maxscend?

MXD8621EC

SPDT Switch for 0.1~6.0GHz Application

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8621EC is a Single-Pole, Double-Throw (SPDT) for $0.1 \sim 6.0 \mathrm{GHz}$ application. Switching is controlled by an integrated GPIO interface with a single control pin.

No external DC blocking capacitors are required as long as no DC voltage is applied on any RF path.

The MXD8621EC is provided in a compact 1.1 mm $\times 0.7 \mathrm{~mm} \times 0.377 \mathrm{~mm} 6$-lead DFN package that meets requirements for board-level assembly.

A functional block diagram and the pin configuration are shown in Figure 1.

Applications

- GSM/WCDMA/LTE Receive
- WLAN TRX

Features

- Broadband frequency range: 0.1 to 6.0 GHz
- Low insertion loss: 0.33 dB @ 2.7 GHz
0.55 dB @ 6.0 GHz
- High isolation: 38dB @ 2.7 GHz

30dB @ 6.0 GHz

- P0.1dB 29dBm
- No external DC blocking capacitors required
- Single GPIO control line with VDD voltage regulator:
$V_{D D}=1.62$ to 3.60 V
- Small, 6-Lead DFN, 400 um pitch (1.1mm x 0.7 mmx 0.377 mm) package , MSL1

Functional Block Diagram and Pin Function

Figure 1 Functional Block Diagram and Pin-out (Top View)

Application Circuit

Figure 2 MXD8621EC Application Circuit

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	RF2	RF I/O. Throw 1 of the switch.	6	VC	Logic Control
2	GND	Ground	5	ANT	Antenna
3	RF1	RF I/O. Throw 2 of the switch.	4	VDD	Supply

Truth Table

Table 2.

State	Active Path	VC
0	ANT to RF1	0
1	ANT to RF2	1

Note: "1" = 1.2 V to V DD V . "0" $=0 \mathrm{~V}$ to +0.3 V .

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	f 1	0.1	-	6.0	GHz
Power supply	V_{DD}	1.62	1.8	3.60	V
Switch Control Voltage High	$\mathrm{V}_{\mathrm{CTL}} \mathrm{H}$	1.2	1.8	$\mathrm{~V}_{\mathrm{DD}}$	V
Switch Control Voltage Low	$\mathrm{V}_{\mathrm{CTL} _\mathrm{L}}$	0	0	0.3	V

Specifications

Table 4.Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
		Min.	Typical	Max.		
DC Specifications						
Supply voltage	VDD	1.62	1.8	3.60	V	
Control voltage: Low High	Vctl L $V_{\text {ctil }}$	$\begin{array}{r} 0 \\ 1.2 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 1.8 \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & V_{D D} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$,
Current on VC pin	Ictl			5	$\mu \mathrm{A}$	
Supply current	IDD		100	140	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$
DC supply turn-on/turn-off time	ton			10	$\mu \mathrm{s}$	Measured from 50\% of final $V_{D D}$ supply voltage to 90% of final RF power
RF path switching time	tsw		130	200	ns	From one active state to another active state transition, measured from 50% of final control voltage to 90% of final RF power
Supply ripple	VPP			50	mV ppp	
RF Specifications						
Insertion loss (RF1 or RF2 to ANT pin)	IL		$\begin{aligned} & \hline 0.28 \\ & 0.30 \\ & 0.33 \\ & 0.40 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.35 \\ & 0.40 \\ & 0.45 \\ & 0.50 \\ & 0.65 \\ & \hline \end{aligned}$	dB dB dB dB dB	700 to 960 MHz 1710 to 2170 MHz 2170 to 2690 MHz 3600 to 3800 MHz 4800 to 6000 MHz
Isolation (ANT to RF1 or RF2)	ISO	$\begin{aligned} & 50 \\ & 42 \\ & 35 \\ & 31 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \\ & 45 \\ & 38 \\ & 34 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	700 to 960 MHz 1710 to 2170 MHz 2170 to 2690 MHz 3600 to 3800 MHz 4800 to 6000 MHz
Isolation (RF1 to RF2)	ISO	$\begin{aligned} & 49 \\ & 41 \\ & 34 \\ & 30 \\ & 26 \\ & \hline \end{aligned}$	$\begin{array}{r} 55 \\ 44 \\ 37 \\ 33 \\ 29 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	700 to 960 MHz 1710 to 2170 MHz 2170 to 2690 MHz 3600 to 3800 MHz 4800 to 6000 MHz
Input return loss (ANT to RF1 or RF2)	RL	13	20		dB	700 to 6000 MHz
Voltage Standing Wave Ratio, all ports	VSWR		1.25:1	1.5:1	-	$\begin{aligned} & \text { Referenced to } 50 \Omega \text {, } \\ & 700 \text { to } 6000 \mathrm{MHz} \end{aligned}$
0.1 dB compression point (from antenna to RF1 and RF2)		29			dBm	700 M to 6000 MHz 25% duty pulse
2nd Harmonic (ANT to RF1 or RF2)	2 fo		-62	-55	dBm	$\mathrm{fo}=950 \mathrm{MHz}$ PIN $=+26 \mathrm{dBm}$
3rd Harmonic (ANT to RF1 or RF2)	3fo		-62	-55	dBm	$\mathrm{fo}=950 \mathrm{MHz}, \mathrm{PIN}=+26 \mathrm{dBm}$
2nd Intermodulation Distortion	IMD2		-103	-100	dBm	Two-tone test : $\mathrm{f} 0=24 \mathrm{dBm}$ and $\mathrm{f} 1=-$
3rd Intermodulation Distortion	IMD3		-103	-100	dBm	15 dBm at $\mathrm{f} 0+1 \mathrm{MHz}$

Absolute Maximum Ratings

Table 5. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	VDD	+1.62	+3.7	V
Digital control voltage	$\mathrm{V}_{\text {cti }}$	0	+3.7	V
RF input power	Pin		+30	dBm
Operating temperature	Top	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$
Humidity Grade		MSL1		
Storage Cycle(package)		2		years
Electrostatic Discharge Human body model (HBM), Class 1C Machine Model (MM), Class A Charged device model (CDM), Class III	$\begin{aligned} & \text { ESD_HBM } \\ & \text { ESD_MM } \\ & \text { ESD_CDM } \end{aligned}$		1000 100 500	V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Package Outline Dimension

Figure 3. Package outline dimension

Marking Specification

Figure 4 Marking specification (Top View)

Tape and Reel Dimensions

Figure 5 Tape and reel dimensions

Minimum packing Quantity

The minimum packing quantity of this device is 10000 .

Reflow Chart

Figure 6. Recommended Lead-Free Reflow Profile
Table 6.

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\text {max }}\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\min }\right.$ to $\left.\mathrm{TS}_{\max }\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$66^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Maxscend manufacturer:

Other Similar products are found below :
MA8334-001 MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446374LF CG2185X2 CG2415M6 MA4SW210B-1 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-
TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1
BGSX28MA18E6327XTSA1 SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 AS222-92LF SW-314-PIN
UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN CG2430X1 SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3

BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF

