1 Features and Benefits

- Programmable parameters in application:
- Wide magnetic Latch range: $\pm 0.4 \mathrm{mT}$ to $\pm 80 \mathrm{mT}$
- Wide magnetic Switch range: $\pm 1.5 \mathrm{mT}$ to $\pm 66 \mathrm{mT}$
- Programmable Hysteresis: 1 mT to 36 mT
- Programmable Active Pole: North or South
- Programmable Output Behaviour: Direct or Inverted
- Increased Traceability: 32 bits ID on chip
- Built-in Negative TC coefficient: 0 to -2000 ppm/ ${ }^{\circ} \mathrm{C}$
- Wide operating voltage range: from 2.7 V to 24 V
- Reverse Supply Voltage Protection
- Output Current Limit with Auto-Shutoff
- Under-Voltage Lockout Protection
- Thermal Protection
- Lateral Sensitivity option
- Dual die option

2 Application Examples

- Automotive, Consumer and Industrial
- Solid-state switch
- 3-phase BLDC motor commutation
- Wiper motor
- Window lifter
- Sunroof/Tailgate opener
- Seat motor adjuster
- Electrical power steering
- Brake Light switch

3 Ordering Information

Product Code	Temperature Code	Package Code	Comment
MLX92232LSE-AAA-000-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch/Latch, $\mathrm{TC}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-000-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO92-3L)	3-wire Switch/Latch, TC=0 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LVA-AAA-000-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	VA (SIP 4L)	Dual Die 3-wire Switch/Latch, TC=0 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-001-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch/Latch, TC=-400 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-001-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO92-3L)	3-wire Switch/Latch, $\mathrm{TC}=-400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-002-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch/Latch, $\mathrm{TC}=-1100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-002-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO92-3L)	3-wire Switch/Latch, TC=-1100 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-003-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3-wire Switch/Latch, TC=-2000 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-003-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO92-3L)	3-wire Switch/Latch, TC=-2000 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-200-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3 -wire Switch/Latch IMC version, $\mathrm{TC}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-201-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3 -wire Switch/Latch IMC version, TC $=-400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-202-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	$3-$ wire Switch/Latch IMC version, $\mathrm{TC}=-1100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MLX92232LSE-AAA-203-RE	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	SE (TSOT-3L)	3 -wire Switch/Latch IMC version, TC=-2000 ppm/ ${ }^{\circ} \mathrm{C}$
MLX92232LUA-AAA-200-BU	$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$	UA (TO92-3L)	3 -wire Switch/Latch IMC version, $\mathrm{TC}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

MLX92232

End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet

4 Functional Diagram

5 General Description

The Melexis MLX92232 is the second generation programmable Hall-effect sensor designed in mixed signal CMOS technology. The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and an open-drain output driver, all in a single package.

With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7 V while being reverse voltage tolerant. In the event of a drop below the minimum supply voltage during operation, the under-voltage lock-out protection will automatically freeze the device, preventing the electrical perturbation to affect the magnetic measurement circuitry.

The open drain output is fully protected against short-circuit with a built-in current limit. An additional automatic output shut-off is activated in case of a prolonged short-circuit condition. A self-check is then periodically performed to switch back to normal operation if the short-circuit condition is released.

The on-chip thermal protection also switches off the output if the junction temperature increases above an abnormally high threshold. It will automatically recover once the temperature decreases below a safe value.

Furthermore the MLX92232 features a full set of programmable parameters that can be adjusted in the application in order to achieve the highest possible system accuracy by compensating the mechanical tolerances.

An Integrated Magnetic Concentrator option (IMC) has been added to sense the lateral field component. This is adding more flexibility in the module design. A dual die option is also available for applications that need a secondary output; these can be programmed independently from each other.

End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet

Table of Contents

1 Features and Benefits 1
2 Application Examples 1
3 Ordering Information 1
4 Functional Diagram 2
5 General Description 2
6 Glossary of Terms 4
7 Absolute Maximum Ratings 4
8 General Electrical Specifications 5
9 Magnetic Specifications 6
10 Programming parameters 7
10.1 Latch Sensor 9
10.2 Switch Sensor 10
11 Application Information 11
11.1 Typical Three-Wire Application Circuit 11
11.2 Automotive and Harsh, Noisy Environments Three-Wire Circuit 12
12 Standard information regarding manufacturability of Melexis products 13
13 ESD Precautions 13
14 Package Information 14
14.1 TSOT-3L (SE Package) 14
14.2 TO92-3L (UA Package) 16
14.3 VA Package 18
15 Contact 19
16 Disclaimer 20

End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet

6 Glossary of Terms

Tesla Units for the magnetic flux density, $1 \mathrm{mT}=10$ Gauss
TC
Temperature Coefficient in ppm/ ${ }^{\circ} \mathrm{C}$
IMC Integrated Magnetic Concentrator
POR Power on Reset

7 Absolute Maximum Ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Value	Units
Supply Voltage ${ }^{(1,2)}$	$V_{D D}$	+27	V
Supply Voltage (Load Dump) ${ }^{(1,4)}$	VDD	+32	\checkmark
Supply Current ${ }^{(1,2,3)}$	IdD	+20	mA
Supply Current ${ }^{(1,3,4)}$	Ido	+50	mA
Reverse Supply Voltage ${ }^{(1,2)}$	Vdorev	-24	V
Reverse Supply Voltage ${ }^{(1,4)}$	Vdorev	-30	V
Reverse Supply Current ${ }^{(1,2,5)}$	Iddrev	-20	mA
Reverse Supply Current ${ }^{(1,4,5)}$	Iddrev	-50	mA
Output Voltage ${ }^{(1,2)}$	Vout	+27	\checkmark
Output Current ${ }^{(1,2,5)}$	lout	+20	mA
Output Current ${ }^{(1,4,6)}$	lout	+75	mA
Reverse Output Voltage ${ }^{(1)}$	Voutrev	-0.5	V
Reverse Output Current ${ }^{(1,2)}$	loutrev	-100	mA
Maximum Junction Temperature ${ }^{(7)}$	TJ	+165	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ts	-55 to +165	${ }^{\circ} \mathrm{C}$
ESD Sensitivity - HBM ${ }^{(8)}$	-	4000	V
ESD Sensitivity - CDM ${ }^{(9)}$	-	1000	V
Magnetic Flux Density	B	Unlimited	mT

1 The maximum junction temperature should not be exceeded
2 For maximum 1 hour
3 Including current through protection device
4 For maximum 500 ms
5 Through protection device
6 For $V_{\text {OUT }} \leq 27 \mathrm{~V}$
7 For 1000 hours
8 Human Model according AEC-Q100-002 standard
9 Charged Device Model according AEC-Q100-011 standard

Datasheet

8 General Electrical Specifications

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
Supply Voltage	$V_{D D}$	Operating	2.7	-	24	V
Supply Current ${ }^{(2)}$	$I_{\text {D }}$		1.5	3.0	4.5	mA
Supply Current ${ }^{(3)}$	$I_{\text {DD }}$		3.0	6.0	9.0	mA
Reverse supply current	IdDREV	$V_{D D}=-16 \mathrm{~V}$	-1	-	-	mA
Output Saturation Voltage	V ${ }_{\text {DSON }}$	$\mathrm{V}_{\text {DD }}=3.5$ to 24 V , $\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}$	-	0.3	0.5	V
Output Leakage	loff	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=12 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Output Rise Time ${ }^{(4,8)}$ (R R_{Pu} dependent)	t_{R}	$\begin{aligned} & R_{P U}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.1	0.3	1	$\mu \mathrm{s}$
Output Fall Time ${ }^{(4,8)}$ (On-chip controlled)	t_{F}	$\begin{aligned} & R_{P U}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.1	0.3	1	$\mu \mathrm{s}$
Power-On Time ${ }^{(5,6,9)}$	ton	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{dV} \mathrm{VD} / \mathrm{dt}>2 \mathrm{~V} / \mathrm{us}$	-	40	70	$\mu \mathrm{s}$
Power-On Output State	-	$\mathrm{t}<\mathrm{t}_{\text {ON }}$		($\mathrm{VPU}^{\text {) }}$		-
Output Current Limit	ICL	$\mathrm{V}_{\text {DD }}=3.5$ to $24 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}$	25	40	70	mA
Output ON Time under Current Limit conditions ${ }^{(10)}$	$\mathrm{tclon}^{\text {ctin }}$	$\mathrm{V}_{\mathrm{PU}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{PU}}=100 \Omega$	150	240		$\mu \mathrm{s}$
Output OFF Time under Current Limit conditions ${ }^{(10)}$	$\mathrm{t}_{\text {cloff }}$	$\mathrm{V}_{\mathrm{PU}}=12 \mathrm{~V}, \mathrm{R}_{\text {PU }}=100 \Omega$	-	3.5	-	ms
Chopping Frequency	$\mathrm{f}_{\text {CHOP }}$		-	340	-	kHz
Refresh Period	$t_{\text {PER }}$		-	6	-	$\mu \mathrm{s}$
Output Jitter (p-p) ${ }^{(4)}$	$\mathrm{t}_{\text {JITTER }}$	Over 1000 successive switching events @10kHz triangle wave magnetic field, B $> \pm$ (Bopmax +20 mT)	-	± 3.2	-	$\mu \mathrm{s}$
Maximum Switching Frequency $(4,7)$	$\mathrm{f}_{\text {sw }}$	$B> \pm 3$ (BopmAx +1 mT), triangle wave magnetic field	30	65	-	kHz
Under-voltage Lockout Threshold	V UVL		-	-	2.7	V
Under-voltage Lockout Reaction time ${ }^{(4)}$	tuvi		-	1	-	$\mu \mathrm{s}$
Thermal Protection Threshold	$\mathrm{T}_{\text {PROT }}$	Junction temperature	-	190(11)	-	${ }^{\circ} \mathrm{C}$
Thermal Protection Release	TreL	Junction temperature	-	$180^{(11)}$	-	${ }^{\circ} \mathrm{C}$
SE Package Thermal Resistance	$\mathrm{R}_{\text {THJA }}$	Single layer PCB, JEDEC standard test boards		300		${ }^{\circ} \mathrm{C} / \mathrm{W}$
UA package Thermal Resistance	$\mathrm{R}_{\text {THJA }}$	Single layer PCB, JEDEC standard test boards		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$
VA package Thermal Resistance	$\mathrm{R}_{\text {THJA }}$	Single layer PCB, JEDEC standard test boards		105		${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet

9 Magnetic Specifications

DC Operating Parameters $V_{D D}=2.7 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
Latch Threshold Programming Range ${ }^{(2,3)}$	BLTH	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.4		± 80	mT
Switch Operating Point Programming Range ${ }^{(3,4)}$	Bop	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1.5		± 66	mT
Proportional Hysteresis Ratio Programming ${ }^{(5,6)}$	$\mathrm{HYS}_{\text {Ratio }}$	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.1		0.55	-
Fixed Hysteresis Value $0^{(7,8)}$	BfHYso		-	0	-	mT
Fixed Hysteresis Value $1^{(7,8)}$	BfhYs1		-	1	-	mT
Fixed Hysteresis Value $2^{(7,8)}$	BfyYS2		-	1.2	-	mT
Fixed Hysteresis Value $3^{(7,8)}$	BfHYS3		-	1.4	-	mT
Fixed Hysteresis Value $4^{(7,8)}$	BfHYS4		-	1.8	-	mT
Fixed Hysteresis Value $5^{(7,8)}$	BfHYs5		-	2.2	-	mT
Sensor Magnetic Offset ${ }^{(9)}$	Boffeset	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5		0.5	mT
	dFsEt	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	-0.9		0.9	mT
Temperature Coefficient ${ }^{(10)}$	TC	Latch with: No IMC: $B_{\text {op } / B_{R P}}=+-28 \mathrm{mT}$ $\mathrm{IMC}: \mathrm{Bop}_{\mathrm{op}} \mathrm{B}_{\mathrm{RP}}=+-12 \mathrm{mT}$		$\begin{gathered} 0 \\ -400 \\ -1100 \\ -2000 \end{gathered}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Factory Programmed Bop, Switch ${ }^{(11)}$	Bop	```VDD=12V, TA}=2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ , target 28mT```	26	28	30	mT
Factory Programmed BRP, Switch ${ }^{(11)}$	Brp	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, target 28 mT, HYS $_{\text {RATIO }}=0.25$	19	21	23	mT
Factory Programmed Bop, Latch ${ }^{(12)}$	Bop	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, target } \\ & 12 \mathrm{mT} \end{aligned}$	10	12	14	mT
Factory Programmed BRP, Latch ${ }^{(12)}$	Brp	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, target } \\ & -12 \mathrm{mT} \end{aligned}$	-14	-12	-10	mT

[^1]End of Line programmable 3-Wire Hall Effect Latch/Switch
INSPIRED ENGINEERING
Datasheet

10 Programming parameters

Parameter	Symbol	Comments	Value	Units
$\mathrm{B}_{\text {op }}$ programming resolution	Bopfine	Fine programming of the threshold $\mathrm{B}_{\text {op }}$ (switch) and $\mathrm{B}_{\text {Lтн }}$ (Latch)	7	Bit
Bop sub-range	Boprange	Selection of the appropriate switch sensor sub-range	2	Bit
BLTH sub-range	Boprange	Selection of the appropriate latch sensor sub-range	3	Bit
Programming hysteresis	Bhyst	Hysteresis can be fixed or proportional	4	Bit
Active Pole selection	Bpole	Part can be programmed for south or north magnetic pole active	1	Bit
Output polarity selection	Polout	Selects direct or inverted output polarity	1	Bit
Switch/Latch function selection		Selects Latch or Switch sensor function	1	Bit
Melexis programmed ID	ID	A unique fixed ID implemented for device traceability, no overwriting allowed.	32	Bit

South active pole (IMC version)

North active pole (IMC version)

North active pole

North active pole

End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet

North pole active (VA package)

North Pole active

End of Line programmable 3-Wire Hall Effect Latch/Switch Datasheet

10.2 Switch Sensor

Direct South Active Pole

Direct North Active Pole

Output level

Inverted South Active Pole

Inverted North Active Pole

End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet

11 Application Information

11.1 Typical Three-Wire Application Circuit

11.1.1 92232LSE-AAA-xxx, 92232LUA-AAA-xxx

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the $V_{D D}$ and ground pin.
2. The pull-up resistor $R_{\text {Pu }}$ value should be chosen in to limit the current through the output pin below the maximum allowed continuous current for the device.
3. A capacitor connected to the output is not needed, because the output slope is generated internally.
11.1.2 92232LVA-AAA-xxx

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the $V_{D D}$ and ground pin.
2. The pull-up resistors R R values should be chosen in to limit the current through the output pin below the maximum allowed continuous current for the device.
3. A capacitors connected to the outputs are not needed, because the output slope is generated internally.

11.2 Automotive and Harsh, Noisy Environments Three-Wire Circuit

11.2.1 92232LSE-AAA-xxx, 92232LUA-AAA-xxx

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
2. The device could tolerate negative voltage down to -24 V , so if negative transients over supply line $\mathrm{V}_{\text {pEAK }}<-30 \mathrm{~V}$ are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient.
When selecting the resistor R1, three points are important:

- the resistor has to limit $\mathrm{I}_{\text {DD }} / /_{\text {DDREV }}$ to 50 mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions ($\left.\mathrm{V}_{\mathrm{R} 1}{ }^{2} / \mathrm{R} 1\right)$
- the resulting device supply voltage $\mathrm{V}_{D D}$ has to be higher than $\mathrm{V}_{D D} \min \left(\mathrm{~V}_{D D}=\mathrm{V}_{C C}-\mathrm{R} 1 . \mathrm{I}_{D D}\right)$

3. The device could tolerate positive supply voltage up to +27 V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with $\mathrm{V}_{\text {PeAK }}>32 \mathrm{~V}$ are expected, usage a zener diode Z 1 is recommended. The R1- $\mathrm{Z1}$ network should be sized to limit the voltage over the device below the maximum allowed.

11.2.2 92232LVA-AAA-xxx

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
2. The device could tolerate negative voltage down to -24 V , so if negative transients over supply line $\mathrm{V}_{\text {PEAK }}<-30 \mathrm{~V}$ are expected, usage of the diode D1 is recommended. Otherwise only R1 is sufficient.
When selecting the resistor R1, three points are important:

- the resistor has to limit $\mathrm{IDO} / /_{\text {DDREV }}$ to 50 mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions ($\left.\mathrm{V}_{\mathrm{R} 1}{ }^{2} / \mathrm{R} 1\right)$
- the resulting device supply voltage $\mathrm{V}_{D D}$ has to be higher than $\mathrm{V}_{D D} \min \left(\mathrm{~V}_{D D}=\mathrm{V}_{C C}-\mathrm{R} 1 . \mathrm{I}_{\mathrm{DD}}\right)$

3. The device could tolerate positive supply voltage up to +27 V (until the maximum power dissipation is not exceeded), so if positive transients over supply line with $\mathrm{V}_{\text {PEAK }}>32 \mathrm{~V}$ are expected, usage a zener diode Z 1 is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.

End of Line programmable 3-Wire Hall Effect Latch/Switch
INSPIRED ENGINEERING
Datasheet

12 Standard information regarding manufacturability of Melexis products

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (SUurface Mount Devices)

- IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)

Wave Soldering SMD's (́ㅗurface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (SUrface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

13 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

MLX92232
End of Line programmable 3-Wire Hall Effect Latch/Switch

Datasheet

14 Package Information

14.1 TSOT-3L (SE Package)

14.1.1 TSOT-3L - Package dimensions

NOTE :

1. ALL DIMENSIONS IN MILLIMETERS (mm) UNLESS OTHERWISE STATED.
2. DIMENSION D DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS OF MAX 0.15 mm PER SIDE.
3. DIMENSION E DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS OF MAX 0.25 mm PER SIDE.
4. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION OF MAX 0.07 mm .
5. DIMENSION L IS THE LENGTH OF THE TERMINAL FOR SOLDERING TO A SUBTRATE.
6. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITH 0.076 mm SEATING PLANE.

14.1.2 TSOT-3L - Sensitive spot

End of Line programmable 3-Wire Hall Effect Latch/Switch
Datasheet
14.1.3 TSOT-3L - Package marking / Pin definition

Top

Bottom

Pin \#	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	Out	Open drain output pin
3	GND	Ground	Ground pin

End of Line programmable 3-Wire Hall Effect Latch/Switch
inspired engineering
Datasheet

14.2 TO92-3L (UA Package)

14.2.1 TO92-3L - Package dimensions

S		
Y		
M	MINIMUM	MAXIMUM
B		
O		3.10
A	2.90	4.20
D	4.00	1.60
E	1.40	0.15
F	0.00	2.72
J	2.51	15.00
L	14.00	1.10
L1	0.90	0.84
S	0.63	0.44
b1	0.35	0.52
b2	0.43	0.44
c	0.35	2.57
e	2.51	1.30
e1	1.24	

NOTES :

1. DIMENSIONS IN MILLIMETERS (mm) UNLESS NOTED OTHERWISE.
2. PACKAGE DIMENSIONS DO NOT INCLUDE MOLD FLASHES AND PROTRUSIONS
3. DIMENSION A AND D DO NOT INCLUDE MOLD GATE AND SIDE FLASH (PROTRUSION) of MAXIMUM 0.127 mm PER SIDE.
4. THE LEADS MAY BE SLIGHTLY DEFORMED DURING TRANSPORTATION IF PACKED IN BULK (BAG), AFFECTING e 1 DIMENSION. IT IS RECOMMENDED TO ORDER RADIAL TAPE (REEL OR AMMOPACK) IF SUCH DEFORMATION IS CRITICAL FOR THE LEAD FORMING PROCESS, EVEN IF MANUAL LOADING INTO THE TOOL IS FORESEEN.
14.2.2 TO92-3L - Sensitive spot

End of Line programmable 3-Wire Hall Effect Latch/Switch
14.2.3 TO92-3L - Package marking / Pin definition

Top

Fixed character

Pin \#	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	OUT	Out	Open drain output pin

14.3 VA Package

14.3.1 VA - Package dimensions

SYMBOLS	DIMENSIONS IN MILLIMETERS		
	MIN	NOM	MAX
A	3.30	3.38	3.46
A1	3.63	3.71	3.79
D	5.08	5.16	5.24
D1	5.33	5.38	5.43
E	1.10	---	1.20
J	4.10	4.30	4.50
J1	1.00 REF		
K	0.00	---	0.15
K1	0.25	0.30	0.35
L	17.5	18.0	18.5
L1	0.48	0.53	0.58
S	0.24	---	0.29
T	0.61	---	0.66
b1	0.35	---	0.48
b2	0.40	---	0.60
c	0.18	---	0.34
e	3.76	---	3.86
e1	1.22	1.27	1.32
e1	5° REF		
O2	45° REF		

Note:

1. DIMENSIONS "A" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS AND GATE BURRS.
2. DIMENSIONS "A1" DOES NOT INCLUDE GATE BURRS BUT INCLUDES MOLD FLASH AT BOTH ENDS.
3. MOLD GATE BURRS SHALL NOT EXCEED 0.15 mm MEASURED FROM EDGE OF MOLD FLASH (FLANGE).
4. DIMENSION "D1" INCLUDES MOLD FLASH AT BOTH ENDS.
5. LEAD PLATING; MATTE TIN PLATING THICKNESS 7.62 - 15.42 um.
6. THE LEADS MAY BE SLIGHTLY DEFORMED DURING TRANSPORTATION IF PACKED IN BULK (BAG), AFFECTING e1 DIMENSION. IT IS RECOMMENDED TO ORDER RADIAL TAPE (REEL OR AMMOPACK) IF SUCH DEFORMATION IS CRITICAL FOR THE LEAD FORMING PROCESS, EVEN IF MANUAL LOADING INTO THE TOOL IS FORESEEN.

14.3.2 VA - Sensitive Spot

End of Line programmable 3-Wire Hall Effect Latch/Switch

14.3.3 VA - Package marking / Pin definition

Pin \#	Name	Type	Function
1	OUT1	Out	Open drain output pin
2	VDD	Supply	Supply Voltage pin
3	GND	Ground	Ground pin
4	OUT2	Out	Open drain output pin

15 Contact

For the latest version of this document, go to our website at www.melexis.com.
For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +3213670495
	Email : sales_europe@melexis.com
Americas	Telephone: +16032232362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

MLX92232

End of Line programmable 3-Wire Hall Effect Latch/Switch
NSPIRED ENGINEERING

Datasheet

16 Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information.
Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
2. civil firearms, including spare parts or ammunition for such arms;
3. defense related products, or other material for military use or for law enforcement;
4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.
If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2020)

IATF 16949 and ISO 14001 Certified

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Melexis manufacturer:
Other Similar products are found below :
HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 ATS601LSGTN-LT-WU4-T TLE4917 50017859-003 TY13101 TLE4976L AH49FNTR-G1 SS85CA AH277AZ4-BG1 TLE49614MXTSA1 AH3377-P-B AH211Z4-AG1 AH3360-FT4-7 SS460S100SAMPLE 50065820-03 TLE4941PLUSCB AH374-P-A AH1806-P-A SS460P-T2 AH1913-W-7 SS413F TLE5046ICAKLRHALA1 TLE49421CHAMA2 TLE4941PLUSCXAMA1 AH1912-W-EVM AH1903-FA-EVM AH3774-W-EVM AH49FNTR-EVM MMC5633NJL AH3360-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM KTH1601SU-ST3 MG910 MG910M MG911 MG610 MW921 TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E2210XUMA1 TLI4966GHTSA1
TLI4906KHTSA1

[^0]: Typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12 \mathrm{~V}$
 Valid for 92232LSE-AAA-xxx and 92232LUA-AAA-xxx versions
 Valid for 92232LVA-AAA-xxx version
 Guaranteed by design and verified by characterization, not production tested
 The Power-On Time represents the time from reaching $V_{D D}=2.7 V$ to the first refresh of the output
 Power-On Slew Rate is not critical for the proper device start-up.
 Maximum switching frequency corresponds to the maximum frequency of the applied magnetic field which is detected without loss of pulses
 RPu and VPU are respectively the external pull-up resistor and pull-up power supply
 Activated output with 1 mT overdrive
 10 If the Output is in Current Limitation longer than tclon the Output is switched off in high-impedance state. The Output returns back in active state at next reaching of $B_{\text {op }}$ or after tcloff time interval
 $1 T_{\text {PROT }}$ and $T_{\text {REL }}$ are the corresponding junction temperature values

[^1]: 1 The typical values are defined at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$.
 2 For Latch sensor $B_{L T H}=\left(B_{O P}-B_{R P}\right) / 2$. The Latch programming step is typically between 0.7% and 1.5% of the programmed $B_{L T H}$ value for $\left|B_{L T H}\right| \geq 1.2 m T$ and 0.018 mT for $\left|B_{L T H}\right| \leq 1.2 \mathrm{mT}$.
 3 Guaranteed by design and verified by characterization. The programming ranges for BLTH and BOP include some margin for process deviations.
 4 For Switch sensor the $B_{O p}$ programming step is typically between 0.7% and 1.5% of the programmed $B_{o p}$ value for $\left|B_{O P}\right| \geq 4.8 \mathrm{mT}$ and 0.072 mT for $\left|B_{O P}\right| \leq 4.8 \mathrm{mT}$.
 5 For Switch sensor with proportional hysteresis $\mathrm{HYS}_{\text {RATIO }}=\mathrm{B}_{\text {HYS }} / \mathrm{B}_{\text {OP }}$. The $\mathrm{HYS}_{\text {RATIO }}$ programming step is 0.05 .
 6 The given min / \max limits are typical values.
 7 For Switch sensor with fixed hysteresis value
 8 Guaranteed by design and verified by characterization.
 9 For Latch sensor offset is defined as $B_{\text {OFFSET }}=\left(B_{\text {op }}+B_{R P}\right) / 2$
 10 The temperature Coefficient is calculated using following formula:
 $T C=\frac{B_{X P T A 2}-B_{X P T A 1}}{B_{X P T 25} *\left(T_{A 2}-T_{A 1}\right)} * 10^{6}, p p m /{ }^{\circ} \mathrm{C}$
 where:
 $T_{A 1}=-40^{\circ} \mathrm{C}, T_{A 2}=150^{\circ} \mathrm{C}, T_{25}=25^{\circ} \mathrm{C}$
 In case of magnetic Latch application: Bxpta1, BXPTA2 or Bxpt25 $=B_{\text {op }}-B_{R P}$ at $T_{A 1}, T_{A 2}$ or T_{25}
 In case of magnetic Switch application: BXPTA1, BXPTA2 or $B_{X P T 25}=B_{O P}$ or $B_{R P}$ at $T_{A 1}, T_{A 2}$ or T_{25}
 11 Valid for 92232Lxx-AAA-Oxx
 12 Valid for 92232Lxx-AAA-2xx

