3-Wire Hall Effect Latch

Datasheet

1 Features and Benefits

- Wide operating voltage range: from 2.7V to 24V
- Accurate switching thresholds
- Reverse Supply Voltage Protection
- Output Current Limit with Auto-Shutoff
- Under-Voltage Lockout Protection
- Thermal Protection
- Traceability with integrated unique ID
- High ESD rating / Excellent EMC performance

2 Application Examples

- Automotive, Consumer and Industrial
- Solid-state switch
- Brake sensor
- Clutch sensor
- Sunroof/Tailgate opener
- Steering Column Lock
- Open/Close detection

3 Ordering Information

Product Code	Temperature Code	Package Code	Option Code	Packing from Code
MLX92211	L	SE	BAA-0xx	RE
MLX92211	L	UA	BAA-0xx	BU
MLX92211	L	SE	BAA-2xx	RE

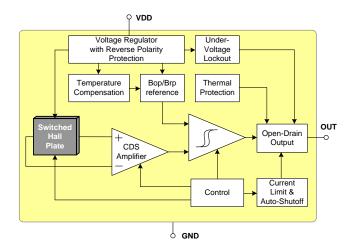
Legend:

Temperature Code: L (-40°C to 150°C)

Package Code: SE = TSOT-3L / UA = TO92-3LOption Code: 0xx => 3 wire Hall Effect Latch

2xx => IMC version

Packing Form: RE = Reel | BU=Bulk


Ordering Example: MLX92211LSE-BAA-001-RE

3-Wire Hall Effect Latch

Datasheet

4 Functional Diagram

5 General Description

The Melexis MLX92211 is a Hall-effect latch designed in mixed signal CMOS technology.

The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system, automotive qualified EEPROM and an open-drain output driver, all in a single package.

Based on the existing robust 922xx platform, the magnetic core has been equipped with a non-volatile memory that is used to accurately trim the switching thresholds and define the needed output magnetic characteristics (TC, B_{OP}, B_{RP}, Output pole functionality).

In addition to that an ID has been integrated on the IC to have a complete traceability throughout the process flow.

The included voltage regulator operates from 2.7 to 24V, hence covering a wide range of applications. With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7V while being reverse voltage tolerant.

In the event of a drop below the minimum supply voltage during operation, the under-voltage lock-out protection will automatically freeze the device, preventing the electrical perturbation to affect the magnetic measurement circuitry. The output state is therefore only updated based on a proper and accurate magnetic measurement result.

The chopper-stabilized amplifier uses switched capacitor techniques to suppress the offset generally observed with Hall sensors and amplifiers. The CMOS technology makes this advanced technique possible and contributes to smaller chip size and lower current consumption than bipolar technology. The small chip size is also an important factor to minimize the effect of physical stress. This combination results in more stable magnetic characteristics and enables faster and more precise design.

The open drain output is fully protected against short-circuit with a built-in current limit. An additional automatic output shut-off is activated in case of a prolonged short-circuit condition. A self-check is then periodically performed to switch back to normal operation if the short-circuit condition is released. The on-chip thermal protection also switches off the output if the junction temperature increases above an abnormally high threshold. It will automatically recover once the temperature decreases below a safe value.

3-Wire Hall Effect Latch

Table of Contents

1	F	eatures and Benefits	1
2	A	Application Examples	1
3	C	Ordering Information	1
4		Functional Diagram	
5		General Description	
6		Glossary of Terms	
7		Absolute Maximum Ratings	
		•	
8		General Electrical Specifications	
9	N	Magnetic Specifications	6
9	9.1	MLX92211LSE-BAA-003	6
9	9.2	MLX92211LSE-BAA-006	6
9	9.3	MLX92211LSE-BAA-008	6
9	9.4	MLX92211LUA-BAA-015	7
9	9.5	MLX92211LSE-BAA-024	7
9	9.6	MLX92211LSE-BAA-044	7
9	9.7	MLX92211LUA-BAA-050	7
9	8.6	MLX92211LSE-BAA-202	8
9	9.9	MLX92211LSE-BAA-203	8
9	9.10	MLX92211LSE-BAA-205	8
10	N	Magnetic Behaviour	. 10
11	A	Application Information	. 11
1	1.1	Typical Three-Wire Application Circuit	11
1	1.2	Automotive and Harsh, Noisy Environments Three-Wire Circuit	11
12	S	standard information regarding manufacturability of Melexis products with different soldering processes	. 12
13	E	SD Precautions	. 12
14	P	Package Information	. 13
1	4.1	SE (TSOT-3L) Package Information	13
15	ι	JA (TO92 - 3L) package information	. 14
16	C	Contact	. 15
17	Г	Disclaimer	15

3-Wire Hall Effect Latch

6 Glossary of Terms

Tesla Units for the magnetic flux density, 1 mT = 10 Gauss

TC Temperature Coefficient in ppm/°C IMC Integrated Magnetic Concentrator

POR Power on Reset

7 Absolute Maximum Ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Value	Units
Supply Voltage (1, 2)	V_{DD}	+27	V
Supply Voltage (Load Dump) (1, 4)	V_{DD}	+32	V
Supply Current (1, 2, 3)	I_{DD}	+20	mA
Supply Current (1, 3, 4)	I_{DD}	+50	mA
Reverse Supply Voltage (1, 2)	V_{DDREV}	-24	V
Reverse Supply Voltage (1, 4)	V_{DDREV}	-30	V
Reverse Supply Current (1, 2, 5)	I _{DDREV}	-20	mA
Reverse Supply Current (1, 4, 5)	I _{DDREV}	-50	mA
Output Voltage (1, 2)	Vout	+27	V
Output Current (1, 2, 5)	lout	+20	mA
Output Current (1, 4, 6)	Гоит	+75	mA
Reverse Output Voltage (1)	V_{OUTREV}	-0.5	V
Reverse Output Current (1, 2)	I _{OUTREV}	-100	mA
Maximum Junction Temperature (7)	TJ	+165	°C
Storage Temperature Range	Ts	-55 to +165	°C
ESD Sensitivity – HBM ⁽⁸⁾	-	4000	V
ESD Sensitivity – CDM ⁽⁹⁾	-	1000	V
Magnetic Flux Density	В	Unlimited	mT

Table 1: Absolute maximum ratings

¹ The maximum junction temperature should not be exceeded

² For maximum 1 hour

³ Including current through protection device

⁴ For maximum 500ms

⁵ Through protection device

⁶ For Vout≤27V

⁷ For 1000 hours

⁸ Human Model according AEC-Q100-002 standard

⁹ Charged Device Model according AEC-Q100-011 standard

8 General Electrical Specifications

DC Operating Parameters V_{DD} = 2.7V to 24V, T_A = -40°C to 150°C (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
Supply Voltage	V_{DD}	Operating	2.7	-	24	V
Supply Current	I_{DD}		1.5	3.0	4.5	mA
Reverse supply current	I_{DDREV}	$V_{DD} = -16V$	-1	-	-	mA
Output Saturation Voltage	V_{DSON}	$V_{DD} = 3.5$ to 24V, $I_{OUT} = 20$ mA	-	0.3	0.5	V
Output Leakage	I _{OFF}	$V_{OUT} = 12V$, $V_{DD} = 12V$	-	-	10	μΑ
Output Rise Time (2, 6) (R _{PU} dependent)	t_{R}	$R_{PU} = 1k\Omega$, $V_{DD} = 12V$, $V_{PU} = 5V$ $C_{LOAD} = 50pF$ to GND	0.1	0.3	1	μs
Output Fall Time ^(2, 6) (On-chip controlled)	t_{\scriptscriptstyleF}	$R_{PU} = 1k\Omega$, $V_{DD} = 12V$, $V_{PU} = 5V$ $C_{LOAD} = 50pF$ to GND	0.1	0.3	1	μs
Power-On Time (3,4,7)	ton	$V_{DD} = 5V$, $dV_{DD}/dt > 2V/us$	-	40	70	μs
Power-On Output State	-	t < t _{ON}		High (V _{PU})		-
Output Current Limit	I _{CL}	V_{DD} =3.5 to 24V, V_{OUT} = 12V	25	40	70	mA
Output ON Time under Current Limit conditions ⁽⁸⁾	tclon	V_{PU} = 12V, R_{PU} = 100 Ω	150	240		μs
Output OFF Time under Current Limit conditions ⁽⁸⁾	tcloff	V_{PU} = 12V, R_{PU} = 100 Ω	-	3.5	-	ms
Chopping Frequency	f _{CHOP}		-	340	-	kHz
Refresh Period	t _{PER}		-	6	-	μs
Output Jitter (p-p) (2)	t JITTER	Over 1000 successive switching events @10kHz triangle wave magnetic field, B > ±(Bopmax +20mT)	-	±3.2	-	μs
Maximum Switching Frequency (2, 5)	f_{SW}	$B > \pm 3(B_{OPMAX} + 1mT)$, triangle wave magnetic field	30	65	-	kHz
Under-voltage Lockout Threshold	V_{UVL}		-	-	2.7	V
Under-voltage Lockout Reaction time (2)	tuvL		-	1	-	μs
Thermal Protection Threshold	T_{PROT}	Junction temperature	-	190 ⁽⁹⁾	-	°C
Thermal Protection Release	T _{REL}	Junction temperature	-	180 ⁽⁹⁾	-	°C
SE Package Thermal Resistance	R _{THJA}	Single layer PCB, JEDEC standard test boards		300		°C/W
UA package Thermal Resistance	R _{THJA}	Single layer PCB, JEDEC standard test boards		200		°C/W

Table 2: General Electrical parameters

¹ Typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$

² Guaranteed by design and verified by characterization, not production tested

³ The Power-On Time represents the time from reaching V_{DD} = 2.7V to the first refresh of the output

⁴ Power-On Slew Rate is not critical for the proper device start-up.

⁵ Maximum switching frequency corresponds to the maximum frequency of the applied magnetic field which is detected without loss of pulses

⁶ R_{PU} and V_{PU} are respectively the external pull-up resistor and pull-up power supply

⁷ Activated output with 1 mT overdrive

⁸ If the Output is in Current Limitation longer than t_{CLON} the Output is switched off in high-impedance state. The Output returns back in active state at next reaching of B_{OP} or after t_{CLOFF} time interval

⁹ T_{PROT} and T_{REL} are the corresponding junction temperature values

3-Wire Hall Effect Latch

Datasheet

9 Magnetic Specifications

9.1 MLX92211LSE-BAA-003

DC Operating Parameters $V_{DD} = 3.5V$ to 24V, $T_A = -40$ °C to 150°C

Test Condition	O	perating Po B _{OP} (mT)	int	Release Point B _{RP} (mT)			TC (ppm/°C)	Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
$T_A = -40$ °C	-0.8	0.5	2.0	-2.0	-0.5	0.8			
$T_A = 25^{\circ}C$	-0.8	0.5	2.0	-2.0	-0.5	0.8	0(2)	Z-axis sensitive South pole	SE (TSOT-3L)
T _A = 150°C	-0.8	0.5	2.0	-2.0	-0.5	0.8		Journ pole	

9.2 MLX92211LSE-BAA-006

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	O	perating Po Bop (mT)	int	Release Point B _{RP} (mT)			TC (ppm/°C)	Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
T _A = -40°C	-0.5	1.5	3.5	-3.5	-1.5	0.5			
$T_A = 25^{\circ}C$	-0.5	1.5	3.5	-3.5	-1.5	0.5	0(2)	Z-axis sensitive South pole	SE (TSOT-3L)
T _A = 150°C	-0.5	1.5	3.5	-3.5	-1.5	0.5		Journ pole	

9.3 MLX92211LSE-BAA-008

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	O	perating Po Bop (mT)	int	F	Release Point B _{RP} (mT)			Active Pole	Package Information	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾			
T _A = -40°C	5.7	8.0	10.5	-10.5	-8.0	-5.7				
$T_A = 25^{\circ}C$	5.4	7.0	8.6	-8.6	-7.0	-5.4	-2000(2)	Z-axis sensitive South pole	SE (TSOT-3L)	
T _A = 150°C	3.4	5.4	7.6	-7.6	-5.4	-3.4		Journ pole		

$$\frac{(B_{OPT2}-B_{RPT2})-(B_{OPT1}-B_{RPT1})}{(B_{OP25^{\circ}C}-B_{RP25^{\circ}C})\times \left(T_{2}-T_{1}\right)}*10^{6},ppm/^{\circ}C;T_{1}=-40^{\circ}C;T_{2}=150^{\circ}C$$

¹ Typical values are defined at T_A =+25°C and V_{DD} =12V

² Temperature coefficient is calculated using the following formula:

3-Wire Hall Effect Latch

Datasheet

9.4 MLX92211LUA-BAA-015

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	O	perating Po B _{OP} (mT) ⁽³⁾		Release Point B _{RP} (mT) ⁽³⁾			TC (ppm/°C)	Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
$T_A = -40$ °C	-0.8	0.5	2.0	-2.0	-0.5	0.8			
$T_A = 25^{\circ}C$	-0.8	0.5	2.0	-2.0	-0.5	0.8	0(2)	Z-axis sensitive South pole	UA (TO92-3)
$T_A = 150$ °C	-0.8	0.5	2.0	-2.0	-0.5	0.8		South pole	

9.5 MLX92211LSE-BAA-024

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	O	perating Po Bop (mT) ⁽³⁾		F	Release Point B _{RP} (mT) ⁽³⁾			Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
$T_A = -40$ °C	3.1	5.0	6.8	-6.8	-5.0	-3.1			
$T_A = 25^{\circ}C$	3.1	5.0	6.8	-6.8	-5.0	-3.1	0(2)	Z-axis sensitive South pole	SE (TSOT-3L)
T _A = 150°C	3.1	5.0	6.8	-6.8	-5.0	-3.1		Journ pole	

9.6 MLX92211LSE-BAA-044

DC Operating Parameters $V_{DD} = 3.5V$ to 24V, $T_A = -40$ °C to 150°C

Test Condition	O	perating Po Bop (mT) ⁽³⁾		Release Point B _{RP} (mT) ⁽³⁾			TC (ppm/°C)	Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
T _A = -40°C	-2.0	-0.5	0.8	-0.8	0.5	2.0		- · · · · · · · · · · · · · · · · · · ·	
$T_A = 25^{\circ}C$	-2.0	-0.5	0.8	-0.8	0.5	2.0	0(2)	Z-axis sensitive North pole	SE (TSOT-3L)
T _A = 150°C	-2.0	-0.5	0.8	-0.8	0.5	2.0		1401 til pole	

9.7 MLX92211LUA-BAA-050

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	0	perating Po Bop (mT) ⁽³⁾		Release Point B _{RP} (mT) ⁽³⁾			TC (ppm/°C)	Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
$T_A = -40$ °C	9.2	15.1	21.0	-21.0	-15.1	-9.2			
$T_A = 25^{\circ}C$	9.4	13.5	17.1	-17.1	-13.5	-9.4	-2000(2)	Z-axis sensitive South pole	UA (TO92-3)
T _A = 150°C	6.7	10.3	14.7	-14.7	-10.3	-6.7		Journ poic	

$$\frac{(B_{OPT2} - B_{RPT2}) - (B_{OPT1} - B_{RPT1})}{(B_{OP25^{\circ}C} - B_{RP25^{\circ}C}) \times \left(T_2 - T_1\right)} *10^6, ppm/^{\circ}C; T_1 = -40^{\circ}C; T_2 = 150^{\circ}C$$

¹ Typical values are defined at T_A =+25°C and V_{DD} =12V

² Temperature coefficient is calculated using the following formula:

³ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations

3-Wire Hall Effect Latch

Datasheet

9.8 MLX92211LSE-BAA-202

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	O	perating Po B _{OP} (mT)	int	Release Point B _{RP} (mT)			TC (ppm/°C)	Active Pole	Package Information
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
T _A = -40°C	-0.5	1.5	3.5	-3.5	-1.5	0.5			
$T_A = 25^{\circ}C$	-0.5	1.5	3.5	-3.5	-1.5	0.5	0(2)	X-axis sensitive South pole	SE (TSOT-3L)
T _A = 150°C	-0.5	1.5	3.5	-3.5	-1.5	0.5		South pole	

9.9 MLX92211LSE-BAA-203

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	Operating Point Bop (mT) (3)		Release Point B _{RP} (mT) ⁽³⁾		TC (ppm/°C)	Active Pole	Package Information		
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
T _A = -40°C	8.0	3.0	5.2	-5.2	-3.0	-0.8		X-axis sensitive South pole SE (TSOT	
$T_A = 25^{\circ}C$	8.0	3.0	5.2	-5.2	-3.0	-0.8	0(2)		SE (TSOT-3L)
T _A = 150°C	0.8	3.0	5.2	-5.2	-3.0	-0.8		Journ pole	

9.10 MLX92211LSE-BAA-205

DC Operating Parameters V_{DD} = 3.5V to 24V, T_A = -40°C to 150°C

Test Condition	O	Operating Point Bop (mT) (3)		Release Point B _{RP} (mT) ⁽³⁾		TC (ppm/°C)	Active Pole	Package Information	
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾		
$T_A = -40$ °C	6.3	9.4	12.6	-12.6	-9.4	-6.3			
$T_A = 25^{\circ}C$	6.1	8.8	11.6	-11.6	-8.8	-6.1	-1100(2)	X-axis sensitive South pole	SE (TSOT-3L)
T _A = 150°C	4.6	7.4	10.5	-10.5	-7.4	-4.6		South poic	

$$\frac{(B_{OPT2} - B_{RPT2}) - (B_{OPT1} - B_{RPT1})}{(B_{OP25^{\circ}C} - B_{RP25^{\circ}C}) \times \left(T_2 - T_1\right)} *10^6, ppm/^{\circ}C; T_1 = -40^{\circ}C; T_2 = 150^{\circ}C$$

¹ Typical values are defined at $T_A\!\!=\!\!+25\,^{\circ}\!C$ and $V_{DD}\!\!=\!\!12V$

² Temperature coefficient is calculated using the following formula:

³ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations

3-Wire Hall Effect Latch

Datasheet

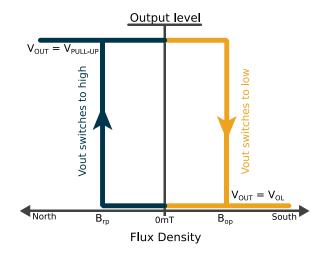
South active pole (IMC version)

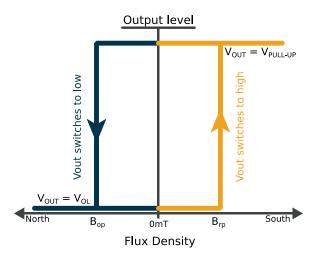
North active pole (IMC version)

South active pole

North active pole

South active pole

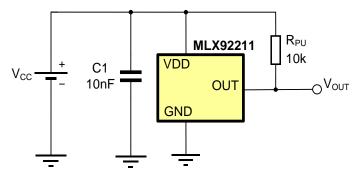

North active pole


3-Wire Hall Effect Latch

Datasheet

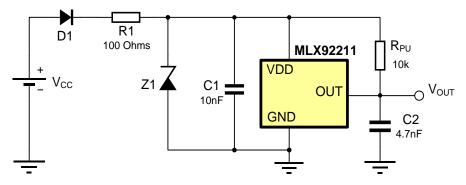
10 Magnetic Behaviour

South Active Pole


North Active Pole

Datasheet

11 Application Information


11.1 Typical Three-Wire Application Circuit

Notes:

- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- 2. The pull-up resistor R_{PU} value should be chosen in to limit the current through the output pin below the maximum allowed continuous current for the device.
- 3. A capacitor connected to the output is not needed, because the output slope is generated internally.

11.2 Automotive and Harsh, Noisy Environments Three-Wire Circuit

Notes:

- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- 2. The device could tolerate negative voltage down to -24V, so if negative transients over supply line $V_{PEAK} < -30V$ are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient.

When selecting the resistor R1, three points are important:

- the resistor has to limit $I_{\text{DD}}/I_{\text{DDREV}}$ to 50mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions (V_{R1}²/R1)
- the resulting device supply voltage V_{DD} has to be higher than V_{DD} min (V_{DD} = V_{CC} R1.I $_{DD}$)
- 3. The device could tolerate positive supply voltage up to +27V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with $V_{PEAK} > 32V$ are expected, usage a zener diode Z1 is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.

3-Wire Hall Effect Latch

Datasheet

12 Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20
 - Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

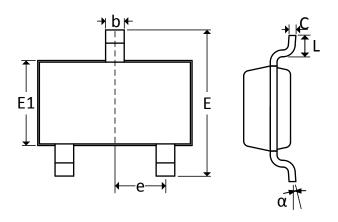
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

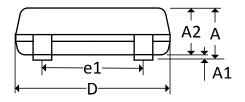
Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

13 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.


3-Wire Hall Effect Latch

Datasheet

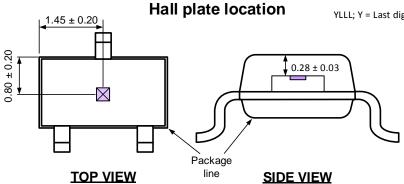

14 Package Information

14.1 SE (TSOT-3L) Package Information

Notes:

- 1. All dimensions are in millimeters
- 2. Outermost plastic extreme width does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.15mm per side.
- 3. Outermost plastic extreme length does not include mold flash or protrusions. Mold flash and protrusions shall not exceed 0.25mm per side.
- 4. The lead width dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.07mm total in excess of the lead width dimension at maximum material condition.
- 5. Dimension is the length of terminal for soldering to a substrate.
- 6. Formed lead shall be planar with respect to one another with 0.076mm at seating plane.

Marking:


Top side :

(BAA-0xx) => 31ww; ww = Assembly week

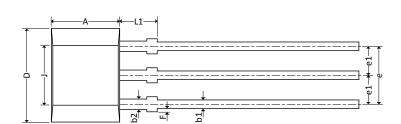
(BAA-2xx) => 33ww; ww = Assembly week

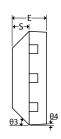
Bottom side:

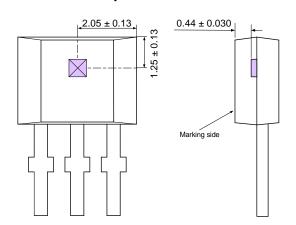
YLLL; Y = Last digit of year, LLL = Last 3 digits lot#

	Α	A1	A2	D	E	E1	L	b	С	е	e1	α
min	-	0.025	0.85	2.80	2.60	1.50	0.30	0.30	0.10	0.95	1.90	0°
max	1.00	0.10	0.90	3.00	3.00	1.70	0.50	0.45	0.20	BSC	BSC	8°

UA Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	Output	Open drain output
3	GND	Ground	Ground pin


3-Wire Hall Effect Latch


Datasheet


15 UA (TO92 - 3L) package information

Hall plate location

<u>Notes</u>

- 1. All dimensions are in millimeters
- 2. Package dimension exclusive molding flash
- 3. The end flash shall not exceed 0.127mm on the top side

Marking:

Line1:

31WW; WW = Calendar week

Line2:

YLLL; Y = Last digit year, LLL = last 3 digits Lot#

	Α	D	E	F	J	L	L1	S	b1	b2	С	е	e1
min	2.80	3.90	1.40	0.00	2.51	14.0	0.90	0.63	0.35	0.43	0.35	2.51	1.24
max	3.20	4.30	1.60	0.15	2.72	15.0	1.10	0.84	0.44	0.52	0.44	2.57	1.30

	θ1	θ2	θ3	θ4
Min	7°	7°	45°	7°
max	REF	REF	REF	REF

UA Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	OUT	Output	Open drain output

3-Wire Hall Effect Latch

Datasheet

16 Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

17 Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current.

Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities.

The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Melexis manufacturer:

Other Similar products are found below:

HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 ATS601LSGTN-LT-WU4-T TLE4917 50017859-003 TY13101 TLE4976L AH49FNTR-G1 SS85CA AH277AZ4-BG1 TLE49614MXTSA1 AH3377-P-B AH211Z4-AG1 AH3360-FT4-7 SS460S100SAMPLE 50065820-03 TLE4941PLUSCB AH374-P-A AH1806-P-A SS460P-T2 AH1913-W-7 SS413F TLE5046ICAKLRHALA1
TLE49421CHAMA2 TLE4941PLUSCXAMA1 AH1912-W-EVM AH1903-FA-EVM AH3774-W-EVM AH49FNTR-EVM MMC5633NJL
AH3360-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM KTH1601SU-ST3 MG910 MG910M MG911 MG610
MW921 TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E2210XUMA1 TLI4966GHTSA1
TLI4906KHTSA1