

- Function options: output adjustable via potentiometer;

3 in 1 dimming (dim-to-off); Smart timer dimming; DALI

- Typical lifetime>50000 hours
- 5 years warranty

- Description

ELG-75 series is a 75 W AC/DC LED driver featuring the dual mode constant voltage and constant current output. ELG-75 operates from 100~305VAC and offers models with different rated voltage ranging between 12 V and 48 V . Thanks to the high efficiency up to 90%, with the fanless design, the entire series is able to operate for $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$ case temperature under free air convection. The design of metal housing and IP67/IP65 ingress protection level allows this series to fit both indoor and outdoor applications. ELG-75 is equipped with various function options, such as dimming methodologies, so as to provide the optimal design flexibility for LED lighting system

- Model Encoding

Type	IP Level	Function	Note
Blank	IP67	Io and Vo fixed.	In Stock
A	IP65	Io and Vo adjustable through built-in potentiometer.	In Stock
B	IP67	3 in 1 dimming function (0~10Vdc, 10V PWM signal and resistance)	In Stock
AB	IP65	 3 in 1 dimming function (0~10Vdc, 10V PWM signal and resistance)	In Stock
DA	IP67	DALI control technology.	In Stock
Dx	IP67	Built-in Smart timer dimming function by user request.	By request
D2	IP67	Built-in Smart timer dimming and programmable function.	In Stock

MEAN WELL
SPECIFICATION

MODEL		ELG-75-12 \square	ELG-75-24 \square	ELG-75-36 \square	ELG-75-42 \square	ELG-75-48 \square
OUTPUT	DC VOLTAGE	12 V	24 V	36 V	42 V	48 V
	CONSTANT CURRENT REGION Note. 2	$6 \sim 12 \mathrm{~V}$	$12 \sim 24 \mathrm{~V}$	$18 \sim 36 \mathrm{~V}$	21~42V	24~48V
	RATED CURRENT	5A	3.15A	2.1A	1.8A	1.6 A
	RATED POWER Note. 5	200VAC ~ 305VAC				
		60W	75.6W	75.6W	75.6W	76.8W
		100VAC ~ 180VAC				
		48W	60W	60W	60W	60W
	RIPPLE \& NOISE (max.) Note. 3	150 mV p-p	200 mV p-p	250 mV p-p	250 mV p-p	250mVp-p
	VOLTAGE ADJ. RANGE	Adjustable for A/AB-Type only (via built-in potentiometer)				
		10.8~13.2V	21.6 ~ 26.4V	$32.4 \sim 39.6 \mathrm{~V}$	37.8~46.2V	43.2 ~ 52.8V
	CURRENT ADJ. RANGE	Adjustable for A/AB-Type only (via built-in potentiometer)				
		2.5~5A	1.57 ~ 3.15A	1.05 ~ 2.1A	$0.9 \sim 1.8 \mathrm{~A}$	$0.8 \sim 1.6 \mathrm{~A}$
	VOLTAGE TOLERANCE Note. 4	$\pm 3.0 \%$	$\pm 3.0 \%$	$\pm 2.5 \%$	$\pm 2.5 \%$	$\pm 2.0 \%$
	LINE REGULATION	$\pm 0.5 \%$				
	LOAD REGULATION	$\pm 2.0 \%$	$\pm 1.0 \%$	$\pm 1.0 \%$	$\pm 0.5 \%$	$\pm 0.5 \%$
	SETUP, RISE TIME Note. 6	$500 \mathrm{~ms}, 100 \mathrm{~ms} / 115 \mathrm{VAC}, 230 \mathrm{VAC}$				
	HOLD UP TIME (Typ.)	10ms/ 230VAC $10 \mathrm{~ms} / 115 \mathrm{VAC}$ (at full load)				
INPUT	VOLTAGE RANGE Note. 5	$100 \sim 305 V A C \quad 142 \sim 431$ VDC(Please refer to "STATIC CHARACTERISTIC" section)				
	FREQUENCY RANGE	$47 \sim 63 \mathrm{~Hz}$				
	POWER FACTOR	PF $\geqq 0.97 / 115 V A C, P F \geqq 0.95 / 230 V A C, P F \geqq 0.92 / 277 V A C @ f u l l l l o a d$ (Please refer to "POWER FACTOR (PF) CHARACTERISTIC" section)				
	TOTAL HARMONIC DISTORTION	$\begin{aligned} & \text { THD<20\%(@load } \geqq 50 \% / 115 \mathrm{VC}, 230 \mathrm{VAC} \text {; @load } \geqq 75 \% / 277 \mathrm{VAC}) \\ & \text { (Please refer to "TOTAL HARMONIC DISTORTION(THD)" section) } \end{aligned}$				
	EFFICIENCY (Typ.)	85\%	88\%	89\%	90\%	90\%
	AC CURRENT	0.7A/115VAC 0.45A/230VAC 0.38A/277VAC				
	INRUSH CURRENT(Typ.)	COLD START 50A(twidth $=350 \mu$ s measured at 50% Ipeak) at 230VAC; Per NEMA 410				
	MAX. No. of PSUs on 16A CIRCUIT BREAKER	5 units (circuit breaker of type B) / 8 units (circuit breaker of type C) at 230VAC				
	LEAKAGE CURRENT	$<0.75 \mathrm{~mA} / 277 \mathrm{VAC}$				
	NO LOAD / STANDBY POWER CONSUMPTION	No load power consumption <0.5W for Blank / A / Dx / D2-Type Standby power consumption <0.5W for B / AB / DA-Type				
PROTECTION	OVER CURRENT	95~108\%				
		Constant current limiting, recovers automatically after fault condition is removed				
	SHORT CIRCUIT	Hiccup mode, recovers automatically after fault condition is removed				
	OVER VOLTAGE	14~18V	$28 \sim 34 \mathrm{~V}$	$41 \sim 48 \mathrm{~V}$	47 ~ 54V	$54 \sim 62 \mathrm{~V}$
		Shut down output voltage, re-power on to recover				
	OVER TEMPERATURE	Shut down output voltage, re-power on to recover				
ENVIRONMENT	WORKING TEMP.	Tcase=-40 ~+85 ${ }^{\circ}$ (Please refer to " OUTPUT LOAD vs TEMPERATURE" section)				
	MAX. CASE TEMP.	Tcase $=+85^{\circ} \mathrm{C}$				
	WORKING HUMIDITY	$20 \sim 95 \%$ RH non-condensing				
	STORAGE TEMP., HUMIDITY	$-40 \sim+80^{\circ} \mathrm{C}, 10 \sim 95 \% \mathrm{RH}$				
	TEMP. COEFFICIENT	$\pm 0.03 \%{ }^{\circ} \mathrm{C}\left(0 \sim 60^{\circ} \mathrm{C}\right)$				
	VIBRATION	$10 \sim 500 \mathrm{~Hz}$, 5G 12min. 11 cycle , period for 72 min . each along X, Y, Z axes				
 EMC	SAFETY STANDARDS	UL8750(type"HL"), CSA C22.2 No. 250.13-12; IEC/EN/AS/NZS 61347-1, IEC/EN/AS/NZS 61347-2-13 independent, EN62384; EAC TP TC 004;BIS IS15885(for 12B/24B/36A/42A/48A only);IP65 or IP67; GB19510.1, GB19510.14; KC61347-1,KC61347-2-13 approved				
	DALI STANDARDS	Compliance to IEC62386-101,102,(207 by request) for DA Type only				
	WITHSTAND VOLTAGE	I/P-O/P:3.75KVAC I/P-FG:2.0KVAC O/P-FG:1.5KVAC				
	ISOLATION RESISTANCE	I/P-O/P, I/P-FG, O/P-FG:100M Ohms / 500VDC / $25^{\circ} \mathrm{C} / 70 \%$ RH				
	EMC EMISSION	Compliance to EN55015,EN61000-3-2 Class C (@load $\geqq 50 \%$) ; EN61000-3-3; GB17743, GB17625.1;EAC TP TC 020; KC KN15,KN61547				
	EMC IMMUNITY	Compliance to EN61000-4-2,3,4,5,6,8,11; EN61547, light industry level (surge immunity Line-Earth 6KV, Line-Line 4KV);EAC TP TC 020; KC KN15, KN61547				
OTHERS	MTBF	1172 K hrs min. Telcordia SR-332 (Bellcore) 331 Khrs min. MIL-HDBK-217F ($25^{\circ} \mathrm{C}$)				
	DIMENSION	$180 * 63 * 35.5 \mathrm{~mm}$ (L*W*H)				
	PACKING	0.8Kg; $16 \mathrm{pcs} / 13.4 \mathrm{Kg} / 0.67 \mathrm{CUFT}$				
NOTE	1. All parameters NOT specially mentioned are measured at 230 VAC input, rated current and $25^{\circ} \mathrm{C}$ of ambient temperature. 2. Please refer to "DRIVING METHODS OF LED MODULE". 3. Ripple \& noise are measured at 20 MHz of bandwidth by using a $12^{\prime \prime}$ twisted pair-wire terminated with a 0.1 uf \& 47 uf parallel capacitor. 4. Tolerance : includes set up tolerance, line regulation and load regulation. 5. De-rating may be needed under low input voltages. Please refer to "STATIC CHARACTERISTIC" sections for details. 6. Length of set up time is measured at first cold start. Turning ON/OFF the driver may lead to increase of the set up time. 7. The driver is considered as a component that will be operated in combination with final equipment. Since EMC performance will be affected by the complete installation, the final equipment manufacturers must re-qualify EMC Directive on the complete installation again. 8. This series meets the typical life expectancy of $>50,000$ hours of operation when Tcase, particularly (tc) point (or TMP, per DLC), is about $70^{\circ} \mathrm{C}$ or less. 9. Please refer to the warranty statement on MEAN WELL's website at http://www.meanwell.com 10.The ambient temperature derating of $3.5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$ with fanless models and of $5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$ with fan models for operating altitude higher than $2000 \mathrm{~m}(6500 \mathrm{ft})$. 11.For any application note and IP water proof function installation caution, please refer our user manual before using. https://www.meanwell.com/Upload/PDF/LED_EN.pdf					

Block Diagram

PFC fosc : 50~120KHz PWM fosc : 60~130KHz

DRIVING METHODS OF LED MODULE

※ This series is able to work in either Constant Current mode (a direct drive way) or
Constant Voltage mode (usually through additional DC/DC driver) to drive the LEDs.

Typical output current normalized by rated current (\%)

DIMMING OPERATION

* DIM+ for B/AB-Type
※ 3 in 1 dimming function (for B/AB-Type)
**DIM- for B/AB-Type
- Output constant current level can be adjusted by applying one of the three methodologies between DIM + and DIM-:

DIM- for B/AB-Ty DA- for DA-Type $0 \sim 10 \mathrm{VDC}$, or 10V PWM signal or resistance.

PROG- for D2-Type

- Direct connecting to LEDs is suggested. It is not suitable to be used with additional drivers.
- Dimming source current from power supply: 100 $\mu \mathrm{A}$ (typ.)
(o) Applying additive $0 \sim 10 \mathrm{VDC}$

© Applying additive 10V PWM signal (frequency range $100 \mathrm{~Hz} \sim 3 \mathrm{KHz}$):

Applying additive resistance:

Note : 1. Min. dimming level is about 8% and the output current is not defined when $0 \%<$ Iout $<8 \%$.
2. The output current could drop down to 0% when dimming input is about $0 \mathrm{k} \Omega$ or 0 Vdc , or 10 V PWM signal with 0% duty cycle.
※ DALI Interface (primary side; for DA-Type)

- Apply DALI signal between DA+ and DA-.
- DALI protocol comprises 16 groups and 64 addresses.
- First step is fixed at 8% of output.

※ Smart timer dimming function (for Dxx-Type by User definition)

MEAN WELL Smart timer dimming primarily provides the adaptive proportion dimming profile for the output constant current level to perform up to 14 consecutive hours. 3 dimming profiles hereunder are defined accounting for the most frequently seen applications. If other options may be needed, please contact MEAN WELL for details.

Ex: © D01-Type: the profile recommended for residential lighting

Set up for D01-Type in Smart timer dimming software program:

	T1	T2	T3	T4
TIME**	$06: 00$	$07: 00$	$11: 00$	---
LEVEL** *	100%	70%	50%	70%

**: TIME matches Operating Time in the diagram whereas LEVEL matches Dimming Level.
Example: If a residential lighting application adopts D01-Type, when turning on the power supply at 6:00pm, for instance:
[1] The power supply will switch to the constant current level at 100\% starting from 6:00pm.
[2] The power supply will switch to the constant current level at 70\% in turn, starting from 0:00am, which is 06:00 after the power supply turns on.
[3] The power supply will switch to the constant current level at 50% in turn, starting from 1:00am, which is 07:00 after the power supply turns on.
[4] The power supply will switch to the constant current level at 70\% in turn, starting from 5:00am, which is 11:00 after the power supply turns on. The constant current level remains till 8:00am, which is 14:00 after the power supply turns on.

Ex: © D02-Type: the profile recommended for street lighting

Set up for D02-Type in Smart timer dimming software program:

	T1	T2	T3	T4	T5
TIME** *	$01: 00$	$03: 00$	$8: 00$	$11: 00$	---
LEVEL** *	50%	80%	100%	60%	80%

**: TIME matches Operating Time in the diagram whereas LEVEL matches Dimming Level.
Example: If a street lighting application adopts D02-Type, when turning on the power supply at $5: 00 \mathrm{pm}$, for instance:
[1] The power supply will switch to the constant current level at 50% starting from 5:00pm.
[2] The power supply will switch to the constant current level at 80% in turn, starting from 6:00pm, which is 01:00 after the power supply turns on.
[3] The power supply will switch to the constant current level at 100\% in turn, starting from 8:00pm, which is 03:00 after the power supply turns on.
[4] The power supply will switch to the constant current level at 60\% in turn, starting from 1:00am, which is 08:00 after the power supply turns on.
[5] The power supply will switch to the constant current level at 80% in turn, starting from 4:00am, which is 11:00 after the power supply turns on. The constant current level remains till 6:30am, which is 14:00 after the power supply turns on.

Ex: © D03-Type: the profile recommended for tunnel lighting

Set up for D03-Type in Smart timer dimming software program:

	T 1	T 2	T 3
TIME**	$01: 30$	$11: 00$	---
LEVEL** *	70%	100%	70%

**: TIME matches Operating Time in the diagram whereas LEVEL matches Dimming Level.
Example: If a tunnel lighting application adopts D03-Type, when turning on the power supply at $4: 30 \mathrm{pm}$, for instance:
[1] The power supply will switch to the constant current level at 70% starting from $4: 30 \mathrm{pm}$.
[2] The power supply will switch to the constant current level at 100\% in turn, starting from 6:00pm, which is 01:30 after the power supply turns on. [3] The power supply will switch to the constant current level at 70\% in turn, starting from 5:00am, which is 11:00 after the power supply turns on. The constant current level remains till 6:30am, which is 14:00 after the power supply turns on.

- OUTPUT LOAD vs TEMPERATURE(Note.9)

STATIC CHARACTERISTIC

※ De-rating is needed under low input voltage.

- TOTAL HARMONIC DISTORTION (THD)

※ 48 V Model, Tcase at $75^{\circ} \mathrm{C}$

POWER FACTOR (PF) CHARACTERISTIC
※ Tcase at $75^{\circ} \mathrm{C}$
Constant Current Mode

LOAD

EFFICIENCY vs LOAD

ELG-75 series possess superior working efficiency that up to 90% can be reached in field applications.
※ 48 V Model, Tcase at $75^{\circ} \mathrm{C}$

- Mechanical Specification

※ Blank-Type

※ A-Type

※ AB-Type

※ B/DA/D2-Type

※ 3Y Model (3-wire input)

(o) Note1: Please connect the case to PE for the complete EMC deliverance and safety use.
© Note2: Please contact MEAN WELL for input wiring option with PE.

- Installation Manual

Please refer to : http://www.meanwell.com/manual.html

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Mean Well manufacturer:
Other Similar products are found below :
ESS015W-1000-12 EUC-075S105DT PDA-WIFI PIFC-K250F PITB-K222A ALD-514012PJ134 LB240S24KH LMH020-SPLC-000000000017953479535 EUG-200S210DT ESS030W-1050-21 ESS030W-0900-32 BPOXL 4-12-035 SLM160W-3.9-40-ZA ESS010W-018042 ESS010W-0350-24 ESS010W-0200-42 PDA080B-1A0G PDA150B-S1A5G ZPS-20 SLM140W-1.05-130-ZA ESS040W-1400-27 ESS015W-0700-18 ESS010E-0250-42 EDC-100S105SV-0007 79278 EUD-150S350DVA LWA320-C420-ARK-B 50304 HVG-320-36AB HVG-320-54AB OT FIT 50/220-240/300 D L OT FIT 35/220-240/350 D CS L OT FIT 65/220-240/350 D CS L ELEMENT 30/220-240/700 S LC 75W 100-400MA 1-10V LP EXC LCA 35W 150-700MA ONE4ALL LP PRE LCA 50W 100-400MA ONE4ALL LP PRE LCA 50W 3501050MA ONE4ALL LP PRE LCA 50W 350-1050MA 2XCH LP PRE LCI 150/325-1050/300 O4A SL PRE LCA 75W 100-400MA
ONE4ALL LP PRE LCA 45W 500-1400MA ONE4ALL SC PRE LC 50W 100-400MA FLEXC LP EXC LCA 75W 350-1050MA ONE4ALL LP PRE LC 50W 350-1050MA FLEXC LP EXC LC 75W 350-1050MA FLEXC LP EXC LCA 75W 900-1800MA ONE4ALL LP PRE LCA 100W 250-700MA ONE4ALL LP PRE

