maxscend?

MXD8512A

$0.5 \sim 4.0 \mathrm{GHz}$ SPST Antenna Tuning Switch

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8512A is a CMOS silicon-on-insulator (SOI), single-pole, single-throw (SPST) switch. The high linearity and ruggedness performance and extremely low insertion loss makes the device an ideal choice for GSM/WCDMA/LTE handset antenna tuning application.

The MXD8512A SPST switch is provided in a compact $0.7 \mathrm{~mm} \times 1.1 \mathrm{~mm} \times 0.377 \mathrm{~mm} 6$-lead QFN package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Functional Block Diagram and Pin Function

Applications

- GSM/WCDMA/LTE band and mode switching
- Antenna tuning switch

Features

- Broadband frequency range: 0.1 to 4.0 GHz
- Low insertion 0.18 dB @ 2.7 GHz
- High P0.1dB of 43.5 dBm
- High Peak Vrf of 50V
- Very Low Ron of 1.2 Ohm
- Very Low Coff of 130fF
- Positive low voltage control: VC = 1.0 to 3.0 $\mathrm{V}, \mathrm{VDD}=1.7$ to 3.3 V , Small, QFN (6-pin, $0.7 \mathrm{~mm} \times 1.1 \mathrm{~mm} \times 0.377 \mathrm{~mm}$) package, MSL1

Figure 1.Functional Block Diagram

Figure 2.Pin-out (Top View)

Application Circuit

Figure 3. MXD8512A Application Circuit

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	RF1	RF port 1	5	GND	Ground
2	NC	No connect	6	RF2	RF port 2
3	VDD	DC power supply			
4	VC	DC control voltage			

Truth Table

Table 2.

Active Path	VC
RF1 to RF2 OFF	0
RF1 to RF2 ON	1

Note: "1" $=1.0 \mathrm{~V}$ to 3.00 V . " $0 "=-0 \mathrm{~V}$ to +0.3 V .

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	$\mathrm{f1}$	0.5	-	4.0	GHz
Power supply	VDD	1.7	2.8	3.3	V
Switch Control Voltage High	$\mathrm{V}_{\text {CTL_H }}$	1.0	1.8	3.0	V
Switch Control Voltage Low	V CTL_L 2	0	0	0.3	V

Specifications

Table 4.Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
		Min.	Typical	Max.		
DC Specifications						
Control voltage: Low High	$V_{\text {ctl_L }}$ $V_{\text {cti_h }}$	$\begin{array}{r} 0 \\ 1.0 \\ \hline \end{array}$	$\begin{gathered} 0 \\ 1.8 \\ \hline \end{gathered}$	$\begin{aligned} & 0.3 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Supply voltage	VDD	1.7	2.8	3.3	V	
Supply current	IDD		100	150	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$
Control current	$\mathrm{I}_{\text {CTL }}$		1	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CTL }}=1.8 \mathrm{~V}$
RF Specifications						
Insertion loss	IL		$\begin{aligned} & 0.10 \\ & 0.12 \\ & 0.18 \\ & 0.25 \end{aligned}$	$\begin{gathered} \hline 0.12 \\ 0.18 \\ 0.25 \\ 0.3 \end{gathered}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.2 \mathrm{GHz} \\ & 2.2 \text { to } 3.0 \mathrm{GHz} \\ & 3.0 \text { to } 4.0 \mathrm{GHz} \end{aligned}$
Isolation	ISO	$\begin{aligned} & 25 \\ & 20 \\ & 15 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \\ & 18 \\ & 17 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	0.5 to 1.0 GHz 1.0 to 2.2 GHz 2.2 to 3.0 GHz 3.0 to 4.0 GHz
Return loss	$\left\|S_{11}\right\|$		22		dB	0.5 to 4.0 GHz
On Resistance (RF1/2 to ANT)	Ron		1.2	1.4	Ω	Switch on Path
OFF Capacitance (RF1/2 to ANT)	Coff		130	140	fF	Switch off Path
Input 0.1 dB compression point	$\mathrm{P}_{0.1 \mathrm{~dB}}$		+43.5		dBm	0.5 to 4.0 GHz , ANT to RF1 and RF2
Maximum RF operating voltage	$V_{\text {max }}$		50		V	$\mathrm{f0}=500$ to 4000 MHz , 25% duty cycle
LTE TX harmonic (RF1/2 to ANT)	$2 f 0$		-110	-95	dBm	$\begin{aligned} & \mathrm{fO}=500 \text { to } 4000 \mathrm{MHz}, \mathrm{PIN}=+26 \\ & \mathrm{dBm} \end{aligned}$
	$3 \mathrm{f0}$		-105	-85	dBm	
GSM LB harmonic (RF1/2 to ANT)	$2 f 0$		-60	-50	dBm	$\begin{aligned} & \mathrm{fO}=824 \text { to } 915 \mathrm{MHz}, \mathrm{PIN}=+35 \\ & \mathrm{dBm} \end{aligned}$
	$3 \mathrm{f0}$		-60	-50	dBm	
GSM HB harmonic (RF1/2 to ANT)	$2 f 0$		-60	-50	dBm	$\text { f0 = } 1710 \text { to } 2690 \mathrm{MHz}, \mathrm{PIN}=+33$ dBm
	$3 \mathrm{f0}$		-60	-50	dBm	
Second order intermodulation	IMD2		-115	-105	dBm	CW Carrier on RF Port, +20 dBm CW Interferer on ANT port, -15 dBm
Third order intermodulation	IMD3		-115	-105	dBm	CW Carrier on RF Port, +20 dBm CW Interferer on ANT port, -15 dBm
Switching on time			5	10	$\mu \mathrm{s}$	50\% VCTL to 90\% RF
Switching off time			5	10	$\mu \mathrm{s}$	50\% VCTL to 10\% RF
Startup time			15	30	$\mu \mathrm{s}$	Power off state to any RF switch state

Table 5. IMD2 Test Conditions

Band	In-band freq	CW Carrier		CW Interferer	
	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{d B m}$	$\mathbf{M H z}$	$\mathbf{d B m}$
1 Low	2140	1950	+20	190	-15
1 High	2140	1950	+20	4090	-15
5 Low	881.5	836.5	+20	45	-15
5 High	881.5	836.5	+20	1718	-15

Table 6. IMD3 Test Conditions

Band	In-band freq	CW Carrier		CW Interferer	
	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{d B m}$	$\mathbf{M H z}$	$\mathbf{d B m}$
1	2140	1950	+20	1760	-15
5	881.5	836.5	+20	791.5	-15

Absolute Maximum Ratings

Table 7. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V		+3.6	V
Digital control voltage	VCTL	0	+3.3	V
RF input power CW (50 Ohm)	PIN		+40	dBm
Operating temperature	Top	-35	+90	${ }^{\circ} \mathrm{C}$
Storage temperature	TSTG	-55	150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Human body model (HBM), Class 1C Machine Model (MM), Class A Charged device model (CDM), Class III $\mathrm{ESD} \mathrm{_HBM}$		1000		

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Package Outline Dimension

Figure 4. Package outline dimension

Reflow Chart

Figure 7. Recommended Lead-Free Reflow Profile
Table 8.

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate ($\mathrm{TS}_{\text {max }}$ to T_{p})	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature ($\mathrm{TS}_{\text {min }}$ to $\mathrm{TS}_{\text {max }}$)	$150{ }^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time ($\mathrm{ts}_{\text {s }}$)	60-180 seconds
Time above TL, $217{ }^{\circ} \mathrm{C}$ (t_{L})	60-150 seconds
Peak temperature (T_{p})	$260{ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature($\mathrm{tp}^{\text {) }}$	20-40 seconds
Ramp-down rate	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Maxscend manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

