1 Features and Benefits

Wide operating voltage range: from 3.3 V to 18 V
Less than $10 \mu \mathrm{~A}$ average supply current in μ-Power Mode

- Flexible magnetic thresholds and temperature coefficient
- Integrated self-diagnostic functions activating dedicated Safe Mode
- Reverse supply voltage protection
- Under-Voltage Reset protection
- Thermal protection
- Optional IMC integration for lateral sensing
\square Customer end-of-line programming
Wide programmable magnetic Latch/Switch range
\square Developed according to ISO26262-10, 9 as safety HW element out of context with ASIL-B level

2 Application Examples

- Automotive, Consumer and Industrial
- Brake light wake-up switch

E Electronic Steering Column Lock
\square Door latch system

- Seat positioning
- Sunroof/Tailgate opener

Transmission applications

- Electrical power steering

3 Ordering Information

Product Code	Temperature Code	Package Code	Option Code	Packing Form Code
MLX92292	L	SE	AAA-000	RE
MLX92292	L	UA	AAA-000	BU
MLX92292	L	SE	AAA-200	RE
MLX92292	L	DC	AAA-000	RE
MLX92292	L	SE	AAA-001	RE
MLX92291	L	SE	AAA-200	RE
MLX92291	L	SE	AAA-201	RE
MLX92291	L	SE	AAA-202	RE
MLX92291	L	SE	AAA-005	RE
MLX92291	L	SE	AAA-009	RE
MLX92291	L	SE	AAA-006	RE
MLX92291	L	SE	AAA-010	RE
MLX92291	L	SE	AAA-008	RE
MLX92291	L	SE	AAA-011	RE
MLX92291	L	SE	AAA-203	RE
MLX92291	L	SE	AAA-204	RE
MLX92271	L	SE	AAA-205	RE
MLX92291	L	SE	AAA-013	RE

Legend:

Temperature Code:
Package Code:

Option Code:

Packing Form: Ordering example:
$\mathrm{L}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$
SE = TSOT-23L
UA = UA (TO92-3L)
DC = SOIC-8 (dual die)
$000=>$ normal version (perpendicular sensitive)
$2 x x=>$ IMC version (lateral sensitive)
BU=Bulk | RE = Reel | CA = Ammopack | CR = Carton on Reel
MLX92292LSE-AAA-000-RE

4 Functional Diagram

5 General Description

Melexis has made a major advance in magnetic sensing technology that will have widespread implications for modern automobile design the MLX92292 - effectively represents a whole new way of sensing. This device delivers switch functions, but unlike existing products on the market it can determine the presence of magnetic fields that are lateral, not just orthogonal, to it. The uniqueness of this offering is taken further by the fact that the MLX92292 switch is supporting an ASIL B safety integrity level (in accordance with ISO 26262), with an array of built-in diagnostic mechanisms available.

Flexibility is a key attribute of the MLX92292. OEM customers can choose straightforward pre-programmed units, or alternatively they can benefit from the end-of-line (EoL) programming capacity. Through this each device may be configured (via its output pin) during the OEM production process, so system optimization is fully realized. The programming facility also enables setting of both magnetic operating points to small increments across a range spanning -90 mT to $+90 \mathrm{mT}(-40 \mathrm{mT}$ to +40 mT for lateral sensing versions).

The MLX92292 can be specified with standard orthogonal sensitivity or the lateral sensitivity option. The upshot of lateral sensitivity being that there is potential to replace multiple devices with a single surface mount unit, thereby saving valuable board space and lowering bill-of-materials costs. This stems directly from Melexis' proprietary Integrated Magnetic Concentrator (IMC ${ }^{\top M}$) technology, which enables substantial heightening of signal-to-noise ratios in magnetic field measurement. In addition, the capacity of this technology to sense laterally allows lower profile system implementations, as the magnet can move alongside the device rather than having to be above it.

Safeguarding the MLX92292 are reverse supply voltage, thermal, electro-static discharge (ESD) and overvoltage protections, plus Under-Voltage Reset features. With the capacity to deal with a 40V load dump, it can be connected directly to the vehicle battery. In order to achieve ASIL B compliance, numerous diagnostic/monitoring functions have been incorporated, including Hall sensor and analog frontend diagnostics. The device comprises a full set of programmable reporting features, giving it compatibility with any existing electronic control unit (ECU) interface. Only the normal application pins are required for this without need of additional diagnostic pins and thus simplifying the design concept considerably.

3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
inspired engineering

Table of Contents

1 Features and Benefits 1
2 Application Examples 1
3 Ordering Information 1
4 Functional Diagram 2
5 General Description 3
6 Absolute Maximum Ratings 6
7 General Electrical Specifications 7
8 Version specific parameters 9
8.1 MLX92292LSE-AAA-000-RE/MLX92292LUA-AAA-000-BU/MLX92292LDC-AAA-000-RE 9
8.2 MLX92292LSE-AAA-200-RE 10
8.3 MLX92292LSE-AAA-001-RE 11
8.4 MLX92291LSE-AAA-200-RE 11
8.5 MLX92291LSE-AAA-201-RE 11
8.6 MLX92291LSE-AAA-202-RE 12
8.7 MLX92291LSE-AAA-005-RE 12
8.8 MLX92291LSE-AAA-009-RE 12
8.9 MLX92291LSE-AAA-006-RE 13
8.10 MLX92291LSE-AAA-010-RE 13
8.11 MLX92291LSE-AAA-008-RE 13
8.12 MLX92291LSE-AAA-011-RE 14
8.13 MLX92291LSE-AAA-203-RE 14
8.14 MLX92291LSE-AAA-204-RE 14
8.15 MLX92271LSE-AAA-205-RE 15
8.16 MLX92291LSE-AAA-013-RE 15
9 Magnetic Behaviour 17
9.1 Latch Sensor 17
9.2 Unipolar Switch Sensor 17
10 Functional Safety Capability 19
10.1 Sensor Development 19
10.2 Technical Safety Requirements 19
10.2.1 TS_RQT_Mission 19
10.2.2 TS_RQT_Safe_Message 20
MLX92292/MLX922913-wire μ Power programmable ASIL B capable Hall Effect Latch/SwitchDatasheet
11 Application Information 21
11.1 Typical Automotive Application Circuit 21
11.2 Automotive and Harsh, Noisy Environments Application Circuit 21
12 Package Information 22
12.1 UA (T092-3L) Package Information 22
12.2 SE (TSOT-3L) Package Information 23
12.3 SOIC-8 Package Information 24
13 Standard information regarding manufacturability of Melexis products with different soldering processes 25
14 ESD Precautions 25
15 Contact 26
16 Disclaimer 26

3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch

6 Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply voltage ${ }^{(1,2)}$	VDD	+28V	V
Supply voltage (Load Dump) ${ }^{(1,4)}$	$V_{D D}$	+ 45V	V
Supply current ${ }^{(1,2,3)}$	ldo	+20	mA
Supply current $(1,3,4)$	ldo	+50	mA
Reverse supply voltage ${ }^{(1,2)}$	Vodrev	-24	V
Reverse supply voltage ${ }^{(1,4)}$	Vddrev	-30	V
Reverse supply current $(1,2,5)$	Iddrev	-20	mA
Reverse supply current $(1,4,5)$	Iddrev	-40	mA
Output voltage ${ }^{(1,2)}$	Vout	+28	V
Output current $(1,2,5)$	lout	+20	mA
Reverse output voltage ${ }^{(1)}$	Voutrev	-0.5	V
Reverse output current ${ }^{(1,2)}$	loutrev	-50	mA
Maximum junction temperature(6)	TJ	+165	${ }^{\circ} \mathrm{C}$
ESD sensitivity - HBM ${ }^{(7)}$	-	8	kV
ESD sensitivity - CDM ${ }^{(8)}$	-	1000	V

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[^0]
7 General Electrical Specifications

DC Operating Parameters $V_{D D}=3.3 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ${ }^{(1)}$	Max	Units
Under-Voltage Reset threshold	Vuve	$V_{D D}$ monitoring during Active phase	1.8	2.5	3	V
UVR reaction time ${ }^{(2)}$	tuvr	$V_{D D}$ monitoring during Active phase, $V_{D D}=V_{U V R}-0.3 \mathrm{~V}$	-	1	-	$\mu \mathrm{s}$
Minimum supply voltage for defined output state ${ }^{(2)}$	$V_{\text {DD1 }}$	RPU $=2.2 \mathrm{k} \Omega, \mathrm{V}_{\text {PU }}=5 \mathrm{~V}$	-	1	1.2	V
Output leakage ${ }^{(8)}$	loff	Vout $=18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 . .85^{\circ} \mathrm{C}$	-	0.1	1	$\mu \mathrm{A}$
Output leakage	loff	$V_{\text {Out }}=18 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
Output saturation voltage	Vol	Fast Mode, lol $=20 \mathrm{~mA}$	0.1	0.25	0.7	V
Output saturation voltage	VoL	μ-Power Mode, lol $=10 \mathrm{~mA}$	-	0.15	0.5	V
Output Rise Time ${ }^{(2,5)}$ (Rpu dependent)	t_{R}	$\begin{aligned} & R_{P U}=2.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.3	0.6	1	$\mu \mathrm{s}$
Output Fall Time ${ }^{(2,5)}$ (On-chip controlled)	$\mathrm{tF}_{\text {F }}$	$\begin{aligned} & R_{\text {PU }}=2.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PU}}=5 \mathrm{~V} \\ & \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF} \text { to } \mathrm{GND} \end{aligned}$	0.3	0.6	1	$\mu \mathrm{s}$
Power-On time ${ }^{(3,4)}$	ton	$V_{D D}=5 \mathrm{~V}, \mathrm{dV}$ Do/dt $>2 \mathrm{~V} / \mathrm{us}$	-	0.5	1	ms
Power-On state	-	Output state during ton	High			-
Output update period	Tupd	Fast Mode	-	40	45	$\mu \mathrm{s}$
Programmable operating (output update) period	Top	μ-Power Mode, typical range	$0.16{ }^{(1)}$	-	260(1)	ms
Operating period 1 (1st ref. value)	Top1	μ-Power Mode	196	222	246	ms
Operating period 2 (2nd ref. value)	Top2	μ-Power Mode	40	45	50	ms
Programmable diagnostic period in Fail Safe state	TDP	Fast Mode, typical range	$0.13{ }^{(1)}$	-	$260{ }^{(1)}$	ms
Programmable "Output Ticking" repetition period	Ttick	Equal to (multiple of) Top, typical range	$0.6{ }^{(1)}$	-	260 ${ }^{(1)}$	ms
Programmable "Output Ticking" duration	țİk	Typical range	4	-	128	$\mu \mathrm{s}$
Active phase duration, diagnostic On	tact_Don	μ-Power Mode, defined at lod $>0.7 \mathrm{~mA}$	-	40	-	$\mu \mathrm{s}$
Active phase duration, diagnostic Off	tact_Doff	μ-Power Mode, defined at $l_{\text {do }}>0.7 \mathrm{~mA}$	-	24	-	$\mu \mathrm{s}$
Tolerance of operating period ratio $t_{\text {Act }} / T_{\text {op }}$	Rtol	μ-Power Mode	-5	0	5	\%
Active phase supply current, diagnostic On (average value)	lddact_don	μ-Power Mode	1.8	2.4	2.9	mA
Active phase supply current, diagnostic Off (average value)	lddact_doff	μ-Power Mode	2.2	3	3.5	mA
Standby phase supply current ${ }^{(8)}$	Iddstby	$\mathrm{V}_{\mathrm{DD}} \leq 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 . .85^{\circ} \mathrm{C}$	-	6	9	$\mu \mathrm{A}$
Standby phase supply current	IdDStby	$V_{D D} \leq 16 \mathrm{~V}$	-	6	27	$\mu \mathrm{A}$
Average supply current ${ }^{(8,9)}$	Iddavg1	$V_{D D} \leq 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 . .85^{\circ} \mathrm{C}, \mathrm{TOP}=\mathrm{TOP}_{\text {P }}$	-	6.4	9.5	$\mu \mathrm{A}$
Average supply current ${ }^{(8,9)}$	Iddavg2	$V_{D D} \leq 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 . .85^{\circ} \mathrm{C}, \mathrm{T}_{\text {OP }}=\mathrm{T}_{\text {OP2 }}$	-	8.1	11.7	$\mu \mathrm{A}$
Step response time ${ }^{(2)}$	tresp	Fast Mode, $B_{o p}=1 \mathrm{mT}$, $B_{R P}=-1 \mathrm{mT}$, square wave magnetic field with B $> \pm 4 \mathrm{mT}$, $\mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {fall }} \leq 5 \mu \mathrm{~s}$	15	40	65	$\mu \mathrm{s}$
Signal bandwidth ${ }^{(2,6)}$	BW	Fast Mode, $B_{o P}=1 \mathrm{mT}, B_{R P}=-1 \mathrm{mT}$, sine wave magnetic field with amplitude 5mT	6	8	-	kHz
Peak supply current ${ }^{(2)}$	Iddpeak	For peak duration $\geq 5 \mu \mathrm{~s}$	-	2.9	3.6	mA
Fast Mode supply current	lddFast		2.2	2.9	3.5	mA
Fast Mode fail supply current	lddFall		0.1	0.3	0.6	mA

MLX92292/MLX92291
Melexis
3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
insprimod enginebring Datasheet

Reverse supply current	IDDREV	VDD $=-16 \mathrm{~V}$	-1	-	-	mA
Thermal Protection Activation	TPROT		-	$185(7)$	-	${ }^{\circ} \mathrm{C}$
Thermal Protection Release	TREL		-	$1755^{(7)}$	-	${ }^{\circ} \mathrm{C}$
UA package thermal resistance	RTHJA	Single layer PCB, JEDEC standard test boards, still air (LFPM=0)	-	200	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SE package thermal resistance	RTHJA	Single layer PCB, JEDEC standard test boards, still air (LFPM=0)	-	300	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1 Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12 \mathrm{~V}$
2 Guaranteed by design and verified by characterization, not production tested
3 The Power-On Time represents the time from reaching $V_{D D}=3.3 \mathrm{~V}$ to the first refresh of the output state.
4 Power-On Slew Rate is not critical for the proper device start-up.
$5 R_{P U}$ and $V_{P U}$ are respectively the external pull-up resistor and pull-up power supply
6 OUT switching should track magnetic field frequency without missing pulses
$7 T_{\text {PROT }}$ and $T_{\text {REL }}$ are the corresponding junction temperature values
8 Guaranteed by correlation with production test at $T_{A}=150^{\circ} \mathrm{C}$ and verified by characterization
9 Average current consumption for μ-Power Mode with diagnostic On
$\operatorname{Iddavg~}=\frac{\operatorname{Iddact~}^{*} \mathrm{t}_{\text {Act }} *\left(1+\mathrm{R}_{\text {tol }} / 100\right)+\mathrm{IdDStby} *\left(\mathrm{Top}-\mathrm{t}_{\text {Act }} *\left(1+\mathrm{R}_{\text {tol }} / 100\right)\right)}{\text { Top }}$,
Where $t_{a c t}$ and $T_{O P}$ are always typical values. The maximum $I_{D D A C T} I_{D D S T B Y}$ and $R_{T O L}$ spec values should be used for the maximum $I_{D D A V G}$ calculation.

Simplified supply current waveform in μ-Power mode

8 Version specific parameters

8.1 MLX92292LSE-AAA-000-RE/MLX92292LUA-AAA-000-BU/MLX92292LDC-AAA-000-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ(1)	Max	
Operating Point programming range ${ }^{(1)}$	Bop	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-90	-	90	mT
Release Point programming range ${ }^{(1)}$	$B_{\text {RP }}$	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-90	-	90	mT
Operating Point magnitude programming ${ }^{(2,3)}$	Bop		-	12	-	bit
Release Point magnitude programming ${ }^{(2,3)}$	Brp		-	12	-	bit
Operating Point polarity selection	Bop		-	1	-	bit
Release Point polarity selection	Brp		-	1	-	bit
Direct or inverted output selection	-		-	1	-	bit
Factory pre-programmed Operating Point, Latch	Bop	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, programming target 25 mT	22	25	28	mT
Factory pre-programmed Release Point, Latch	Brp	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, programming target -25 mT	-28	-25	-22	mT
Temperature Coefficient programming range $(4,5,6)$	TC	$V_{D D}=12 \mathrm{~V}$, Latch with $B o p=25 m T, B_{R P}=-25 m T$	-2400		0	ppm $/{ }^{\circ} \mathrm{C}$
Temperature Coefficient selection	TC		-	5	-	bit

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
No	TickMsg	45	-	128	45

${ }^{1}$ Guaranteed by correlation with production test at $B=25 m T$ and verified by characterization
${ }^{2}$ The programming step is $<0.5 \%$ of the programmed $B O P$ or $B R P$ value for $|B O P|$ or $|B R P| \geq 6 m T$ and $<0.02 m T$ for $|B O P|$ or $|B R P| \leq 6 m T$ at $T A=+25^{\circ} \mathrm{C}$
${ }^{3}$ Very low hysteresis magnitude $(B O P-B R P<1 m T)$ could lead to output toggling due to noise and mechanical looseness in the magnetic system.
${ }^{4}$ The Temperature Coefficient is calculated using following formula:
$T C=\frac{B_{X P T A 2}-B_{X P T A 1}}{B_{X P T A 1} *\left(T_{A 2}-T_{A 1}\right)} * 10^{6}, \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$T_{A 1}=25^{\circ} \mathrm{C}, T_{A 2}=150^{\circ} \mathrm{C}$,
In case of magnetic Latch application: $B_{X P T A 1}\left(B_{X P T A 2}\right)=B_{o \rho}-B_{R P}$ at $T_{A 1}\left(T_{A 2}\right)$ In case of magnetic Switch application: $B_{X P T A 1}\left(B_{X P T A 2}\right)=B_{O P}$ or $B_{R P}$ at $T_{A 1}\left(T_{A 2}\right)$
${ }^{5}$ The factory pre-programmed target TC value is Oppm/ ${ }^{\circ} \mathrm{C}$.
${ }^{6}$ TC target values
\# 390109229202

3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
Melexis
Datasheet

8.2 MLX92292LSE-AAA-200-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ(1)	Max	
Operating Point programming range ${ }^{(1)}$	Bop	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-40	-	40	mT
Release Point programming range ${ }^{(1)}$	BrP	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-40	-	40	mT
Operating Point magnitude programming ${ }^{(2,3)}$	Bop		-	12	-	bit
Release Point magnitude programming ${ }^{(2,3)}$	Brp		-	12	-	bit
Operating Point polarity selection	Bop		-	1	-	bit
Release Point polarity selection	Brp		-	1	-	bit
Direct or inverted output selection	-		-	1	-	bit
Factory pre-programmed Operating Point, Latch	Bop	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ programming target 20 mT	17	20	23	mT
Factory pre-programmed Release Point, Latch	BRP	$V_{D D}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ programming target -20 mT	-23	-20	-17	mT
Temperature Coefficient programming range ${ }^{(4,5,6)}$	TC	$\begin{aligned} & V_{D D}=12 \mathrm{~V}, \text { Latch with } \\ & B_{o P}=20 \mathrm{mT}, B_{R P}=-20 \mathrm{mT} \end{aligned}$	-2400		0	ppm/ ${ }^{\circ} \mathrm{C}$
Temperature Coefficient selection	TC		-	5	-	bit

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
Yes	TickMsg	45	-	128	45

[^1]3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
Melexis
Datasheet
8.3 MLX92292LSE-AAA-001-RE

DC Operating Parameters $V_{D D}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{R P}(\mathrm{mT})$			$\begin{aligned} & \text { TC } \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	8.7	11	13.5	7.2	9.3	11.7	$-1100^{(2)}$	Inverted switch	South pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8.6	10	11.4	7.2	8.5	9.8			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	6.7	8.6	10.7	5.6	7.4	9.4			

IMC	Safe	Operating message	Diagnostic period in Feriod, ms Safe state, ms	"Output Ticking"	"Output Ticking"
do	UNoDiag	0.16	-	-	-

8.4 MLX92291LSE-AAA-200-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{\text {RP }}$ (mT)			$\begin{aligned} & \mathrm{TC} \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	7.6	10.5	13.6	5.6	8.1	11	$-2200{ }^{(2)}$	Inverted switch	South pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	7	9	11	5.1	7	8.9			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	4.5	6.6	8.9	3.2	5.2	7.2			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
Yes	FlddMsg	-	2	-	-

8.5 MLX92291LSE-AAA-201-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT) ${ }^{(3)}$			Release Point $\mathrm{B}_{\mathrm{RP}}(\mathrm{mT})^{(3)}$			$\begin{aligned} & \mathrm{TC} \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	7.0	9.6	12.5	6.7	9.3	12.1	$-1100^{(2)}$	Inverted switch	South pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	7.0	8.8	10.7	6.7	8.5	10.4			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	5.4	7.7	10.2	5.2	7.4	9.9			

IMC	Safe	Operating	Diagnostic period in		
message	"Output Ticking"	"Output Ticking"			
period, ms	Fail Safe state, ms	duration, μ s	repetition period, ms		
Yes	uNoDiag	45	-	-	-

[^2]3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
Melexis
Datasheet
8.6 MLX92291LSE-AAA-202-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{R P}(m T)$			$\begin{aligned} & \text { TC } \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	3.8	5.9	8.2	2.8	4.8	7.0	$-1100^{(2)}$	Inverted switch	South pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.8	5.4	7.0	2.9	4.4	6.0			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	2.8	4.7	6.8	2.0	3.9	5.8			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
Yes	uNoDiag	10	-	-	-

8.7 MLX92291LSE-AAA-005-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{R P}(m T)$			$\begin{aligned} & \mathrm{TC} \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-8.5	-6.4	-4.4	-9.7	-7.5	-5.4	$-1100^{(2)}$	Direct switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-7.2	-6	-4.9	-8.2	-7	-5.8			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-7.2	-5.2	-3.3	-8.2	-6	-4			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
No	OutOnMsg	50	-	-	-

8.8 MLX92291LSE-AAA-009-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{\text {RP }}(\mathrm{mT})$			$\begin{aligned} & \text { TC } \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-6.4	-4.5	-2.6	-7.5	-5.5	-3.6	$0^{(2)}$	Inverted switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5.6	-4.5	-3.4	-6.6	-5.5	-4.4			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-6.6	-4.5	-2.5	-7.7	-5.5	-3.4			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
No	uNoDiag	10	-	-	-

[^3]3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
Melexis
Datasheet
8.9 MLX92291LSE-AAA-006-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point $B_{R P}$ (mT)			$\begin{aligned} & \mathrm{TC} \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-6.8	-4.8	-2.9	-7.9	-5.9	-3.9	$-1000^{(2)}$	Inverted switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5.6	-4.5	-3.4	-6.6	-5.5	-4.4			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-5.8	-3.9	-2.1	-6.8	-4.8	-2.9			

IMC	Safe	Operating message	Diagnostic period in Feriod, ms Safe state, ms	"Output Ticking" duration, μs	"Output Ticking" repetition period, ms
No	uNoDiag	60	-	-	-

8.10 MLX92291LSE-AAA-010-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT) ${ }^{(3)}$			Release Point $B_{R P}(\mathrm{mT})^{(3)}$			$\begin{aligned} & \text { TC } \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	5.2	6.9	8.6	3.1	4.6	6.2	$-1100^{(2)}$	Direct switch	South pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.2	6.4	7.6	3.2	4.3	5.4			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	3.8	5.5	7.4	2.2	3.7	5.3			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
No	TickMsg	10	-	128	10

8.11 MLX92291LSE-AAA-008-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT) ${ }^{(3)}$			Release Point$B_{R P}(m T)^{(3)}$			$\begin{aligned} & \text { TC } \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-21.4	-18.1	-15	-22.6	-19.1	-16	$-1100^{(2)}$	Direct switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-18.7	-16.85	-15.1	-19.8	-17.85	-16			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-18.1	-14.5	-11.4	-19.1	-15.4	-12.1			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
No	uNoDiag	44	-	-	-

[^4]3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
Melexis
Datasheet

8.12 MLX92291LSE-AAA-011-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop $(\mathrm{mT})^{(3)}$			Release Point $\mathrm{B}_{\mathrm{RP}}(\mathrm{mT})^{(3)}$			$\begin{aligned} & \text { TC } \\ & \text { (ppm } /{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-26.3	-22.3	-18.5	-28.7	-24.4	-20.4	$-999{ }^{(2)}$	Direct switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-23.3	-20.9	-18.6	-25.4	-22.9	-20.5			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-22.8	-18.3	-14.3	-24.8	-20.0	-15.8			

IMC	Safe	Operating message	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
No	TickOnMsg	0.86	-	128	1.72

8.13 MLX92291LSE-AAA-203-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT) ${ }^{(3)}$			Release Point$B_{\mathrm{RP}}(\mathrm{mT})^{(3)}$			$\begin{aligned} & \mathrm{TC} \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-5.9	-3.6	-1.3	-7.0	-4.6	-2.3	$-1100^{(2)}$	Direct switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-4.8	-3.33	-1.8	-5.9	-4.33	-2.8			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-5.1	-2.9	-0.7	-6.0	-3.7	-1.6			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
Yes	uNoDiag	44	-	-	-

8.14 MLX92291LSE-AAA-204-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT) ${ }^{(3)}$ (3)			Release Point$\mathrm{B}_{\mathrm{RP}}(\mathrm{mT})^{(3)}$			$\begin{aligned} & \mathrm{TC} \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-23.9	-19.9	-16.3	-24.4	-20.5	-16.8	$-1100^{(2)}$	Direct switch	North pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-20.9	-18.6	-16.4	-21.5	-19.1	-16.8			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-20.2	-16.0	-12.3	-20.7	-16.5	-12.7			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, μs	"Output Ticking" repetition period, ms
Yes	OutOnMsg	50	-	-	-

[^5]3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
Melexis
Datasheet

8.15 MLX92271LSE-AAA-205-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop (mT)			Release Point$B_{R P}(m T)$			$\begin{aligned} & \text { TC } \\ & \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Output behaviour	Active Pole
	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Typ ${ }^{(1)}$		
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-0.9	1.5	3.9	-3.9	-1.5	0.9	$0^{(2)}$	Latch	South pole
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.2	1.5	3.2	-3.2	-1.5	0.2			
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-0.9	1.5	4.0	-4.0	-1.5	0.9			

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, $\mu \mathrm{s}$	"Output Ticking" repetition period, ms
Yes	FNoDiag	-	-	-	-

8.16 MLX92291LSE-AAA-013-RE

DC Operating Parameters $\mathrm{V}_{\mathrm{DD}}=3.3$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Test Condition	Operating Point Bop $(\mathbf{m T})$			Release Point $B_{R P}(\mathbf{m T})$			TC $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	Output behaviour	Active Pole

IMC	Safe message	Operating period, ms	Diagnostic period in Fail Safe state, ms	"Output Ticking" duration, μ s	"Output Ticking" repetition period, ms
No	uNoDiag	1	-	-	-

[^6]

South active pole (IMC version)

North active pole (IMC version)

North active pole

North active pole

South active pole

South active pole

3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch
nspired engineering
Datasheet

9 Magnetic Behaviour

9.1 Latch Sensor

South Pole Active Latch

9.2 Unipolar Switch Sensor

Direct South Pole Active Switch

North Pole Active Latch

Output level

Inverted South Pole Active Switch

3-wire μ Power programmable ASIL B capable Hall Effect Latch/Switch Datasheet

Direct North Pole Active Switch
Inverted North Pole Active Switch

10 Functional Safety Capability

10.1 Sensor Development

MLX92292 is developed according to the ISO26262 requirements for ASIL B level.

10.2 Technical Safety Requirements

The main (mission) technical safety requirement for MLX92292 is the following:

10.2.1 TS_RQT_Mission

ASIL: B

MLX92292 shall not provide wrong information about the detection of presence of magnetic field done by comparing the magnetic field with magnetic thresholds Bop and Brp, each of them being within a Safe Tolerance Interval (STI) defined in $m T$ as $\pm a^{*} \operatorname{Bxp} \pm b$, where Bxp is the actual magnetic threshold (Bop or Brp) and a, b are parameters depending on sensitivity direction and application temperature range. The following table shows the values of a and b for normal and lateral sensitivity device (with IMC) at $25^{\circ} \mathrm{C}$ and over the full temperature range.

$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}$	
Normal (orthogonal)	$\mathrm{a}=0.18(18 \%)$	$\mathrm{a}=0.22(22 \%)$
sensitive device	$\mathrm{b}=1.4 \mathrm{mT}$	$\mathrm{b}=1.7 \mathrm{mT}$
Lateral sensitive device	$\mathrm{a}=0.18(18 \%)$	$\mathrm{a}=0.22(22 \%)$
(with IMC)	$\mathrm{b}=2 \mathrm{mT}$	$\mathrm{b}=2.4 \mathrm{mT}$

10.2.2 TS_RQT_Safe_Message

MLX92292 shall report detected failures that could prevent TS_RQT_Mission.
One of the following programmable Safe Message options can be chosen depending on the application:

Message Option	$\mathrm{B}<\mathrm{Brp}$ Diagnostic OK	$\begin{gathered} \text { B>Bop } \\ \text { Diagnostic OK } \end{gathered}$	All B values Diagnostic Failed	Diagnostic Coverage	Safe States
μ-Power Mode				SPFM	
TickMsg ${ }^{(1,2)}$	OUT = Off+Ticking	OUT = On+Ticking	OUT = Off	92\%	Bop, Brp within STI ; OUT = On/Off w/o ticking
TickOffMsg ${ }^{(1)}$	OUT = Off+Ticking	OUT = On	OUT = Off	82\%	$\begin{aligned} & \text { Bop, BRP within STI ; } \\ & \text { OUT = Off } \end{aligned}$
TickOnMsg ${ }^{(2)}$	OUT = Off	OUT = On+Ticking	OUT = On	55\%	Bop, BRP within STI ; OUT = On
OutOffMsg	OUT = Off	OUT $=0 \mathrm{n}$	OUT = Off	82\%	Bop, BRP within STI ; OUT = Off
OutOnMsg	OUT = Off	OUT = On	OUT = On	55\%	Bop, BRP within STI ; OUT = On
StbyX2Msg ${ }^{(3)}$	OUT = Off	OUT $=0 \mathrm{n}$	$\begin{aligned} & \text { OUT = Off } \\ & \text { Twice increased Top } \end{aligned}$	77\%	Bop, BRP within STI ; Twice increased Top
uNoDiag ${ }^{(4)}$	OUT = Off	OUT $=0 n$	-	No diagnostic	Bop, BRP within STI
Fast Mode					
FlddMsg	$\begin{aligned} & \text { OUT = Off, } \\ & I_{D D}=I_{D D F A S T} \end{aligned}$	$\begin{aligned} & \text { OUT = On, } \\ & I_{D D}=I_{D D F A S T} \end{aligned}$	$\begin{aligned} & \text { OUT = Off, } \\ & \text { IDD }^{2}=I_{\text {DDFALL }} \end{aligned}$	67\%	Bop, BRP within STI; OUT=Off \& IDD=IDDFALL
FNoDiag ${ }^{(4)}$	OUT = Off	OUT = On	-	No diagnostic	Bop, Brp within STI

Note (1) Off+Ticking signal means that the Off state duration lasts significantly longer than the On state duration.
Note (2) On+Ticking signal means that the On state duration lasts significantly longer than the Off state duration.
Note (3) If $T_{o p}$ is set <5ms then $T_{O P}$ increases less than twice in case of diagnostic fail.
Note (4) This message option does not offer integrated diagnostic.

11 Application Information

11.1 Typical Automotive Application Circuit

Notes:

1. For proper operation, a 10 nF to 100 nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
2. A capacitor connected to the output will improve the EMC performance

11.2 Automotive and Harsh, Noisy Environments Application Circuit

Notes:

1. For proper operation the bypass capacitor C 1 should be placed as close as possible to the VDD and GND pins.
2. If negative transients over supply line $\mathrm{V}_{\text {PEAK }}<-30 \mathrm{~V}$ are expected, usage of the diode D 1 is recommended. Otherwise only R 1 is sufficient. When selecting the resistor R1, three points are important:

- the resistor has to limit $I_{D D} / I_{\text {DDREV }}$ to 40 mA maximum
- the resistor has to withstand the power dissipated in both over voltage conditions ($V_{R 1}{ }^{2} / R 1$)
- the resulting device supply voltage $V_{D D}$ has to be higher than $V_{D D} \min \left(V_{D D}=V_{C C}-R 1 . I_{D D}\right)$

3. If positive transients over supply line with $V_{\text {PEAK }}>40 \mathrm{~V}$ are expected, usage of Zener diode $\mathrm{Z1}$ is recommended. The R1-Z1 network should be sized to limit the voltage over the device below the maximum allowed.

12 Package Information

12.1 UA (TO92-3L) Package Information

Hall plate location

Notes

1. All dimensions are in millimeters
2. Package dimension exclusive molding flash
3. The end flash shall not exceed 0.127 mm on the top side

Marking:
Line: 92WW; WW = calendar week
Line2: YLLL: Y = Last digit year, LLL= Last digits lot\#

	A	D	E	F	J	L	Li	S	bl	be	c	e	el
\min	2.90	4.00	1.40	0.00	2.51	14.0	0.90	0.63	0.35	0.43	0.35	2.51	1.24
\max	3.10	4.20	1.60	0.15	2.72	15.0	1.10	0.84	0.44	0.52	0.44	2.57	1.30

UA Pin No	Name	Type	Function
1	GD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	OUT	Output	Open drain output

Datasheet
12.2 SE (TSOT-3L) Package Information

	A	A1	A2	D	E	E1	L	b	c	e	e1	α
\min	-	0.025	0.85	2.80	2.60	1.50	0.30	0.30	0.10	0.95	1.90	0°
\max	1.00	0.10	0.90	3.00	3.00	1.70	0.50	0.45	0.20	BSC	BSC	8°

UA Pin No	Name	Type	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	Output	Open drain output
3	GND	Ground	Ground pin

12.3 SOIC-8 Package Information

Hall plate location

Notes:

1. All dimensions are in millimeters (mm), unless noted otherwise
2. Dimension D does not include mold flash, protrusion or gate burrs of Max 0.15 mm per side.
3. Dimension E does not include interleads flash or protrusion of $\max 0.25 \mathrm{~mm}$ per side.
4. Dimension b does not include dambar protrusion. Allowable protrusion shall be 0.080 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.

Marking:
Top side:
Line1: 90_90
Line2: LLL LLL; Last 3 digits of assembly lot\# from each die
Bottom side:
YYWW; YY = Calendar year, WW = Calendar week

	A	A1	A2	D	E	H	L	b	c	e	h	$\boldsymbol{\alpha}$
\min	1.52	0.10	1.37	4.80	3.81	5.80	0.41	0.35	0.19	1.27	0.25	0°
\max	1.73	0.25	1.57	4.98	3.99	6.20	1.27	0.49	0.25	BCS	0.50	8°
	Mx	Mx1	Mx2	My1	My2	Mz						
\min	1.15	0.55	0.55	0.29	0.29	0.44						
\max	1.25	0.65	0.65	0.39	0.39	0.54						

SOIC-8 Pin №	Name	Type	Function
1	GND2	Ground	Ground DIE 2
2	OUT2	Output	Output DIE 2
3,7	NC	NC	Not connected
4	OUT1	Output	Output DIE 1
5	GND1	Ground	Ground DIE 1
6	VDD1	Supply	Supply DIE 1
8	VDD2	VDD	Supply DIE 2

13 Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (SUurface Mount Devices)

- IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Sㄴurface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

14 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

15 Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +3213670495
	Email : sales_europe@melexis.com
Americas	Telephone: +16032232362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

16 Disclaimer

Abstract

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information. Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of: 1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons; 2. civil firearms, including spare parts or ammunition for such arms; 3. defense related products, or other material for military use or for law enforcement, 4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.

If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2020)
IATF 16949 and ISO 14001 Certified

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Melexis manufacturer:
Other Similar products are found below :
HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 ATS601LSGTN-LT-WU4-T TLE4917 50017859-003 TY13101 TLE4976L AH49FNTR-G1 SS85CA AH277AZ4-BG1 TLE49614MXTSA1 AH3377-P-B AH211Z4-AG1 AH3360-FT4-7 SS460S100SAMPLE 50065820-03 TLE4941PLUSCB AH374-P-A AH1806-P-A SS460P-T2 AH1913-W-7 SS413F TLE5046ICAKLRHALA1 TLE49421CHAMA2 TLE4941PLUSCXAMA1 AH1912-W-EVM AH1903-FA-EVM AH3774-W-EVM AH49FNTR-EVM MMC5633NJL AH3360-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM KTH1601SU-ST3 MG910 MG910M MG911 MG610 MW921 TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E2210XUMA1 TLI4966GHTSA1
TLI4906KHTSA1

[^0]: ${ }^{1}$ The maximum junction temperature should not be exceeded
 ${ }^{2}$ For maximum 1 hour
 ${ }^{3}$ Including current through protection device
 ${ }^{4}$ For maximum 500 ms
 ${ }^{5}$ Through protection device
 ${ }^{6}$ For 1000 hours.
 ${ }^{7}$ Human Body Model according AEC-Q100-002 standard
 ${ }^{8}$ Charged Device Model according AEC-Q100-011 standard

[^1]: ${ }^{1}$ Guaranteed by correlation with production test at $B=20 m T$ and verified by characterization
 ${ }^{2}$ The programming step is $<0.5 \%$ of the programmed $B O P$ or $B R P$ value for $|B O P|$ or $|B R P| \geq 6 m T$ and $<0.02 m T$ for $|B O P|$ or $|B R P| \leq 6 m T$ at $T A=+25^{\circ} \mathrm{C}$
 ${ }^{3}$ Very low hysteresis magnitude (BOP - BRP $<1 m T$) could lead to output toggling due to noise and mechanical looseness in the magnetic system.
 ${ }^{4}$ The Temperature Coefficient is calculated using following formula:
 $T C=\frac{B_{X P T A 2}-B_{X P T A 1}}{B_{X P T A 1} *\left(T_{A 2}-T_{A 1}\right)} * 10^{6}, \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
 where:
 $T_{A 1}=25^{\circ} \mathrm{C}, T_{A 2}=150^{\circ} \mathrm{C}$,
 In case of magnetic Latch application: $B_{X P T A 1}\left(B_{X P T A 2}\right)=B_{O P}-B_{R P}$ at $T_{A 1}\left(T_{A 2}\right)$ In case of magnetic Switch application: $B_{X P T A 1}\left(B_{X P T A 2}\right)=B_{o p}$ or $B_{R P}$ at $T_{A 1}\left(T_{A 2}\right)$
 ${ }^{5}$ The factory pre-programmed target TC value is Oppm/ ${ }^{\circ} \mathrm{C}$.
 ${ }^{6}$ TC target values

[^2]: ${ }^{1}$ Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12 \mathrm{~V}$. Melexis production testing is limited to version specific parameters only.
 ${ }^{2}$ Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10
 ${ }^{3}$ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations
 \# 390109229202
 Page 11 of 26
 Datasheet
 Rev. 012

[^3]: ${ }^{1}$ Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12 \mathrm{~V}$. Melexis production testing is limited to version specific parameters only.
 ${ }^{2}$ Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10

[^4]: ${ }^{1}$ Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12$. Melexis production testing is limited to version specific parameters only.
 ${ }^{2}$ Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10
 ${ }^{3}$ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations

[^5]: ${ }^{1}$ Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12$. Melexis production testing is limited to version specific parameters only.
 ${ }^{2}$ Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10
 ${ }^{3}$ Final magnetic parameters will be covered in the PPAP documentation set, the table below is based on theoretical calculations

[^6]: ${ }^{1}$ Unless otherwise specified the typical values are defined at $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{D D}=12$. Melexis production testing is limited to version specific parameters only.
 ${ }^{2}$ Typical TC programmed. The Temperature Coefficient is calculated using formula from page 9/10
 ${ }^{3}$ Table " $T_{A}=105^{\circ} \mathrm{C}$ " is based on theoretical calculations only, not production tested.
 \# $390109229202 \quad$ Page 15 of 26
 Datasheet
 Rev. 012

