

MXD8544B

0.1-3.0GHz SP4T Antenna Tuning Switch

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8544B is a CMOS silicon-on-insulator (SOI), single-pole, four-throw (SP4T) switch. The high linearity and ruggedness performance and extremely low insertion loss makes the device an ideal choice for GSM/WCDMA/LTE handset antenna tuning application.

The MXD8544B SP4T switch is provided in a compact QFN 1.1mm x 1.5mm x 0.38mm package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Applications

- GSM/WCDMA/LTE band and mode switching
- Antenna tuning switch

Features

- Broadband frequency range: 0.1 to 3.0 GHz
- Low insertion 0.50dB @ 2.7 GHz
- High P0.1dB of 45dBm
- Positive low voltage control: VC = 1.0 to 3.0 V,
 VDD = 2.5 to 3.0 V, Small QFN (10-pin,
 1.1mm x 1.5mm x 0.38mm) package

Functional Block Diagram and Pin Function

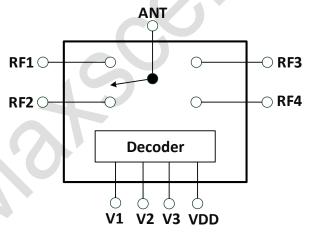


Figure 1.Functional Block Diagram

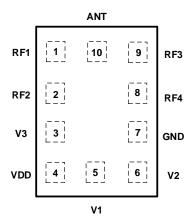


Figure 2.Pin-out (Top View)

Application Circuit

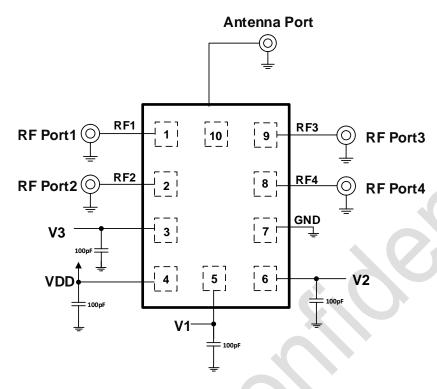


Figure 3. MXD8544B Application Circuit

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	RF1	RF port 1	6	V2	Control Logic #2
2	RF2	RF port 2	7	GND	Ground
3	V3	Control Logic #3	8	RF4	RF port 4
4	VDD	DC power supply	9	RF3	RF port 3
5	V1	Control Logic #1	10	ANT	Antenna port

Truth Table

Table 2.

State	V1	V2	V3	RF Path	
1	0	0	1	All Ron	
2	2 0		1	ANT to RF1 and RF2	
3	1	0	1	ANT to RF3 and RF4	
4	0	0	0	ANT to RF1	
5	0	1	0	ANT to RF2	
6	1	0	0	ANT to RF3	
7	1	1	0	ANT to RF4	
8 1		1	1	All isolation	
Note: "1" = 1.0 V to 3.00 V. "0" = 0 V to +0.3 V.					

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	0.1	-	3.0	GHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Switch Control Voltage High	V _{CTL_} H	1.0	1.8	3.0	V
Switch Control Voltage Low	V _{CTL_L}	0	0	0.3	V

Specifications

Table 4.Electrical Specifications

			Specification	on		Took Condition	
Parameter	Symbol	Min.	Typical	Max.	Units	Test Condition	
DC Specifications							
Control voltage:	. ,				.,		
Low High	Vctl_l Vctl_h	0 1.0	0 1.8	0.3 3.0	V		
Supply voltage	VCTL_H V _{DD}	2.5	2.8	3.0	V		
Supply current	I _{DD}		90	120	uA	V _{DD} = 2.8 V	
Control current	Ictl		1	5	uA	V _{CTL} = 1.8 V	
RF Specifications			<u> </u>		<u> </u>		
			0.35		dB	0.8 to 1.0 GHz	
Insertion loss	IL		0.45		dB	1.0 to 2.2 GHz	
			0.50		dB	2.2 to 3.0 GHz	
laalatiaa	100	27 25	30 27		dB dB	0.8 to 1.0 GHz 1.0 to 2.2 GHz	
Isolation	ISO	25 20	27		dB dB	2.2 to 3.0 GHz	
Return loss	S ₁₁	20	20		dB	0.8 to 3.0 GHz	
Voltage Standing Wave Ratio	VSWR		1.20			0.8 to 3.0 GHz	
On Resistance (RF1/2/3/4 to ANT)	Ron		1.45	1.55	Ω	Switch on Path	
OFF Capacitance (RF1/2/3/4 to ANT)	Coff		110		fF	Switch off Path	
Input 0.1 dB compression point	P _{0.1dB}		+45		dBm	0.8 to 3.0 GHz, ANT to RF1/2/3/4	
Peak RF operating voltage	V _{peak}		60		V	f0 = 700 to 2700 MHz, 25% duty cycle	
LTE TX harmonic	2f0		-85		dBm	f0 = 700 to 2700 MHz, PIN = +26	
(RF1/2/3/4 to ANT)	3f0		-85		dBm	dBm	
GSM LB harmonic	2f0		-65		dBm	f0 = 824 to 915 MHz, PIN = +35	
(RF1/2/3/4 to ANT)	3f0		-65		dBm	dBm	
GSM HB harmonic	2f0		-65		dBm	f0 = 1710 to 2690 MHz, PIN = +33	
(RF1/2/3/4 to ANT)	3f0		-65		dBm	dBm	
Second order intermodulation	IMD2		-115		dBm	CW Carrier on RF Port, +20 dBm CW Interferer on ANT port, -15 dBm	
Third order intermodulation	IMD3		-115		dBm	CW Carrier on RF Port, +20 dBm CW Interferer on ANT port, -15 dB	
Switching on time			3.0	5.0	μs	50% VCTL to 90% RF	
Switching off time			3.0	5.0	μs	50% VCTL to 10% RF	
Startup time			10		μs	Power off state to any RF switch state	

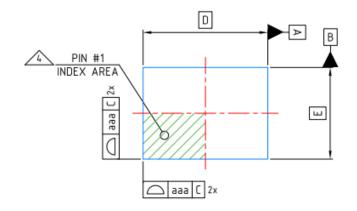
Table 5. IMD2 Test Conditions

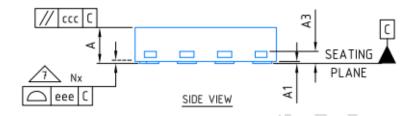
Band	In-band freq	CW C	arrier	CW Interferer		
Dallu	MHz	MHz	dBm	MHz	dBm	
1 Low	2140	1950	+20	190	-15	
1 High	2140	1950	+20	4090	-15	
5 Low	881.5	836.5	+20	45	-15	
5 High	881.5	836.5	+20	1718	-15	

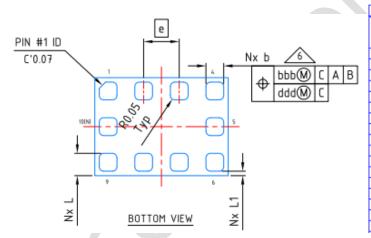
Table 6. IMD3 Test Conditions

Band	In-band freq	CW C	arrier	CW Interferer		
Danu	MHz	MHz dBm		MHz	dBm	
1	2140	1950	+20	1760	-15	
5	881.5	836.5	+20	791.5	-15	

Absolute Maximum Ratings


Table 7. Maximum ratings


Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	+2.5	+3.6	V
Digital control voltage	V_{CTL}	0	+3.6	V
RF input power	P _{IN}		+45.5	dBm
Operating temperature	Тор	-30	+85	°C
Storage temperature	T _{STG}	-55	+150	°C
Electrostatic Discharge Human body model (HBM), Class 2 Machine Model (MM), Class B Charged device model	ESD_HBM ESD_MM ESD_CDM	U	2000 200 500	V
(CDM), Class III				


Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Package Outline Dimension

Dimension Table					
Symbol A		NOTE			
"Mbol	MINIMUM	NOMINAL	MAXIMUM		
A	0.31	0.38	0.40		
A1	0.00	0.02	0.05		
A3		0.12 Ref.			
Ь	0.15	0.20	0.25	6	
D		1.50 BSC			
E					
е		0.40 BSC			
L	0.15	0.25	0.35		
L1		0.05			
aaa		0.05			
bbb		0.07			
ccc		0.10			
ddd					
eee					
N		3			
ND		5			
NE		1		5	

Figure 4. Package outline dimension

NOTE

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- \triangle The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refers to the maximum number of terminals on each D and E side respectively.
- 6. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.
- Coplanarity applies to the terminals and all other bottom surface metallization.

Reflow Chart

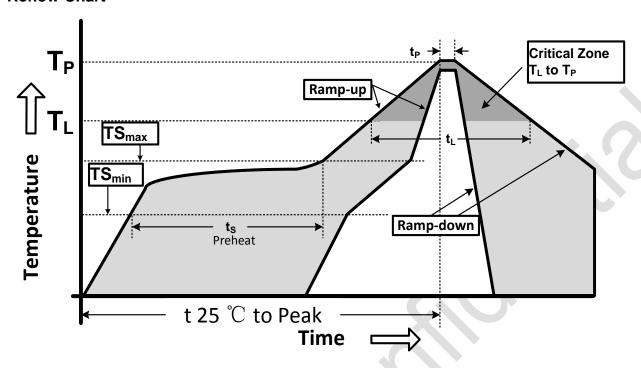


Figure 5. Recommended Lead-Free Reflow Profile

Table 8.

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate (TS _{max} to T _p)	3℃/second max.
Preheat temperature (TS _{min} to TS _{max})	150℃ to 200℃
Preheat time (t _s)	60 - 180 seconds
Time above TL , 217℃ (t _L)	60 - 150 seconds
Peak temperature (T _p)	260℃
Time within 5℃ of peak temperature(t _p)	20 - 40 seconds
Ramp-down rate	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Switch ICs category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1

BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2

MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1

BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A

SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN

UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588
TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000

MA4SW310B-1