SPDT Switch for 3G/4G Applications

Description

The MXD8626C is a Single-Pole, Double-Throw (SPDT) LTE/WCDMA switch. Switching is controlled by a GPIO interface with a single control pin.

The MXD8626C is provided in a compact $1.1 \mathrm{~mm} \times 0.7 \mathrm{~mm} \times$ 0.45 mm 6-lead DFN package, which meets the requirements for board-level assembly. No external DC blocking capacitors are required as long as no DC voltage is applied on any RF path. A functional block diagram and the pin configuration are shown in Figure 1.

Applications

- GSM/WCDMA/LTE

Features

■ Broadband frequency range: 0.4 to 3.0 GHz
■ Low insertion loss: $0.35 \mathrm{~dB} @ 2.7 \mathrm{GHz}$

- High isolation: $25 \mathrm{~dB} @ 2.7 \mathrm{GHz}$
- High Input 0.1 dB compression point: 35 dBm
- Single GPIO control line with VDD voltage regulator:
- $\quad V_{D D}=2.5$ to 3.0 V
- $V_{\text {CTL_H }}=1.5$ to 3.0 V
- Compact, 6-Lead DFN, 400um pitch (1.1mm $\times 0.7 \mathrm{~mm} \times$ 0.45 mm) package, MSL1

Figure 1 Functional Block and Pin Out(Top View)

Function Characteristics

Figure 2 Application Circuit

Table 1 Pin Descriptions

NO.	Name	Nescription		Name	Description
A1	RF1	RF Port1	B1	VCTL	Logic Control Voltage
A2	ANT	Antenna Port	B2	GND	Ground
A3	RF2	RF Port2	B3	VDD	DC Supply Voltage

Table 2 VCTL Truth Table for RF Channel Operating Modes

VCTL	RF Channel Operating Mode
Low	ANT to RF1 On
High	ANT to RF2 On

Electrical Characteristics

Table 3 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Condition
DC Supply Voltage	$V_{\text {DD }}$	-0.3	3.3	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Logic Control Voltage	$\mathrm{V}_{\text {cti }}$	-0.3	3.3		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Max RF Input Power (ANT to RF1/RF2)	$\mathrm{P}_{\text {IN }}$		36	dBm	$\begin{aligned} & \mathrm{F}_{0}=950 \mathrm{MHz}, 20 \% \mathrm{DC}, \mathrm{~V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \\ & V_{C H}=1.8 \mathrm{~V}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Device Operating Temperature	$\mathrm{T}_{\text {OP }}$	-40	90	${ }^{\circ} \mathrm{C}$	
Device Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55	150		
Electrostatic Discharge (All Pins)	$\mathrm{V}_{\text {ESD }}$ (HBM)	1000		V	Human Body Model
	$\mathrm{V}_{\text {ESD }}$ (CDM)	500			Charged Device Model

Notice

Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Table 4 Recommended Operating Conditions

Parameter	Symbol	MIN	TYP	MAX	Unit
Operating Frequency	F_{0}	0.4	-	3.0	GHz
DC Supply Voltage	V_{DD}	2.5	2.8	3.0	v
Control Voltage High	$\mathrm{V}_{\text {cri_h }}$	1.5	1.8	3.0	v
Control Voltage Low	$\mathrm{V}_{\text {cto_L }}$	0	0	0.3	v

Table 5 Nominal Operating Parameters

Parameter	Symbol	Specification			Unit	Condition
		MIN	TYP	MAX		
Normal Conditions	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {CTL_H }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CTL_L }}=0 \mathrm{~V}, \mathrm{P}_{\text {IN }}=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Stated					
DC Performances						
DC Supply Current	IDD		83	90	$\mu \mathrm{A}$	
Current on VCTL	$\mathrm{I}_{\text {ctL }}$			5		
Timing Performances						
Switching Speed	$\mathrm{T}_{\text {sw }}$		1	2	μs	50\% of VCTL to 10\%/90\% of RF
Turn On Time	Ton			10	μs	50\% of VDD to $\mathbf{9 0 \%}$ of RF
RF Performances						
Insertion Loss (ANT to RF1/RF2)	IL		$\begin{aligned} & 0.31 \\ & 0.34 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.40 \\ & 0.50 \end{aligned}$	dB	$\begin{aligned} & \mathrm{F}_{0}=0.4 \text { to } 1.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=1.7 \text { to } 2.1 \mathrm{GHz} \\ & \mathrm{~F}_{0}=2.2 \text { to } 3.0 \mathrm{GHz} \end{aligned}$
Isolation (ANT to RF1/RF2)	ISO	$\begin{aligned} & 35 \\ & 28 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 25 \end{aligned}$	\square	dB	$\begin{aligned} & F_{0}=0.4 \text { to } 1.0 \mathrm{GHz} \\ & F_{0}=1.7 \text { to } 2.1 \mathrm{GHz} \\ & F_{0}=2.2 \text { to } 3.0 \mathrm{GHz} \end{aligned}$
Voltage Standing Wave Ratio(All Ports)	VSWR		1.25:1	1.50:1		$\mathrm{F}_{0}=0.4$ to 3.0 GHz
Input 0.1dB Compression Point (ANT to RF1/RF2)	$\mathrm{P}_{0.1 \mathrm{~dB}}$		35		dBm	$\mathrm{F}_{0}=950 \mathrm{MHz}, 20 \% \mathrm{DC}$
2nd Order Harmonic (ANT to RF1/RF2)	$2 \mathrm{~F}_{0}$		-100	-94	dBc	
3rd Order Harmonic (ANT to RF1/RF2)	$3 \mathrm{~F}_{0}$		-100	-95	dBc	4 to 3.0GHz @

Package Outline Dimensions

Figure 3 Package Outline Dimensions

Marking Specifications

Figure 4 Marking Specifications (Top View)

Tape and Reel Dimensions

Figure 5 Tape and Reel Dimensions

Reflow Chart

Figure 6 Recommended Lead-Free Reflow Profile
Table 6 Reflow Chart Parameters

Reflow Profile	Parameter
Preheat Temperature($\mathrm{TS}_{\text {MIN }}$ to $\mathrm{TS}_{\text {max }}$)	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat Time(t_{s})	60 to 180 Seconds
Ramp-Up Rate(S $_{\text {max }}$ to $\mathrm{T}_{\text {P }}$)	$3^{\circ} \mathrm{C} / \mathrm{s}$ MAX
Time Above $\mathrm{T}_{\mathrm{L}} \mathbf{2 1 7}{ }^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	60 to 150 Seconds
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of Peak Temperature(t_{p})	20 to 40 Seconds
Ramp-Down Rate(S $_{\text {max }}$ to T_{P})	$6^{\circ} \mathrm{C} / \mathrm{s} \mathrm{MAX}$
Time for $25^{\circ} \mathrm{C}$ to Peak Temperature($\left(\mathrm{t}_{25-\mathrm{T}}\right.$)	8 Minutes MAX

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be applied when devices are operated.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Maxscend manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

