

MXD8686Q

SP8T Switch with MIPI for LTE Diversity

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8686Q is a low loss, high isolation SP8T switch for antenna diversity receiving.

The MXD8686Q is compatible with MIPI control, which is a key requirement for many cellular transceivers. This part is packaged in a compact 2mm x 2mm, 14-pin, QFN package which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Features

- Excellent insertion loss
 - 0.50 dB Insertion Loss at 2.7GHz
- P0.1dB @ 27dBm
- Multi-Band operation 700MHz to 3000MHz
- RFFE serial control interface
- Compact 2mm x 2mm in QFN-14 package , MSL1
- No DC blocking capacitors required (unless external DC is applied to the RF ports)

Applications

- 2G/3G/4G antenna diversity
- Cellular modems and USB Devices

Functional Block Diagram and Pin Function

Figure 1 Functional Block Diagram and Pinout (Top View)

Application Circuit

Figure 2 Evaluation Board Schematic

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	VIO	Supply voltage for MIPI	8	RF5	RF port5
2	SDATA	MIPI data input/output	9	ANT	Antenna port
3	SCLK	MIPI clock	10	RF1	RF port1
4	GND	Ground	11	RF2	RF port2
5	RF8	RF port8	12	RF3	RF port3
6	RF7	RF port7	13	RF4	RF port4
7	RF6	RF port6	14	VDD	Power supply
Ground Paddle	GND	Ground			

Note: Bottom ground paddles must be connected to ground.

Truth Table

Table 2.

Control	Switched RF Outputs							
Register_0	RF1	RF2	RF3	RF4	RF5	RF6	RF7	RF8
0x06	Insertion Loss	Isolation						
0x04	Isolation	Insertion Loss	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation
0x02	Isolation	Isolation	Insertion Loss	Isolation	Isolation	Isolation	Isolation	Isolation
0x00	Isolation	Isolation	Isolation	Insertion Loss	Isolation	Isolation	Isolation	Isolation
0x07	Isolation	Isolation	Isolation	Isolation	Insertion Loss	Isolation	Isolation	Isolation
0x05	Isolation	Isolation	Isolation	Isolation	Isolation	Insertion Loss	Isolation	Isolation
0x03	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	Insertion Loss	Isolation
0x01	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	Isolation	Insertion Loss

Recommended Operation Range

Table 3. Recommended Operation Condition

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	0.7	-	3.0	GHz
Power supply	V_{DD}	2.5	2.8	3.0	V
Power supply for MIPI	V_{IO}	1.65	1.8	1.95	V
MIPI Control Voltage High	V_{H}	0.8*VIO	1.8	1.95	V
MIPI Control Voltage Low	V_L	0	0	0.3	V

Specifications

Table 4. Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
DC Specifications			<u> </u>			•
Supply voltage	V _{DD}		2.5	2.8	3.0	V
Supply current	lod			30	50	uA
V _{IO} supply voltage	Vio		1.65	1.8	1.95	V
V _{IO} Supply current	lio			4	10	uA
SDATA, SCLK control voltage: High Low	Vctl_h Vctl_l		0.8* V _{IO}	V _{IO}	1.95 0.3	V V
Switching Speed, one RF to another		10% to 90% RF		1	2	uS
RF Specifications			•	•		•
Insertion loss (ANT pin to RF1/2/3/4/5/6/7/8 pins)	IL	0.1 to 1.0 GHz 1.0 to 2.0 GHz 2.0 to 2.7 GHz		0.30 0.40 0.50	0.40 0.50 0.70	dB dB dB
Isolation (ANT pin to RF1/2/3/4/5/6/7/8 pins)	Iso	0.1 to 1.0 GHz 1.0 to 2.0 GHz 2.0 to 2.7 GHz	35 25 20	40 30 24		dB dB dB
Input return loss (ANT pin to RF1/2/3/4/5/6/7/8 pins)	RL	0.1 to 1.0 GHz 1.0 to 2.0 GHz 2.0 to 2.7 GHz	20 15 12	25 20 15		dB dB dB
0.1 dB Compression Point (ANT pin to RF1/2/3/4/5/6/7/8 pins)	P0.1dB	0.7 GHz to 3.0 GHz		+27		dBm
2nd Harmonic (ANT to RF1/2/3/4//5/6/7/8)	2fo	fo = 100 to 3000 MHz,			-80	dBm
3rd Harmonic (ANT to RF1/2/3/4//5/6/7/8)	3fo	PIN = +10 dBm			-80	dBm

Note: Unless otherwise stated: all unused RF ports terminated in 50Ω , Input and Output = 50Ω , T = 25° C, VDD = 2.8V

MIPI Read and Write Timing

MIPI supports the following Command Sequences:

- Register Write
- Register_0 Write
- Register Read

Figures 3 and 4 provide the timing diagrams for register write commands and read commands, respectively. Figure 5 shows the Register 0 Write Command Sequence. Refer to the MIPI Alliance Specification for RF Front-End Control Interface (RFFE), v1.10 (26 July 2011) for additional information on MIPI USID programming sequences and MIPI bus specifications.

Figure 3 Register Write Command Sequence

Figure 4 Register Read Command Sequence

In the timing figures, SA[3:0] is slave address. A[4:0] is register address. D[7:0] is data. "P" is odd parity bit.

Register 0 Write Command Sequence

Figure shows the Register 0 Write Command Sequence. The Command Sequence starts with an SSC, followed by the Register 0 Write Command Frame containing the Slave address, a logic one, and a seven bit word to be written to Register 0. The Command Sequence ends with a Bus Park Cycle.

Figure 5 Register 0 Write Command Sequence

Register definition

Table 5. Register definition table

Register Address	Register Name	Data Bits	R/W	Function	Description	Default	BROADC AST_ID support	Trigger support
0x00	REGISTER_0	7:0	R/W	RF Control	Register_0 truth Table: Table 2	0x00	No	Yes
	7	R/W	SOFTWARE RESET	O: Normal operation 1: Software reset Note: On software reset, this register and all configurable registers are reset except for USID, GSID, and PM_TRIG.	0	No	No	
	6	R/W	COMMAND_FR AME_PARITY_E RR			No	No	
		5	R/W	COMMAND_LE NGTH_ERR	Command Sequence with incorrect length	0	No	No
0x001A	RFFE_STATU S	4	R/W	ADDRESS_FRA ME_PARITY_E RR	Address Frame with parity error	0	No	No
		3	R/W	DATA_FRAME_ PARITY_ERR	Data Frame with parity error	0	No	No
		2	R/W	READ_UNUSED _REG	Read Command Sequence to an invalid address	0	No	No
		1	R/W	WRITE_UNUSE D_REG	Write Command Sequence to an invalid address	0	No	No
	0	R/W	BID_GID_ERR	Read Command Sequence with a BSID or GSID Note: Reading this register resets this register.	0	No	No	
0:-004D	ODOLID OID	7:4	R	RESERVED		0x0	No	No
0x001B	GROUP_SID	3:0	R/W	GSID	Group Slave ID	0x0	No	No
	7:6	R/W	PWR_MODE	00: Normal Operation (ACTIVE) 01: Reset all registers to default settings (STARTUP) 10: Low power (LOW POWER) 11: Reserved Note: Write PWR_MODE=2'h1 will reset all register, and puts the device into STARTUP state.	0b10	Yes	No	
		5	R/W	Trigger_Mask_2	If this bit is set, trigger 2 is disabled	0	No	No
		4	R/W	Trigger_Mask_1	If this bit is set, trigger 1 is disabled	0	No	No
0x001C PM_TRIG	PM_TRIG	3	R/W	Trigger_Mask_0	If this bit is set, trigger 0 is disabled Note: When all triggers are disabled, writing to a register that is associated with trigger 0, 1, or 2, causes the data to go directly to the destination register.	0	No	No
		2	W	Trigger_2	A write of a one to this bit loads trigger 2's registers	0	Yes	No
	1	w	Trigger_1	A write of a one to this bit loads trigger 1's registers	0	Yes	No	
10		0	W	Trigger_0	A write of a one to this bit loads trigger 0's registers Note: Trigger processed immediately then cleared. Trigger 0, 1, and 2 will always read as 0.	0	Yes	No
0x001D	PRODUCT_ID	7:0	R	PRODUCT_ID	Product Number	0x5e	No	No
0x001E	MANUFACTU RER_ID	7:0	R	MANUFACTUR ER_ID[7:0]	Lower eight bits of MIPI registered Manufacturer ID	0x81	No	No
		7:6	R	RESERVED		0b00	No	No
0x001F	MAN_USID	5:4	R	MANUFACTUR ER_ID[9:8]	Upper two bits of MIPI registered Manufacturer ID	0b11	No	No

Absolute Maximum Ratings

Table 6. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	+2.0	+3.3	V
Supply voltage for MIPI	V_{IO}	+1.0	+2.0	V
MIPI Control voltage (SDATA, SCLK)	V_{CTL}	0	+2.0	V
RF input power (RF1 to RF8)	P _{IN}		+28	dBm
Operating temperature	T_OP	-35	+90	$^{\circ}$ C
Storage temperature	T_{STG}	-40	+125	°C
Electrostatic Discharge Human body model (HBM), Class 1C	ESD_HBM		1000	0
Machine Model (MM),	ESD_MM		100	V
Class A Charged device model (CDM), Class III	ESD_CDM		500	

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Power ON and OFF sequence

Here is the recommendation about power-on/off sequence in order to avoid damaging the device.

Power ON

- 1) Apply voltage supply VDD
- 2) Apply logic supply Vio
- 3) Wait 10µs or greater and then apply MIPI bus signals SCLK and SDATA
- 4) Wait 5µs or greater after MIPI bus goes idle and then apply the RF Signal

Power OFF

- 1) Remove the RF Signal
- 2) Remove MIPI bus SCLK and SDATA
- 3) Remove logic supply Vio
- 4) Remove voltage supply VDD

Note: VIO can be applied to the device before VDD or removed after VDD.

It is important to wait 10µs after VIO & VDD are applied before sending SDATA to ensure correction data transmission.

The minimum time between a power up and power down sequence (and vice versa) is ≥ 100us.

Package Outline Dimension

	SYMBOL	MILLIMETER				
DESCRIPTION			NOM	MAX		
TOTAL THICKNESS			0.55	0.60		
	A1	0		0.05		
	A2	0.35	0.40	0.45		
	A3		0.152 REF			
	b	0.13	0.18	0.23		
Х	D	1.95	2.00	2.05		
Y	E	1.95	2.00	2.05		
	е	0.40 BSC				
Х	J	0.93	0.98	1.03		
Y	К	0.93	0.98	1.03		
	L	0.16	0.21	0.26		
PACKAGE EDGE TOLERANCE			0.100			
MOLD FLATNESS			0.100			
COPLANARITY			0.080			
LEAD OFFSET			0.100			
EXPOSED PAD OFFSET			0.100			
	X Y	A2 A3 b X D Y E e X J Y K L RANCE ooo bbb ccc ddd	SYMBOL MIN A 0.50 A1 0 A2 0.35 A3 b 0.13 X D 1.95 Y E 1.95 e X J 0.93 Y K 0.93 L 0.16 RANCE 0aa bbb ccc ddd	NOM NOM		

Figure 6 package outline dimension

Marking Specification

Figure 7 Marking specification (Top View)

Tape and Reel Dimensions

Figure 8 Tape and reel dimensions

Reflow Chart

Figure 9 Recommended Lead-Free Reflow Profile

Table 7. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $(TS_{max} \text{ to } T_p)$	3°C/second max.
Preheat temperature (TS _{min} to TS _{max})	150℃ to 200℃
Preheat time (t _s)	60 - 180 seconds
Time above TL , 217 $^{\circ}$ C (t _L)	60 - 150 seconds
Peak temperature (T _p)	260℃
Time within 5°C of peak temperature(t _p)	20 - 40 seconds
Ramp-down rate	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Switch ICs category:

Click to view products by Maxscend manufacturer:

Other Similar products are found below:

MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1

BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2

MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1

BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A

SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN

UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588
TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000

MA4SW310B-1