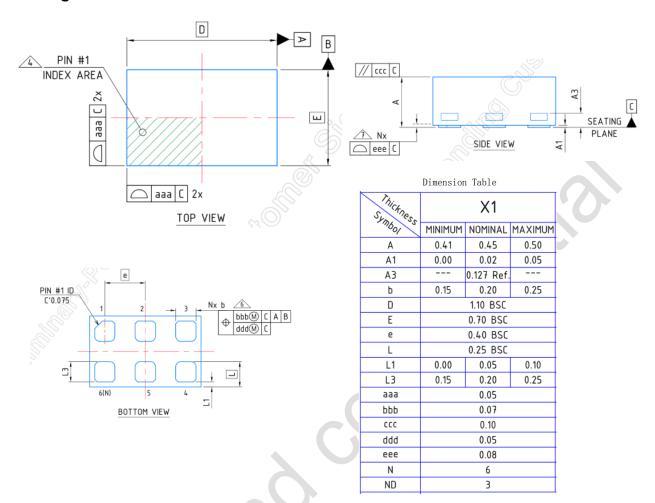


Figure 2 MXD8015HC outline dimension

Marking Specification

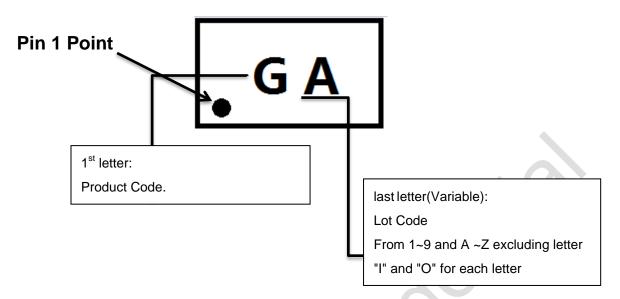


Figure 3 Marking specification (Top View)

Tape and Reel Dimensions

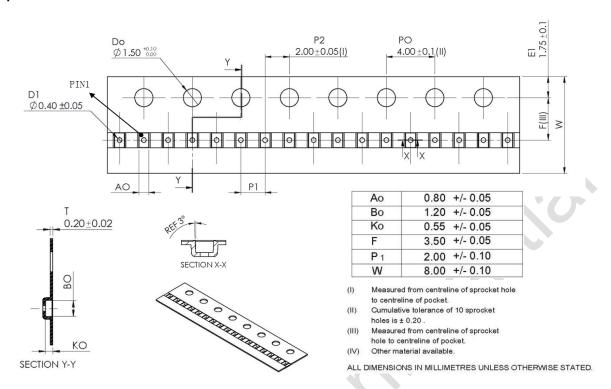


Figure 4 Tape and reel dimensions

Reflow Chart

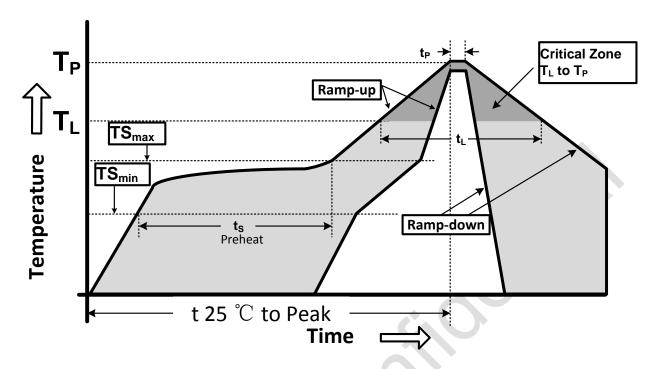


Figure 5 Recommended Lead-Free Reflow Profile

Table 7 Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection			
Ramp-up rate (TS _{max} to T _p)	3°C/second max.			
Preheat temperature (TS _{min} to TS _{max})	150°C to 200°C			
Preheat time (t _s)	60 - 180 seconds			
Time above TL , 217 $^{\circ}$ C (t_L)	60 - 150 seconds			
Peak temperature (T _p)	260℃			
Time within 5°C of peak temperature(t _p)	20 - 40 seconds			
Ramp-down rate	6°C/second max.			
Time 25℃ to peak temperature	8 minutes max.			

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E