

MXD8113H9

SP3T LNA for LTE mid-high band RX

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8113H9 is an FEM integrated with SP3T, LNA. The high linearity performance and low noise figure makes the device an ideal choice for LTE receiving applications.

The MXD8113H9 FEM is provided in a compact Quad Flat No-Lead (QFN) 1.15mm x 1.15mm x 0.45mm package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Applications

LTE high-mid band receiving

Features

- Broadband frequency range: 1.7 to 2.7 GHz
- High Gain
 - 13dB gain at 1.7GHz to 2.3GHz
 - 12dB gain at 2.3GHz to 2.7GHz
- Low noise figure
 - 0.9dB noise figure at 1.7GHz to 2.3GHz
 - 1.1dB noise figure at 2.3GHz to 2.7GHz
- Input 1dB compression point -4dBm
- Operation current 6.5mA
- Small, LGA (9-pin, 1.15mm x 1.15mm x 0.45mm) package , MSL1

Functional Block Diagram and Pin Function

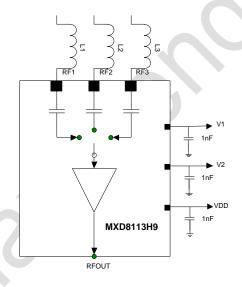


Figure 1.Functional Block Diagram

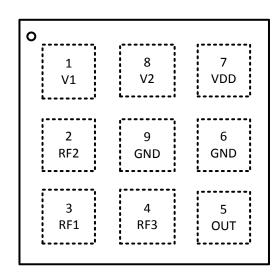


Figure 2.Pin-out (Top View)

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	V1	Digital control 1#	6	GND	Ground
2	RF2	RF-Port 2	7	VDD	Power Supply
3	RF1	RF-Port 1	8	V2	Digital control 2#
4	RF3	RF-Port 3	9	GND	Ground
5	OUT	RF output			

Table 2 Input matching inductance

Component	Matching Band	Vendor	Туре	Part Number & value
	1700MHz – 2300MHz	Murata	Wired inductor, high Q	LQW15AN6N2, 6.2nH
L1/L2/L3	1700IVID2 - 2300IVID2	various	Ceramic inductor, low Q	5.6nH
	2300MHz – 2700MHz	Murata	Wired inductor, high Q	LQW15AN5N1, 5.1nH
	2300IVID2 - 2700IVID2	various	Ceramic inductor, low Q	4.9nH

Truth Table

Table 3.

V1	V2	Active Path
1	0	RF1 active
0	1	RF2 active
1	1	RF3 active
0	0	Power down

Note: "1" = 1.0 V to 3.00 V. "0" = -0 V to +0.3 V.

Recommended Operation Range

Table 4.

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	1700	-	2700	MHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Switch Control Voltage High	V_{CTL_LH}	1.6	1.8	3.0	V
Switch Control Voltage Low	V _{CTL} L	0	0	0.3	V

Specifications

Table 5. Electrical Specifications

D	Symbol	Specification		lluite.	Took Condition		
Parameter		Min.	Typical	Max.	Units	Test Condition	
DC Specifications							
Control voltage:							
Low	V_{CTL_L}	0	0	0.3	V		
High	V _{CTL_H}	1.60	+1.8	3.00	V	* /	
Supply voltage	V_{DD}	2.5	2.8	3.0	V		
Supply current	I_{DD}		6.5		mA	VDD = 2.8 V	
Power down current	I_{PD}		1		uA		
RF Specifications							
Power gain	G	11	13	14.5	dB	1700 to 2300MHz	
Fower gain	G	10	12	13.5	dB	2300 to 2700MHz	
Noise figure	nf	-	0.9	1.4	dB	1700 to 2300MHz	
Noise ligure	111	-	1.1	1.6	dB	2300 to 2700MHz	
Input Return loss	S11	-	-10	-6	dB	1700 to 2700MHz	
Output Return loss	S22	-	-10	-6	dB	1700 to 2700MHz	
Isolation(active gain - inactive gain)	ISO	25	30	-	dB	1700 to 2700MHz	
Input 1 dB	P1dB	-7	-4		dBm	1700 to 2300MHz	
compression point	Plub	-4	-1	-	dBm	2300 to 2700MHz	
Switching on time		-	2	3	us	50% VCTL to 10/90% RF	
Switching off time		-	2	3	us	50% VCTL to 90/10% RF	
Startup time		-	3	4	us	Shutdown state to any RF switch state	

Absolute Maximum Ratings

Table 6. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	+2.5	+3.3	V
Digital control voltage	V _{CTL}	0	+3.0	V
RF input power	P _{IN}	-	+10	dBm
Operating temperature	T_OP	-35	+90	$^{\circ}\!\mathbb{C}$
Storage temperature	T _{STG}	- 55	+150	$^{\circ}\mathbb{C}$
Electrostatic discharge: Human Body Model (HBM), Class 1C Charged device model (CDM), Class III	ESD	-	1500 1000	v v

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Package Outline Dimension

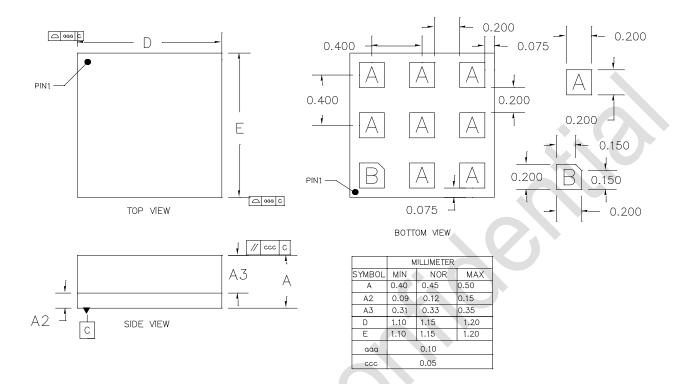


Figure 4. Package outline dimension

Marking Specification

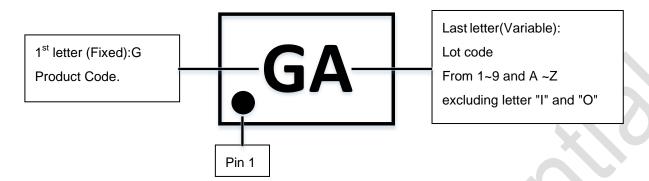
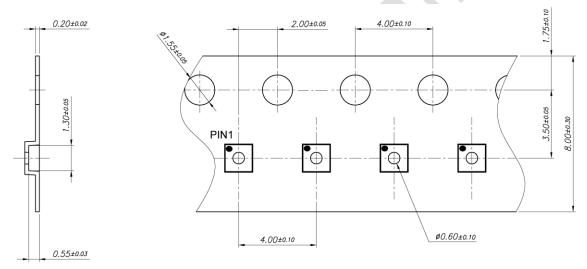



Figure 5. Marking specification (Top View)

Tape and Reel Dimensions

1.30±0.05 MAX 3°

NOTES:

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.2
- 2. Camber not to exceed 1mm in 250mm 3. Material: PolyCarbonate
- 4. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
- 6. Pocket center and pocket hole center must be same position.
- 7. ESD : 10E5 ~ 10E9

Figure 6. Tape and reel dimensions

Reflow Chart

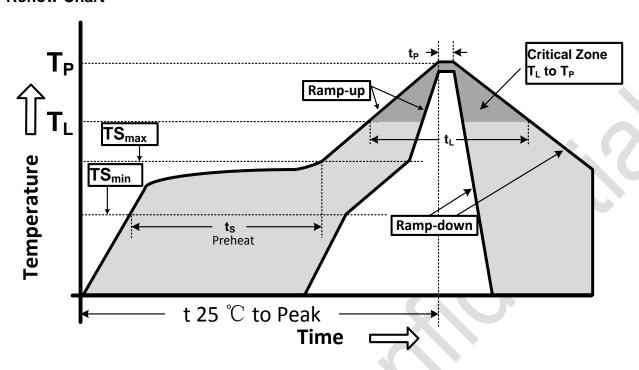


Figure 7. Recommended Lead-Free Reflow Profile

Table 7. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection		
Ramp-up rate (TS _{max} to T _p)	3°C/second max.		
Preheat temperature (TS _{min} to TS _{max})	150℃ to 200℃		
Preheat time (t _s)	60 - 180 seconds		
Time above TL , 217 $^{\circ}$ C (t_L)	60 - 150 seconds		
Peak temperature (T _p)	260℃		
Time within 5°C of peak temperature(t _p)	20 - 40 seconds		
Ramp-down rate	6°C/second max.		
Time 25℃ to peak temperature	8 minutes max.		

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E