

MXD8116LE

SP6T LNA LTE RX Module

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8116LE is an LTE RX module integrated with a low noise, high gain LNA and low insertion loss SP6T, which is used for multi-input for LTE RX.

The MXD8116LE is compatible with +1.0V control logic, which is a key requirement for most cellular transceivers. This part is packaged in a compact 2mm x 2mm, 14-pin, QFN package which allows for a small solution size with no need for external DC blocking capacitors.

Applications

LTE low band receiving

Features

- Operation frequency range: 720 to 970 MHz
- 17dB gain at 720 to 970 MHz
- Low noise figure:
 - 1.0 dB at 720MHz to 970 MHz
- Operation current 6mA
- Compact 2mm x 2mm in QFN-14 package , MSL1
- No DC blocking capacitors required

Functional Block Diagram and Pin Function

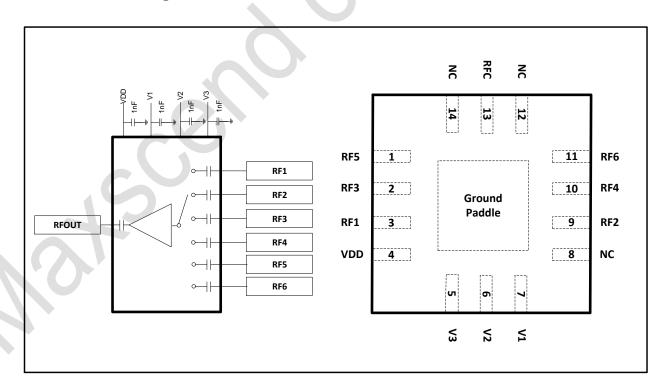


Figure 1 Functional Block Diagram and Pinout (Top View)

Application Circuit

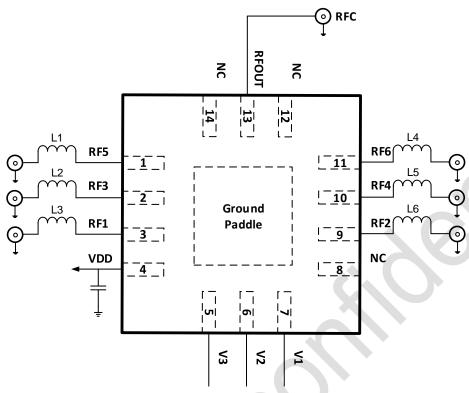


Figure 2 MXD8116LE Evaluation Board Schematic

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	RF5	RF port 5	8	NC	No connection
2	RF3	RF port 3	9	RF2	RF port2
3	RF1	RF port 1	10	RF4	RF port4
4	VDD	Power supply	11	RF6	RF port6
5	V3	Digital control 3	12	NC	No connection
6	V2	Digital control 2	13	RFOUT	RF output
7	V1	Digital control 1	14	NC	No connection
Ground Paddle	GND	Ground			

Note: Bottom ground paddles must be connected to ground.

Table 2.

Component	Vendor Type		Part Number & value	
L1,L2,L3,L4,L5,L6	Murata	Wired inductor, high Q	LQW15AN33N, 33nH	
	various	Ceramic inductor, low Q	30nH	

Truth Table

Table 3.

V1	V2	V3	Active Path
0	0	0	RF1 active
0	0	1	RF2 active
0	1	0	RF3 active

MXD8116LE - SP6T LNA LTE RX Module

Ī	0	1	1	RF4 active
Ī	1	0	0	RF5 active
Ī	1	0	1	RF6 active
Ī	1	1	1	Power down

Note: "1" = 1.0 V to 3.00 V. "0" = -0 V to +0.3 V.

Recommended Operation Range

Table 4.

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	720	ı	970	MHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Switch Control Voltage High	V_{CTL_H}	1.6	1.8	3.0	V
Switch Control Voltage Low	$V_{CTL_{L}}$	0	0	0.3	V

Specifications

Table 5. Electrical Specifications

Downwater	Cumbal	Specification		l luite	Test Condition		
Parameter	Symbol	Min.	Typical	Max.	Units	rest Condition	
DC Specifications							
Control voltage:							
Low	V_{CTL_L}	0	+1.8	0.3	V		
High	V _{CTL_H}	1.60		3.00	V		
Supply voltage	V_{DD}	2.5	2.8	3.0	V		
Supply current	I_{DD}		6		mA	VDD = 2.8 V	
Power down current	I_{PD}		1		uA		
RF Specifications							
Power gain	G	15	17	18.5	dB	720 to 970MHz	
Noise figure	NF	-	1.0	1.5	dB	720 to 970MHz	
Input Return loss	S11		-10	-5	dB	720 to 970MHz	
Isolation(Active path gain – off path gain)	ISO	20	25	-	dB	720 to 970MHz	
Output Return loss	S22	-	-10	-6	dB	720 to 970MHz	
Input Power 1-dB Compression Point		-14	-11	-	dBm	720 to 970MHz	
Switching on time		-	2	3	μs	50% VCTL to 10/90% RF	
Switching off time		-	2	3	μs	50% VCTL to 90/10% RF	
Startup time		-	5	6	μs	Shutdown state to any RF switch state	

Absolute Maximum Ratings

Table 6. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	+2.0	+3.3	V
Control voltage (V1, V2, and V3)	V _{CTL}	0	+3.0	V
RF input power (RF1 to RF6)	P _{IN}		+10	dBm
Operating temperature	T _{OP}	-35	+90	$^{\circ}$
Storage temperature	T _{STG}	-40	+125	$^{\circ}$
Electrostatic Discharge				
Human body model (HBM), Class 1C	ESD_HBM		1000	\/
Machine Model (MM), Class A	ESD_MM		100	\ \ \
Charged device model (CDM), Class III	ESD_CDM		500	

MXD8116LE - SP6T LNA LTE RX Module

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Package Outline Dimension

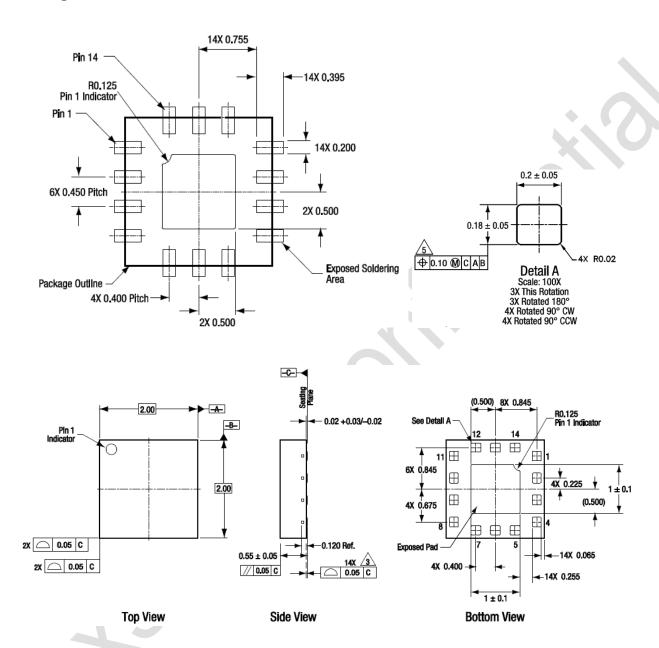


Figure 3 package outline dimension

Marking Specification

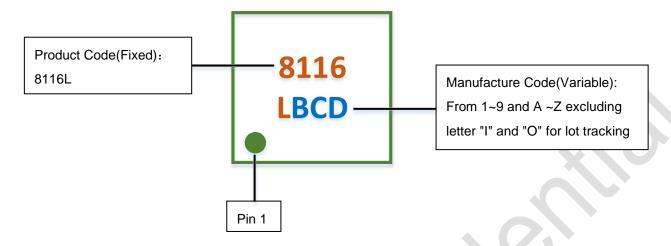


Figure 4 Marking specification (Top View)

Tape and Reel Dimensions

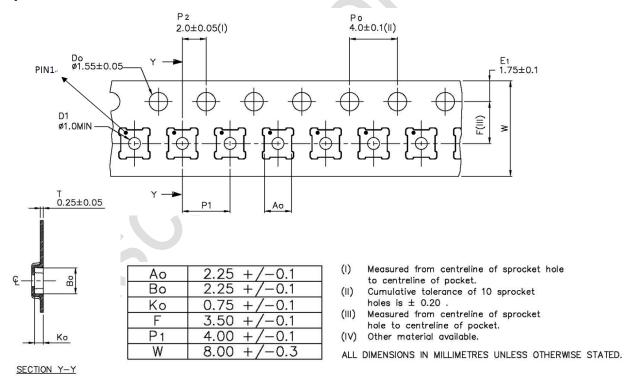


Figure 5 Tape and reel dimensions

Reflow Chart

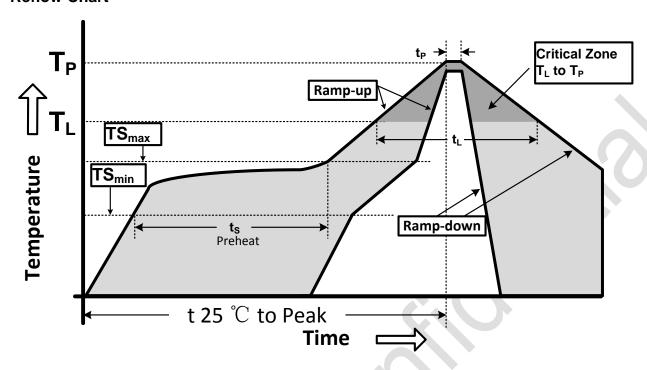


Figure 6 Recommended Lead-Free Reflow Profile

Table 7. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection		
Ramp-up rate $(TS_{max} \text{ to } T_p)$	3℃/second max.		
Preheat temperature (TS _{min} to TS _{max})	150°C to 200°C		
Preheat time (t _s)	60 - 180 seconds		
Time above TL , 217 $^{\circ}$ C (t_L)	60 - 150 seconds		
Peak temperature (T _p)	260℃		
Time within 5 [°] C of peak temperature(t _p)	20 - 40 seconds		
Ramp-down rate	6°C/second max.		
Time 25°C to peak temperature	8 minutes max.		

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E