16-Channel Constant Current LED Sink Driver with Low Knee Voltage

Features

- 16 constant-current output channels
- Constant output current invariant to load voltage change: Constant output current range:
$3-45 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$;
$3-30 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$
- Excellent output current accuracy: -between channels: $\pm 1.5 \%$ (typ.) and $\pm 3 \%$ (max.) -between ICs: $\pm 3 \%$ (typ.) and $\pm 6 \%$ (max.)
- Low Knee Voltage:
$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DS}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$
$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DS}}=0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
- Output current adjusted through an external resistor
- Fast response of output current, $\overline{\mathrm{OE}}$ (min.): 70ns with good uniformity between output channels
- Staggered delay of output

GF: SOP24L-300-1.00

Shrink SOP

GP: SSOP24L-150-0.64

- 25MHz clock frequency
- Schmitt trigger input
- 3.3V/5V supply voltage
-"Pb-free \& Green" Package

Product Description

MBI5035 is a 16 -channel constant current LED driver with $\mathrm{V}_{\mathrm{DS}}=0.2 \mathrm{~V}$ @ $\mathrm{l}_{\mathrm{OUT}}=20 \mathrm{~mA}$, which is excellent compared to the conventional design. MBI5035 is especially designed for low power consumption LED display applications. The low knee voltage (LKV) design makes MBI5035 work at a constant output current with low V_{DS} and still guarantee PrecisionDrive ${ }^{\text {TM }}$ feature. With PrecisionDrive ${ }^{\text {TM }}$, MBI5035 is designed for LED displays which require to operate at low current and match the luminous intensity of each channel. MBI5035 contains a serial buffer and data latches converting serial input data into parallel output format. At MBI5035 output stage, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of \bigvee_{F} variations.

MBI5035 provides users with great flexibility and device performance in their low power system design for LED display applications. It accepts an input voltage range from 3.3 V to 5.0 V and maintains constant current up from 3 mA to 45 mA determined by an external resistor, $\mathrm{R}_{\text {ext }}$, which gives users flexibility in controlling the light intensity of LEDs. MBI5035 guarantees to endure maximum 17 V at the output port. The high clock frequency, 25 MHz , also satisfies the system requirements of high volume data transmission.

Block Diagram

Terminal Description

Pin No.	Pin Name	Function					
1	GND	Ground terminal for control logic and current sink					
2	SDI	Serial-data input to the shift register					
3	CLK	Clock input terminal for data shift on rising edge					
4	LE	Data strobe input terminal Serial data is transferred to the output latch when LE is high. The data will be latched when LE goes low.					
$5 \sim 20$	$\overline{\overline{\text { OUTO }} \sim}$	Constant current output terminals	$	$	21	$\overline{\text { OUT15 }}$	Output enable terminal When $\overline{\text { OE is (active) low, the output }}$ drivers are enabled; when $\overline{\text { OE is high, all }}$ output drivers are turned OFF (blanked).
:---:	:---:	:---					
22	SDO	Serial-data output to the following SDI of next driver IC. SDO signal changes on rising edge of CLK.					
23	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels					
24	VDD	3.3V/5V supply voltage terminal					

Pin Configuration

Equivalent Circuits of Inputs and Outputs

$\overline{\mathrm{OE}}$ terminal

CLK, SDI terminal

LE terminal

SDO terminal

Timing Diagram

Truth Table

CLK	LE	$\overline{\mathrm{OE}}$	SDI	$\overline{\text { OUT0 }}$.. $\overline{\text { OUT }}$... $\overline{\text { OUT15 }}$	SDO
4	H	L	D_{n}	$\overline{D_{n}} \ldots . . \overline{D_{n-7}} \ldots . . \overline{D_{n-15}}$	$\mathrm{D}_{\text {n-15 }}$
4	L	L	$\mathrm{D}_{\mathrm{n}+1}$	No Change	$\mathrm{D}_{\mathrm{n}-14}$
-	H	L	$\mathrm{D}_{\mathrm{n}+2}$	$\overline{D_{n}+2} \ldots . . \overline{D_{n-5}} \ldots . . \overline{D_{n-13}}$	$\mathrm{D}_{\mathrm{n} \text {-13 }}$
\downarrow	X	L	$\mathrm{D}_{\mathrm{n}+3}$	$\overline{D_{n}+2} \ldots . \overline{D_{n-5}} \ldots . . \overline{D_{n-13}}$	$\mathrm{D}_{\mathrm{n}-13}$
\downarrow	X	H	$\mathrm{D}_{\mathrm{n}+4}$	Off	$\mathrm{D}_{\mathrm{n-13}}$

Maximum Ratings

Characteristic		Symbol	Rating	Unit
Supply Voltage		$V_{D D}$	0~7.0	V
Input Voltage		$\mathrm{V}_{\text {IN }}$	$-0.4 \sim V_{D D}+0.4$	V
Output Current		$\mathrm{l}_{\text {OUt }}$	+50	mA
Sustaining Voltage at OUT Port		$V_{\text {DS }}$	$-0.5 \sim+17.0$	V
GND Terminal Current		$\mathrm{I}_{\text {GND }}$	+800	mA
Power Dissipation (On PCB, $\mathrm{Ta}=25^{\circ} \mathrm{C}$) ${ }^{*}$	GF-type	$P_{\text {D }}$	2.35	W
	GP-type		1.76	
Thermal Resistance (On PCB, $\mathrm{Ta}=25^{\circ} \mathrm{C}$) ${ }^{*}$	GF-type	$\mathrm{R}_{\mathrm{th}(-\mathrm{a})}$	53.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	GP-type		70.90	
Junction Temperature		$\mathrm{T}_{\mathrm{j}, \text { max }}$	150**	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature		$\mathrm{T}_{\text {opr }}$	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55~+150	${ }^{\circ} \mathrm{C}$

*The PCB size is $76.2 \mathrm{~mm} * 114.3 \mathrm{~mm}$ in simulation. Please refer to JEDEC JESD51.
**Operation at the maximum rating for extended periods may reduce the device reliability; therefore, the suggested junction temperature of the device is under $125^{\circ} \mathrm{C}$.

Note: The performance of thermal dissipation is strongly related to the size of thermal pad, thickness and layer numbers of the PCB. The empirical thermal resistance may be different from simulative value. Users should plan for expected thermal dissipation performance by selecting package and arranging layout of the PCB to maximize the capability.

Electrical Characteristics ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Characteristics		Symbol	Condi	ion	Min.	Typ.	Max.	Unit
Supply Voltage		$V_{D D}$	-		4.5	5.0	5.5	V
Sustaining Voltage at OUT Ports		$V_{\text {DS }}$	OUT0 $\overline{\text { OUT15 }}$		-	-	17.0	V
Output Current		lout	Refer to "Test Circuit for Electrical Characteristics"		3	-	45	mA
		IOH	SDO		-	-	-1.0	mA
		lOL	SDO		-	-	1.0	mA
Input Voltage	"H" level	V_{IH}	$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		$0.7 \times V_{\text {DD }}$	-	$V_{D D}$	V
	"L" level	$\mathrm{V}_{\text {IL }}$	$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		GND	-	0.3 xV DD	V
Output Leakage Current		I_{OH}	$\mathrm{V}_{\text {DS }}=17.0 \mathrm{~V}$		-	-	0.5	$\mu \mathrm{A}$
Output Voltage	SDO	$\mathrm{V}_{\text {OL }}$	$\mathrm{l}_{\mathrm{OL}}=+1.0 \mathrm{~mA}$		-	-	0.4	V
		V_{OH}	$\mathrm{IOH}=-1.0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
Output Current 1		lout1	$\mathrm{V}_{\text {DS }}=0.25 \mathrm{~V}$	$\mathrm{R}_{\text {ext }}=930 \Omega$	-	20	-	mA
Current Skew (Channel)		$\mathrm{dl}_{\text {OUT1 }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=0.25 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {ext }}=930 \Omega$	-	± 1.5	± 3.0	\%
Current Skew (IC)		$\mathrm{dl}_{\text {OUT2 }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=0.25 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {ext }}=930 \Omega$	-	± 3.0	± 6.0	\%
Output Current vs. Output Voltage Regulation		\%/dV VS	V_{DS} within 0.5 V and 1.5 V		-	± 0.2	± 0.5	\%/V
Output Current vs. Supply Voltage Regulation		\%/dV ${ }_{\text {DD }}$	V_{DD} within 4.5 V and 5.5 V		-	± 1.0	± 2.0	\%/V
Low Knee Voltage		V_{DS}	$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}$		-	0.2	0.25	V
Pull-up Resistor		$\mathrm{R}_{\text {IN }}$ (up)	$\overline{\mathrm{OE}}$		250	500	800	K Ω
Pull-down Resistor		$\mathrm{R}_{\text {IN }}($ down $)$	LE		250	500	800	K Ω
Supply Current	"OFF"	I_{DD} (off) 1	$\mathrm{R}_{\text {ext }}=$ Open, $\quad \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ Off		-	4.0	6.0	mA
		I_{DD} (off) 2	$\mathrm{R}_{\text {ext }}=6000 \Omega, \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ Off		-	5.5	7.5	
		I_{DD} (off) 3	$\mathrm{R}_{\text {ext }}=930 \Omega, \quad \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=\mathrm{Off}$		-	8.0	10	
	"ON"	I_{DD} (on) 1	$\mathrm{R}_{\text {ext }}=6000 \Omega, \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ On		-	5.5	7.5	
		I_{DD} (on) 2	$\mathrm{R}_{\text {ext }}=930 \Omega, \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ On		-	8.0	10	

Electrical Characteristics ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$)

Characteristics		Symbol		ition	Min.	Typ.	Max.	Unit
Supply Voltage		$V_{D D}$			3.0	3.3	3.6	V
Sustaining Voltage at OUT Ports		$V_{\text {DS }}$	$\overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}$		-	-	17.0	V
Output Current		$\mathrm{l}_{\text {OUT }}$	Refer to "Test Circuit for Electrical Characteristics"		3	-	30	mA
		I_{OH}	SDO		-	-	-1.0	mA
		l L	SDO		-	-	1.0	mA
Input Voltage	"H" level	V_{IH}	$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		$0.7 \mathrm{x} \mathrm{V}_{\mathrm{DD}}$	-	$V_{D D}$	V
	"L" level	$\mathrm{V}_{\text {IL }}$	$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		GND	-	0.3 xV VD	V
Output Leakage Current		IOH	$\mathrm{V}_{\mathrm{DS}}=17.0 \mathrm{~V}$		-	-	0.5	$\mu \mathrm{A}$
Output Voltage	SDO	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=+1.0 \mathrm{~mA}$		-	-	0.4	V
		V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
Output Current 1		Iout1	$\mathrm{V}_{\mathrm{DS}}=0.25 \mathrm{~V}$	$\mathrm{R}_{\text {ext }}=930 \Omega$	-	20	-	mA
Current Skew (Channel)		$\mathrm{dl}_{\text {OUT1 }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=0.25 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {ext }}=930 \Omega$	-	± 1.5	± 3.0	\%
Current Skew (IC)		$\mathrm{dl}_{\text {OUT2 }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\text {DS }}=0.25 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {ext }}=930 \Omega$	-	± 3.0	± 6.0	\%
Output Current vs. Output Voltage Regulation		\%/dV ${ }_{\text {DS }}$	$V_{D S}$ within 0	nd 1.5V	-	± 0.2	± 0.5	\%/V
Output Current vs. Supply Voltage Regulation		\%/dV ${ }_{\text {DD }}$	$V_{D D}$ within 3	and 3.6V	-	± 1.0	± 2.0	\%/V
Low Knee Voltage		V_{DS}	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$		-	0.2	0.25	V
Pull-up Resistor		$\mathrm{R}_{\text {IN }}$ (up)	$\overline{\mathrm{OE}}$		250	500	800	K Ω
Pull-down Resistor		$\mathrm{R}_{\text {IN }}($ down $)$	LE		250	500	800	$\mathrm{K} \Omega$
Supply Current	"OFF"	I_{DD} (off) 1	$\mathrm{R}_{\text {ext }}=$ Open, $\quad \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ Off		-	3.5	5.5	mA
		I_{DD} (off) 2	$\mathrm{R}_{\text {ext }}=6000 \Omega, \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ Off		-	5.0	7.0	
		I_{DD} (off) 3	$\mathrm{R}_{\text {ext }}=930 \Omega, \quad \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ Off		-	7.5	9.5	
	"ON"	$\mathrm{I}_{\mathrm{DD}}(\mathrm{on}) 1$	$\mathrm{R}_{\mathrm{ext}}=6000 \Omega, \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ On		-	5.0	7.5	
		$\mathrm{I}_{\mathrm{DD} \text { (on) } 2}$	$\mathrm{R}_{\text {ext }}=930 \Omega, \quad \overline{\text { OUT0 }} \sim \overline{\text { OUT15 }}=$ On		-	7.5	9.5	

Test Circuit for Electrical Characteristics

Switching Characteristics ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Characteristics		Symbol	Condition	Min.	Typ.	Max.	Unit
Propagation Delay Time ("L" to "H")	LE-OUTO	$\mathrm{t}_{\mathrm{pLH} 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LL}}=\mathrm{GND} \\ & \mathrm{Rext}^{2}=930 \Omega \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{PF} \\ & \mathrm{l}_{\mathrm{ouT}}=20 \mathrm{~mA} \\ & \mathrm{C} 1=100 \mathrm{nF} \\ & \mathrm{C} 2=22 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {sDo }}=10 \mathrm{PF} \\ & \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V} \end{aligned}$	-	55	65	ns
	$\overline{\text { OE- }} \overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pLH} 2}$		-	55	65	ns
	CLK-SDO	$\mathrm{t}_{\mathrm{pLH}}$		-	-	40	ns
Propagation Delay Time ("H" to "L")	LE-OUTO	$\mathrm{t}_{\mathrm{pHL}}$		-	35	45	ns
	$\overline{\text { OE- }}$ - ${ }^{\text {UUTO }}$	$\mathrm{t}_{\text {pHL2 }}$		-	35	45	ns
	CLK-SDO	$\mathrm{t}_{\text {pHL }}$		-	-	40	ns
Staggered Delay of Output*	Output Group 1~ Output Group 2	$\mathrm{t}_{\text {stag1 }}$		-	5	10	ns
Pulse Width	CLK	$\mathrm{t}_{\text {w(CLK) }}$		20	-	-	ns
	LE	$\mathrm{t}_{\text {w(L) }}$		20	-	-	ns
Data Clock Frequency		$\mathrm{F}_{\text {CLK }}$		-	-	25	MHz
Hold Time for LE		$t_{\text {n(L) }}$		10	10	-	ns
Setup Time for LE		$\mathrm{t}_{\text {su(L) }}$		10	10	-	ns
Hold Time for SDI		$t_{n(0)}$		5	5	-	ns
Setup Time for SDI		$\mathrm{t}_{\text {su(}}$ ()		3	3	-	ns
Maximum CLK Rise Time		t_{r}		-	-	500	ns
Maximum CLK Fall Time		t_{f}		-	-	500	ns
SDO Rise Time		$\mathrm{t}_{\text {, SDO }}$		-	10	-	ns
SDO Fall Time		$\mathrm{t}_{\text {f, SDI }}$		-	10	-	ns
Output Rise Time of Output Ports		$\mathrm{t}_{\text {or }}$		-	30	40	ns
Output Fall Time of Output Ports		$\mathrm{t}_{\text {of }}$		-	30	40	ns
$\overline{\text { OE Pulse Width }}$		$\mathrm{t}_{\text {w(OE) }}$		70	100	-	ns

*MBI5035 has a built-in stagger circuit to perform delay mechanism. Among output ports exist a graduated 5 ns delay time between $\overline{\text { OUT2n }}$ and $\overline{\text { OUT2n+1 }}$, by which the output ports will be divided to two groups at a different time so that the instant current from the power line will be lowered.

Switching Characteristics ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$)

Characteristics		Symbol	Condition	Min.	Typ.	Max.	Unit
Propagation Delay Time ("L" to "H")	LE- $\overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pLH} 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{LL}}=\mathrm{GND} \\ & \mathrm{Rext}^{2}=930 \Omega \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{PF} \\ & \mathrm{l}_{\mathrm{ouT}}=20 \mathrm{~mA} \\ & \mathrm{C} 1=100 \mathrm{nF} \\ & \mathrm{C} 2=22 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {sDo }}=10 \mathrm{PF} \\ & \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V} \end{aligned}$		65	75	ns
		$\mathrm{t}_{\text {pLH2 }}$		-	65	75	ns
	CLK-SDO	$\mathrm{t}_{\text {pLH }}$		-	-	50	ns
Propagation Delay Time ("H" to "L")	LE-OUTO	$\mathrm{t}_{\text {pHL1 }}$		-	40	50	ns
		$\mathrm{t}_{\text {pHL2 }}$		-	40	50	ns
	CLK-SDO	$\mathrm{t}_{\text {pHL }}$		-	-	50	ns
Staggered Delay of Output	Output Group 1~Output Group 2	$\mathrm{t}_{\text {stag1 }}$		-	10	15	ns
Pulse Width	CLK	$\mathrm{t}_{\text {w(CLK) }}$		20	-	-	ns
	LE	$\mathrm{t}_{\text {w(L) }}$		20	-	-	ns
Data Clock Frequency		$\mathrm{F}_{\text {CLK }}$		-	-	20	MHz
Hold Time for LE		$\mathrm{th}_{\text {(L) }}$		10	-	-	ns
Setup Time for LE		$\mathrm{t}_{\text {su(L) }}$		10	-	-	ns
Hold Time for SDI		$t_{\text {n(}}$)		5	-	-	ns
Setup Time for SDI		$\mathrm{t}_{\text {su(}}$ ()		3	-	-	ns
Maximum CLK Rise Time		t_{r}		-	-	500	ns
Maximum CLK Fall Time		t_{f}		-	-	500	ns
SDO Rise Time		$\mathrm{t}_{\mathrm{r}, \mathrm{SDO}}$		-	10	-	ns
SDO Fall Time		$\mathrm{t}_{\text {f, SDI }}$		-	10	-	ns
Output Rise Time of Output Ports		$\mathrm{t}_{\text {or }}$		-	35	45	ns
Output Fall Time of Output Ports		t_{of}		-	35	45	ns
$\overline{\text { OE Pulse Width }}$		$\mathrm{t}_{\text {w(OE) }}$		100	130	-	ns

*MBI5035 has a built-in stagger circuit to perform delay mechanism. Among output ports exist a graduated 10 ns delay time between $\overline{\text { OUT2n }}$ and $\overline{\text { OUT2n+1 }}$, by which the output ports will be divided to two groups at a different time so that the instant current from the power line will be lowered.

Test Circuit for Switching Characteristics

Timing Waveform

Application Information

Constant Current

To design LED displays, MBI5035 provides nearly no variations in current from channel to channel and from IC to IC.
This can be achieved by:

1) The maximum current variation between channels is less than $\pm 3 \%$, and that between ICs is less than $\pm 6 \%$.
2) In addition, the current characteristic of output stage is flat and users can refer to the below figure. The output current can be kept constant regardless of the variations of LED forward voltages $\left(\mathrm{V}_{\mathrm{F}}\right)$. This performs as a perfect static load regulation.

Adjusting Output Current

The output current of each channel (lout) is set by an external resistor, $R_{\text {ext }}$. The relationship between $l_{\text {OUt }}$ and $R_{\text {ext }}$ is shown in the following figure.

Also, the output current can be calculated from the equation:
$V_{\text {R-EXT }}=1.24 V ; I_{\text {OUT }}=V_{R-E X T} *\left(1 / R_{\text {ext }}\right) x 15 ; R_{\text {ext }}=\left(V_{\text {R-EXT }} / I_{\text {OUT }}\right) \times 15$

Where $R_{\text {ext }}$ is the resistance of the external resistor connected to R-EXT terminal and $\mathrm{V}_{\mathrm{R} \text {-ExT }}$ is the voltage of R-EXT terminal. The magnitude of current (as a function of $R_{\text {ext }}$) is around 20 mA at 930Ω and 10 mA at 1860Ω.

Staggered Delay of Output

MBI5035 has a built-in staggered circuit to perform delay mechanism. Among output ports exist a graduated 5 ns delay time between $\overline{\mathrm{OUT2n}}$ and $\overline{\mathrm{OUT} 2 \mathrm{n}+1}$, by which the output ports will be divided to two groups at a different time so that the instant current from the power line will be lowered.

Soldering Process of "Pb-free" Package Plating*
Macroblock has defined "Pb-Free" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with the higher-temperature Pb -free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it adopts tin/lead (SnPb) solder paste, and please refer to the JEDEC J-STD-020C for the temperature of solder bath. However, in the whole Pb -free soldering processes and materials, 100% pure tin (Sn) will all require from $245^{\circ} \mathrm{C}$ to $260^{\circ} \mathrm{C}$ for proper soldering on boards, referring to JEDEC J-STD-020C as shown below.

Package Thickness	Volume mm^{3} <350	Volume mm^{3} $350-2000$	Volume mm^{3} $\geqq 2000$
$<1.6 \mathrm{~mm}$	$260+0^{\circ} \mathrm{C}$	$260+0^{\circ} \mathrm{C}$	$260+0^{\circ} \mathrm{C}$
$1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$	$260+0^{\circ} \mathrm{C}$	$250+0^{\circ} \mathrm{C}$	$245+0^{\circ} \mathrm{C}$
$\geqq 2.5 \mathrm{~mm}$	$250+0^{\circ} \mathrm{C}$	$245+0^{\circ} \mathrm{C}$	$245+0^{\circ} \mathrm{C}$

*For details, please refer to Macroblock's "Policy on Pb-free \& Green Package".

Package Power Dissipation (PD)

The maximum allowable package power dissipation is determined as $P_{D}(\max)=(T j-T a) / R_{t h(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is $P_{D}(a c t)=\left(l_{D D} x V_{D D}\right)+\left(l_{O U T} x D u t y x V_{D S} x 16\right)$. Therefore, to keep $P_{D}(a c t) \leq P_{D}(\max)$, the allowable maximum output current as a function of duty cycle is:
$\mathrm{I}_{\text {OUT }}=\left\{\left[(\mathrm{Tj}-\mathrm{Ta}) / \mathrm{R}_{\mathrm{th}(j-\mathrm{a})}\right]-\left(\mathrm{I}_{\mathrm{DD}} \mathrm{x} \mathrm{V}_{\mathrm{DD}}\right)\right\} / \mathrm{V}_{\mathrm{DS}} /$ Duty $/ 16$, where $\mathrm{Tj}=150^{\circ} \mathrm{C}$.

Condition: $\mathrm{I}_{\text {OuT }}=50 \mathrm{~mA}, 16$ output channels	
Device Type	$\mathrm{R}_{\text {th(}(\mathrm{ia)})}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
GF	53.28
GP	70.90

The maximum power dissipation, $\mathrm{P}_{\mathrm{D}}(\mathrm{max})=(\mathrm{Tj}-\mathrm{Ta}) / \mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$, decreases as the ambient temperature increases.

16-Channel Constant Current LED Driver with Low Knee Voltage

Load Supply Voltage ($\mathrm{V}_{\text {LED }}$)

MBI5035 are designed to operate with $\mathrm{V}_{\text {DS }}$ ranging from 0.2 V to 0.6 V (depending on $\mathrm{l}_{\text {OUT }}=3 \sim 45 \mathrm{~mA}$) to lower the heat dissipation and reduce the temperature on the package. In this case, it is recommended to use the lowest possible supply voltage $V_{\text {LED. }}$. Because the V_{F} of red LED differs from green and blue LED, we suggest to separate $\mathrm{V}_{\text {LED_R }}$ from $V_{\text {LEd_G, }}$.
$V_{D S}=V_{\text {LED }}-V_{F}$, with $V_{D S}$ ranging from 0.2 V to 0.6 V
The applications are shown in the following figures.

Switching Noise Reduction

LED driver ICs are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, refer to "Application Note for 8-bit and 16-bit LED Drivers- Overshoot".

Package Outline

MBI5035GF Outline Drawing

SYMBOLS	Dimensions shown in inches		Dimensions shown in millimeters								
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.					
A	0.053	0.064	0.069	1.346	1.626	1.753					
A1	0.004	0.006	0.010	0.102	0.152	0.254					
A2	-	-	0.059	-	-	1.499					
D	0.337	0.341	0.344	8.560	8.661	8.738					
E	0.228	0.236	0.244	5.791	5.994	6.198					
E1	0.150	0.154	0.157	3.810	3.912	3.988					
b	0.008	-	0.012	0.203	-	0.305					
c	0.007	-	0.010	0.178	-	0.254					
L	0.016	0.025	0.050	0.406	0.635	1.270					
e	0.025 BASIC										0.635 BASIC
L1	0.041 BASIC										1.0414 BASIC
Θ°	0	-	8	0	-	8					

MBI5035 GP Outline Drawing
Note: The unit for the outline drawing is mm .

Product Top-mark Information

Product Revision History

Datasheet version	Device version code
V1.00	A
V1.01	A
V2.00	B

Product Ordering Information

Part Number	"Pb-free \& Green" Package Type	Weight (g)
MBI5035GF-B	SOP24L-300-1.00	0.28
MBI5035GP-B	SSOP24L-150-0.64	0.11

*Please place your order with the "product ordering number" information on your purchase order (PO).

16-Channel Constant Current LED Driver with Low Knee Voltage

 Disclaimer

 Disclaimer}

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Display Drivers category:
Click to view products by MBI manufacturer:
Other Similar products are found below :
STP16CPP05XTTR SCT2027CSSG KP22306WGA KP1199AWPA KP1199BWPA GN1628T BCT3236EGH-TR HT1628BRWZ KP1192SPA KP1182SPA KP1262FSPA KP1072LSPA KP1191SPA KP18001WPA KP1070LSPA KP1221SPA KP107ALSPA GN1640T MBI5253GP-A WS90561T S7P WS9821B S7P WS9032GS7P LYT3315D M08888G-11 M08890G-13 SCT2001ASIG SCT2024CSOG SCT2024CSSG AL8400QSE-7 PR4401 PR4403 PCA9685PW STP16CPC05XTTR WS2821B PR4402 M08898G-13 RT8471GJ5 TLC59482DBQR ISL97634IRT14Z-TK AW36413CSR LP5562TMX WS2818B BCR401R BCR401U BCR402U SCT2004CSOG SCT2026CSOG SCT2026CSSG SCT2932F SCT2932J

