maxscend?

MXD8638C

$0.1-3.0 \mathrm{GHz}$ SP3T Switch

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8638C is a CMOS silicon-on-insulator (SOI), single-pole, triple-throw (SP3T) transmitting and receiving switch. The high linearity performance and low insertion loss makes the device an ideal choice for GSM/WCDMA/LTE handset and data card applications.

The MXD8638C SP3T switch is provided in a compact QFN 9-pin $1.15 \mathrm{~mm} \times 1.15 \mathrm{~mm} \times 0.45 \mathrm{~mm}$ package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Applications

- GSM/WCDMA/LTE receive and transmit
- $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ WLANs

Features

- Broadband frequency range: 0.1 to 3.0 GHz
- Low insertion: $0.45 \mathrm{~dB} @ 2.7 \mathrm{GHz}$
- High isolation: 25 dB up to 2.7 GHz
- P0.1dB of 36 dBm
- No external DC blocking capacitors required
- Positive low voltage control: $\mathrm{VC}=1.6$ to 3.00 $\mathrm{V}, \mathrm{VDD}=2.5$ to 3.0 V
- Small, QFN (9-pin, $1.15 \mathrm{~mm} \times 1.15 \mathrm{~mm} \times$ 0.45 mm) package

Functional Block Diagram and Pin Function

Figure 1 Functional Block Diagram

Figure 2 Pin-out (Top View)

Application Circuit

Figure 3 MXD8638C Application Circuit
Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	V1	Control Pin 1	6	GND	Ground
2	RF3	RF-Port 3	7	VDD	Power Supply
3	RF1	RF-Port 1	8	V2	Control Pin 2
4	ANT	Antenna	9	GND	Ground
5	RF2	RF-Port 2			

Truth Table

Table 2.

V1	V2	Active Path
0	0	OFF
1	0	ANT to RF1
0	1	ANT to RF2
1	1	ANT to RF3

Note: "1" = 1.0 V to 3.00 V . "0" $=0 \mathrm{~V}$ to +0.3 V .

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	f 1	0.1	-	3.0	GHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Switch Control Voltage High	$\mathrm{V}_{\text {CTL_H }}$	1.6	1.8	3.0	V
Switch Control Voltage Low	$\mathrm{V}_{\text {CTL_L }}$	0	0	0.3	V

Specifications

Table 4.Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition	
		Min.	Typical	Max.			
DC Specifications							
Control voltage:							
Low	V ctl_L	0	0	0.3	V		
High	VCTL_ ${ }^{\text {chen }}$	1.6	+1.8	3.0	V		
Supply voltage	$V_{D D}$	2.5	2.8	3.0	V		
Supply current	IDD		35	60	$\mu \mathrm{A}$	$\mathrm{VDD}=2.8 \mathrm{~V}$	
Control current	Ictl		1		$\mu \mathrm{A}$	$\mathrm{VC}=1.8 \mathrm{~V}$	
RF Specifications							
Insertion loss	IL		0.30	0.35	dB	0.1 to 1.0 GHz	
			0.37	0.40	dB	1.0 to 2.2 GHz	
			0.45	0.50	dB	2.2 to 3.0 GHz	
Isolation	ISO	30	35		dB	0.1 to 1.0 GHz	
		25	30		dB	1.0 to 2.2 GHz	
		20	25		dB	2.2 to 3.0 GHz	
Return loss	\|S11			15		dB	0.1 to 3.0 GHz
3rd Order Input Intercept Point	IIP3	+60	+70		dBm	$\begin{aligned} & 0.1 \text { to } 3.0 \mathrm{GHz}, \\ & \Delta \mathrm{~F}=1 \mathrm{MHz}, \\ & \mathrm{PIN}=+20 \mathrm{dBm} / \text { tone } \\ & \hline \end{aligned}$	
Input 0.1 dB compression point	P0.1dB		+36		dBm	0.1 to 3.0 GHz , ANT to RF1,RF2 and RF3	
2nd harmonic	2 ¢о		+90		dBc	$\begin{aligned} & \hline 0.1 \sim 3 \mathrm{GHz}, \\ & \mathrm{PIN}=+26 \mathrm{dBm} \end{aligned}$	
3rd harmonic	3fo		+90		dBc	$\begin{aligned} & 0.1 \sim 3 \mathrm{GHz}, \\ & \mathrm{PIN}=+26 \mathrm{dBm} \end{aligned}$	
Switching on time			1		$\mu \mathrm{s}$	50\% VCTL to 10/90\% RF	
Switching off time			1		$\mu \mathrm{s}$	50\% VCTL to 90/10\% RF	
Startup time			5		$\mu \mathrm{s}$	Shutdown state to any RF switch state	

Absolute Maximum Ratings

Table 5. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	VDD	+2.5	+3.3	V
Digital control voltage	$\mathrm{V}_{\text {cti }}$	0	+3.3	V
RF input power	Pin		+36.5	dBm
Operating temperature	Top	-30	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge: Human Body Model (HBM), Class 1C Machine Model (MM), Class A	ESD		$\begin{aligned} & 1000 \\ & 100 \end{aligned}$	V V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Package Outline Dimension

$\underline{\text { TOP VIEW }}$

DESCRIPTION	SYMBOL	MILLIMETER			
		MIN		NOM	
TOTAL THICKNESS	A	0.40	0.45	0.50	
STAND OFF	A 1	0.00	--	0.05	
MOLD THICKNESS	A2	0.25	0.30	0.35	
UF THICKNESS	A 3	0.150 REF			
LEAD WIDTH	b	0.10	0.20	0.30	
BODY SIZE	X	D	1.10	1.15	
	Y	E	1.10	1.15	
LEAD PITCH	e	0.40 BSC			
LEAD LENGTH	L	0.10	0.20	0.30	
PACKAGE EDGE TOLERANCE	aaa		0.1		
MOLD FLATNESS	bbb	0.1			
COPLANARITY	ccc	0.08			
LEAD OFFSET	ddd	0.1			
EXPOSED PAD OFFSET	eee				

Figure 4. Package outline dimension

Reflow Chart

Figure 5. Recommended Lead-Free Reflow Profile
Table 6 Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\max }\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\min }\right.$ to $\left.\mathrm{TS}_{\max }\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Maxscend manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

