maxscend?

MXD8646A

X-DPDT Switch for 0.4~3.8G Application

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8646A is a CMOS, Silicon-On-Insulator (SOI) double-pole, double-throw (DPDT) switch The switch provides high linearity performance, low insertion loss and high isolation.

Switching is controlled by one control voltage, V1 Depending on the logic voltage level applied to this pin, the RF1 and RF2 pins connect to one of the two other RF port pins (RF3 or RF4) through a low insertion loss path, while maintaining a high isolation path to the alternate port. No external DC blocking capacitors are required on the RF path as long as no DC voltage is applied externally.

The MXD8646A DPDT switch is provided in a compact Quad Flat No-Lead (QFN) $2 \times 2 \mathrm{~mm}$ package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Applications

- Simultaneous voice and LTE systems
- Diversity antenna switching

Features

- Single control voltage input
- Broadband frequency range: 0.4 to 3.8 GHz
- Low insertion loss: 0.55 dB @ 2.7 GHz
- P0.1dB of 36 dBm
- No DC blocking capacitors required
- Positive control voltage range: 1.8 to 3.3 V
- Small, QFN (12-pin, $2 \times 2 \mathrm{~mm}$) package

Functional Block Diagram and Pin Function

Figure 1. Functional Block Diagram
Figure 2. Pin Diagram

Application Circuit

Figure 3. MXD8646A Evaluation Board Schematic

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	VDD	DC power supply	7	RF1	RF port 1
2	N/C	No connection	8	N/C	No connection
3	V1	DC control voltage 1.	9	RF4	RF Port 4
4	GND	Ground.	10	GND	Ground.
5	RF2	RF port 2	11	RF3	RF port 3
6	GND	Ground.	12	GND	Ground.

Note: Bottom ground paddles must be connected to ground.

Table 2. Truth Table

V1	State
1	RF3 to RF1,RF4 to RF2
10	RF3 to RF2, RF4 to RF1
N"1" 18 "0"	0

Note: "1" $=1.8$ to $3.1 \mathrm{~V}, " 0$ " $=-0.20$ to +0.45 V ;
Any state other than described in this Table places the switch into an undefined state.

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	f 1	0.4	-	3.8	GHz
Power supply	$\mathrm{VDD}_{\text {DD }}$	1.8	2.8	3.3	V
Switch Control Voltage High	$\mathrm{V}_{\text {CTL_H }}$	1.5	1.8	3.3	V
Switch Control Voltage Low	$\mathrm{V}_{\text {CTL_L }}$	-0.2	0	0.4	V

Specifications

Table 4. Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
		Min.	Typical	Max.		
DC Specifications						
Control voltage: Low High	Vctll $V_{\text {ctilh }}$	$\begin{array}{r} 0 \\ 1.5 \\ \hline \end{array}$	$\begin{gathered} 0 \\ 1.8 \\ \hline \end{gathered}$	$\begin{aligned} & 0.3 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Supply voltage	VDD	1.8	2.8	3.3	V	-
Supply current	IdD		60	85		V D $=2.8 \mathrm{~V}$
Control current	IctL		1	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cti }}=1.8 \mathrm{~V}$
RF Specifications						
$\begin{aligned} & \text { Insertion loss (RF1/RF2 } \\ & \text { to RF3/RF4) } \end{aligned}$	IL		$\begin{aligned} & 0.40 \\ & 0.45 \\ & 0.55 \\ & 0.70 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.2 \mathrm{GHz} \\ & 2.5 \text { to } 2.7 \mathrm{GHz} \\ & 3.4 \text { to } 3.8 \mathrm{GHz} \\ & \hline \end{aligned}$
Isolation (RF1/RF2 to RF3/RF4, RF1 to RF2, RF3 to RF4)	ISO	$\begin{aligned} & 28 \\ & 23 \\ & 20 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 26 \\ & 23 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 0.7 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.2 \mathrm{GHz} \\ & 2.5 \text { to } 2.7 \mathrm{GHz} \\ & 3.4 \text { to } 3.8 \mathrm{GHz} \end{aligned}$
Input return loss (RF1/RF2 to RF3/RF4)	RL	17	20		dB	0.7 to 3.0 GHz
0.1 dB Compression Point (RF1/RF2 to RF3/RF4)	$\mathrm{P}_{0.1 \mathrm{~dB}}$		+36		dBm	0.7 GHz to 3 GHz
2nd Harmonic (RF1/RF2 to RF3/RF4)	2 ¢o		-40		dBm	fo $=824$ to $915 \mathrm{MHz}, \mathrm{PIN}=$
3rd Harmonic (RF1/RF2 to RF3/RF4)	3fo		-40		dBm	+35 dBm
Switching on time			1	5	$\mu \mathrm{s}$	50\% VCTL to 90\% RF
Switching off time			1	5	$\mu \mathrm{s}$	50\% VCTL to 10\% RF
Startup time			10		$\mu \mathrm{s}$	Power off state to any RF switch state

Absolute Maximum Ratings

Table 5 Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V $_{\text {DD }}$	+1.8	+3.6	V
Digital control voltage	$\mathrm{V}_{\mathrm{CTL}}$	-0.3	+3.3	V
RF input power	PIN		+38	dBm
Operating temperature	ToP	-30	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	TSTG	-55	+150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Human body model (HBM), Class 2 Machine Model (MM), Class B Charged device model (CDM), Class III\quad ESD_HBM	ESD_MM		2000	

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Package Outline Dimension

TOP VIEW

$\square \mid \operatorname{ddd}(\mathrm{C}|\mathrm{A}| \mathrm{B}$
BOTTOM VIEW

DESCRIPTION		SYMBOL	MILLIMETER			
		MIN	NOM	MAX		
TOTALTHICKNESS			A	0.51	0.55	0.60
STAND OFF		A1	00.0	0.02	0.05	
L/F THICKNESS		A3	-	0.15 Ref	-	
EAD WIDTH		b	0.15	0.20	0.25	
BODY SIZE	X	D	-	2.00 BSC	-	
	Y	E	-	2.00 BSC	-	
LEAD PITCH		e	0.50 BSC			
EP SIZE	X	J	0.77	0.92	1.02	
	Y	K	0.77	0.92	1.02	
LEAD LENGTH		L	0.19	0.29	0.39	
PACKAGE EDGE TOLERANCE		aaa	0.05			
MOLD FLATNESS		bbb	0.10			
COPLANARITY		cce	0.10			
LEAD OFFSET		ddd	0.05			
EXPOSED PAD OFFSET		eee	0.08			

Figure 4. package outline dimension

Reflow Chart

Figure 5. Recommended Lead-Free Reflow Profile
Table 6 Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\max }\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\text {min }}\right.$ to $\left.\mathrm{TS}_{\max }\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Maxscend manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

