

MXD8680Q

SP8T Antenna Switch

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8680Q is a low loss, high isolation SP8T switch with performance for antenna diversity receiving.

The MXD8680Q is compatible with +1.0V control logic, which is a key requirement for most cellular transceivers. This part is packaged in a compact 2mm x 2mm x 0.53mm, 14-pin, QFN package which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Applications

- 2G/3G/4G antenna diversity
- Cellular modems and USB Devices

Features

- Excellent insertion loss
 - 0.60 dB Insertion Loss at 2.7GHz
- Broadband frequency range: 0.1 to 3.0 GHz
- No DC blocking capacitors required (unless external DC is applied to the RF ports)
- Compact 2mm x 2mm x 0.53mm in QFN-14 package, MSL1

Functional Block Diagram and Pin Function

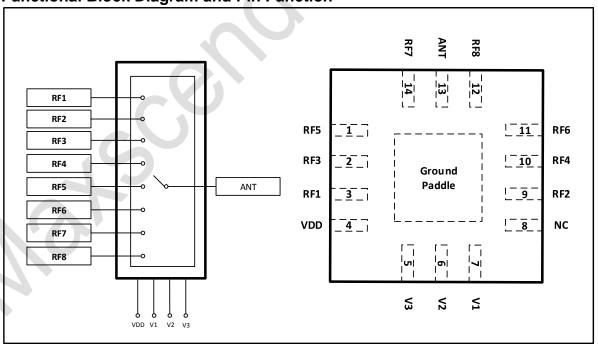


Figure 1. Functional Block Diagram and Pinout (Top View)

Application Circuit

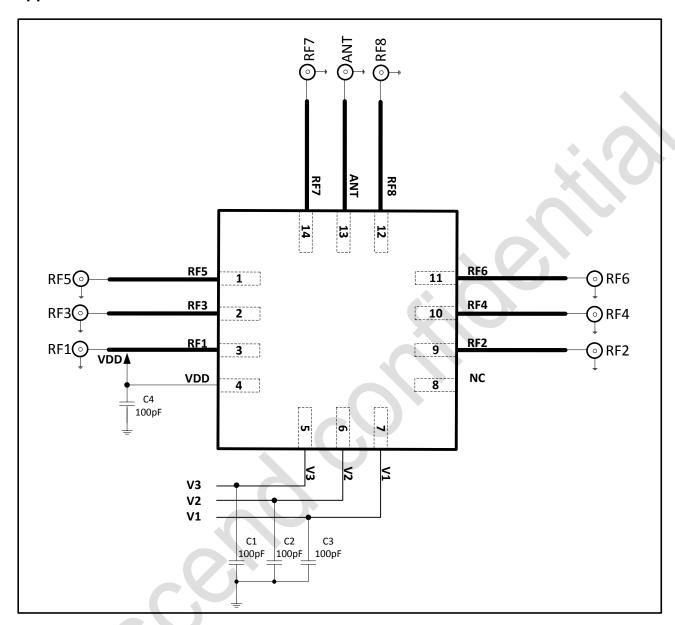


Figure 2. MXD8680Q Evaluation Board Schematic

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	RF5	RF port5	8	NC	No connection
2	RF3	RF port3	9	RF2	RF port2
3	RF1	RF port1	10	RF4	RF port4
4	V_{DD}	Power supply	11	RF6	RF port6
5	V3	Control logic 3#	12	RF8	RF port8
6	V2	Control logic 2#	13	ANT	Antenna port
7	V1	Control logic 1#	14	RF7	RF port7
Ground Paddle	GND	Ground			

Note: Bottom ground paddles must be connected to ground.

Truth Table

Table 2.

Cor	ntrol	pins	Switched RF Outputs							
V1	V2	٧3	RF1	RF2	RF3	RF4	RF5	RF6	RF7	RF8
0	0	0	Insertion Loss	Isolation						
0	0	1	Isolation	Insertion Loss	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation
0	1	0	Isolation	Isolation	Insertion Loss	Isolation	Isolation	Isolation	Isolation	Isolation
0	1	1	Isolation	Isolation	Isolation	Insertion Loss	Isolation	Isolation	Isolation	Isolation
1	0	0	Isolation	Isolation	Isolation	Isolation	Insertion Loss	Isolation	Isolation	Isolation
1	0	1	Isolation	Isolation	Isolation	Isolation	Isolation	Insertion Loss	Isolation	Isolation
1	1	0	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	Insertion Loss	Isolation
1	1	1	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	Insertion Loss

Note: "1" = 1.6 V to 3.0 V. "0" = 0 V to 0.3 V.

Recommended Operation Range

Table 3. Recommended Operation Condition

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	0.1	-	3.0	GHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Switch Control Voltage High	V _H	1.6	1.8	3.0	V
Switch Control Voltage Low	V_L	0	0	0.3	V

Specifications

Table 4. Electrical Specifications

Parameter	Symbol	Test Condition		Тур	Max	Units
DC Specifications			I	I.	I.	I
Supply voltage	V_{DD}		2.5	2.8	3.0	V
Supply current	I _{DD}			25	60	uA
Control voltage	V _{CTL} H		1.6	1.8	3.0	V
	V_{CTL_L}		0	0	0.3	V
Control current	I _{CTL}	V _{CTL} = 1.8 V		1.0	2.0	uA
Switching Speed, on RF to another		10% to 90% RF		1	2	uS
Turn-on time	ton	Time from V _{DD} =0V to part ON and RF at 90%		5	10	uS
RF Specifications	•					•
Insertion loss		0.1 to 1.0 GHz		0.35	0.45	dB
(ANT pin to all RF ports)	IL	1.0 to 2.0 GHz		0.45	0.55	dB
		2.0 to 2.7 GHz		0.60	0.75	dB
Isolation		0.1 to 1.0 GHz	35	40		dB
(ANT pin to all RF ports)	Iso	1.0 to 2.0 GHz	25	30		dB
		2.0 to 2.7 GHz	20	24		dB
RF to RF Isolation		0.1 to 1.0 GHz	27	38		dB
(Active port to the other	Iso	1.0 to 2.0 GHz		30		dB
RF ports)		2.0 to 2.7 GHz		25		dB
Input return loss		0.1 to 1.0 GHz	20	25		dB
(ANT pin to all RF ports) RL		1.0 to 2.0 GHz		20		dB
		2.0 to 2.7 GHz	12	15		dB

MXD8680Q - SP8T Antenna Switch

0.1 dB Compression					
Point (ANT pin to all RF	P0.1dB	0.1 GHz to 3.0 GHz	+28	+29	dBm
ports)					

Absolute Maximum Ratings

Table 5. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	+2.5	+3.3	V
Control voltage (V1, V2, and V3)	V_{CTL}	0	+3.0	V
RF input power ^{Note1}	P _{IN}		+29	dBm
Operating temperature	Тор	- 45	+90	$^{\circ}\mathbb{C}$
Storage temperature	T _{STG}	- 65	+150	${\mathbb C}$
Humidity Grade		MSL1		
Storage Cycle(package)		2		years
Electrostatic Discharge Human body model (HBM), Class 1C	ESD_HBM		1000	V
Machine Model (MM),	ESD_MM		100	V
Class A Charged device model (CDM), Class III	ESD_CDM		500	V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device **Note1:** Continuous wave for 5000hrs, 50°C

Package Outline Dimension

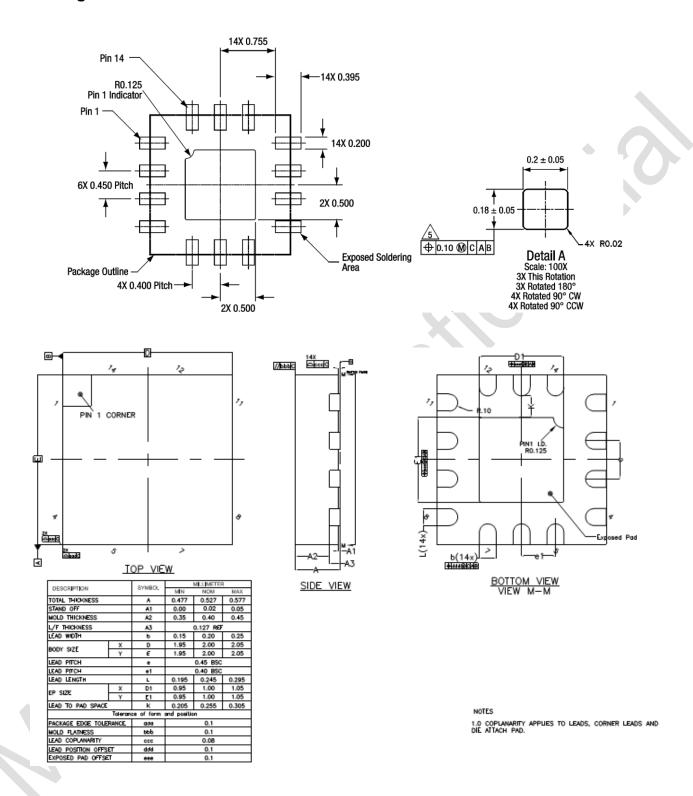


Figure 3. package outline dimension

Marking Specification

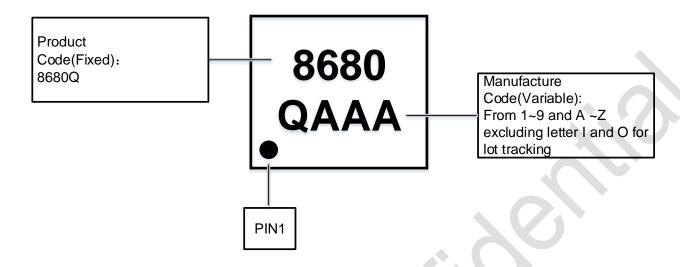


Figure 4. Marking specification (Top View)

Tape and Reel Dimensions

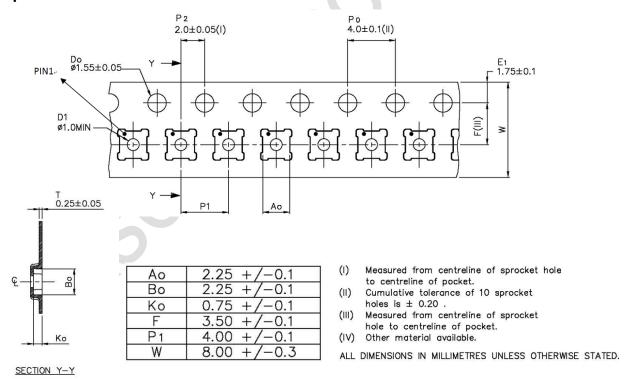


Figure 5. Tape and reel dimensions

Reflow Chart

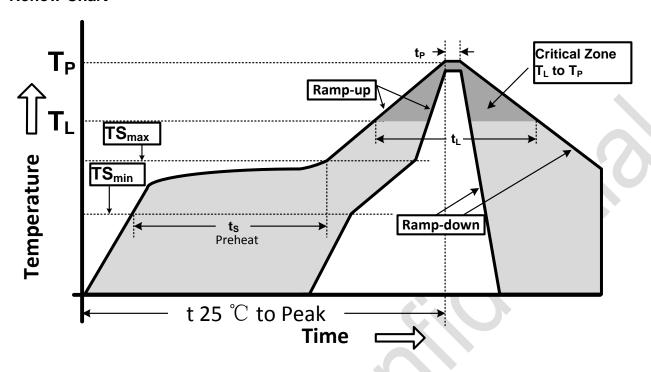


Figure 6. Recommended Lead-Free Reflow Profile

Table 6. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate (TS _{max} to T _p)	3℃/second max.
Preheat temperature (TS _{min} to TS _{max})	150℃ to 200℃
Preheat time (t _s)	60 - 180 seconds
Time above TL , 217℃ (t _L)	60 - 150 seconds
Peak temperature (T _p)	260℃
Time within 5°C of peak temperature(t _p)	20 - 40 seconds
Ramp-down rate	6℃/second max.
Time 25°C to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Switch ICs category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1

BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2

MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1

BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A

SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN

UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588
TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000

MA4SW310B-1