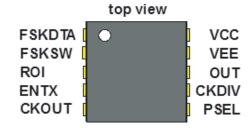


433MHz

FSK/ASK Transmitter


Features and Benefits

- Fully integrated PLL-stabilized VCO
- Frequency range from 380 MHz to 450 MHz
- Single-ended RF output
- FSK through crystal pulling allows modulation from DC to 40 kbit/s
- High FSK deviation possible for wideband data transmission
- ASK achieved by on/off keying of internal
- power amplifier up to 40 kbit/s
- Wide power supply range from 1.95V to 5.5V
- Very low standby current
- Microcontroller clock output
- On-chip low voltage detector
- High over-all frequency accuracy
- FSK deviation and center frequency
- independently adjustable
- Adjustable output power range from
- -12 dBm to +10 dBm
- Adjustable current consumption from
- 3.8 mA to 11.0 mA
- Conforms to EN 300 220 and similar standards
- 10-pin quad flat no lead (QFN) package

Application Examples

- Tire Pressure Monitoring System (TPMS)
- Remote Keyless Entry (RKE)
- Automatic Meter Reading (AMR)
- Alarm and security systems
- Garage door openers
- Home and building automation
- Low-power telemetry
- Wireless access control

Pin Description

Ordering information

Product Code	Temperature Code	Package Code	Option Code	Packing Form Code
TH72016	K	LD	CAA-000	RE
TH72016	K	LD	CAA-000	TU

Legend:

Temperature Code: K for Temperature Range -40°C to 125°C

Package Code: LD for QFN double
Packing Form: RE for Reel, TU for Tube
Ordering example: TH72016KLD-CAA-000-TU

General Description

The TH72016 FSK/ASK transmitter IC is designed for applications in the European 433 MHz industrial-scientific-medical (ISM) band, according to the EN 300 220 telecommunications standard; but it can also be used in other countries with similar standards, e.g. FCC part 15.231.

The transmitter's carrier frequency f_c is determined by the frequency of the reference crystal f_{ref} . The integrated PLL synthesizer ensures that carrier frequencies, ranging from 380 MHz to 450 MHz, can be achieved. This is done by using a crystal with a reference frequency according to: $f_{ref} = f_c/N$, where N = 32 is the PLL feedback divider ratio.

A clock signal with selectable frequency is provided. It can be used to drive a microcontroller.

433MHz FSK/ASK Transmitter

Contents

Features and Benefits	1
Application Examples	1
Pin Description	1
Ordering information	1
General Description	1
1. Theory of Operation	4
1.1. General	4
1.2. Block Diagram	4
2. Functional Description	4
2.1. Crystal Oscillator	4
2.2. FSK Modulation	5
2.3. Crystal Pulling	5
2.4. ASK Modulation	6
2.5. Output Power Selection	6
2.6. Lock Detection	6
2.7. Low Voltage Detection	6
2.8. Mode Control Logic	7
2.9. Clock Output	7
2.10. Timing Diagrams	7
3. Pin Definition and Description	8
4. Electrical Characteristics	9
4.1. Absolute Maximum Ratings	9
4.2. Normal Operating Conditions	9
4.3. Crystal Parameters	9
4.4. DC Characteristics	10
4.5. AC Characteristics	11
4.6. Output Power Steps – FSK Mode	12
4.7. Output Power Steps – ASK Mode	
5. Test Circuit	13
5.1. Test circuit component list to Fig. 6	
6. Package Description	14

Melexis
INSPIRED ENGINEERING

FSK/ASK Transmitter	ISPIRED ENGINEER
6.1. Soldering Information	14
6.2. Recommended PCB Footprints	14
7. Standard information regarding manufacturability of Melexis products with different soldering processes	
8. ESD Precautions	15
9. Contact	16
10. Disclaimer	16

1. Theory of Operation

1.1. General

As depicted in Fig.1, the TH72016 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO's output signal feeds the power amplifier (PA). The RF signal power P_{out} can be adjusted in four steps from $P_{out} = -12$ dBm to +10 dBm, either by changing the value of resistor RPS or by varying the voltage V_{PS} at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna or to be matched to a 500hm load. Bandgap biasing ensures stable operation of the IC at a power supply range of 1.95 V to 5.5 V.

1.2. Block Diagram

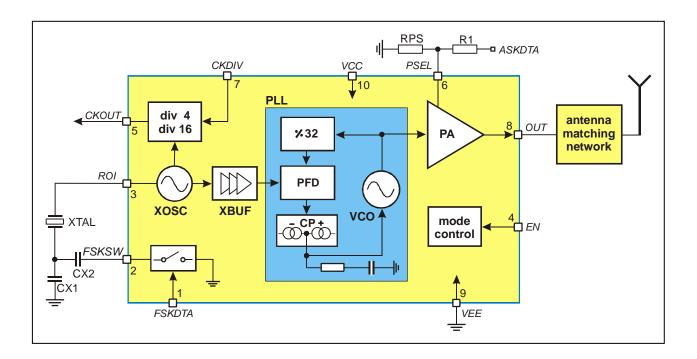
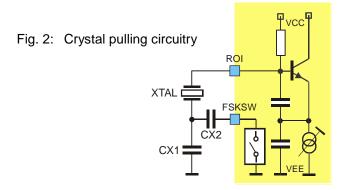


Fig. 1: Block diagram with external components

2. Functional Description

2.1. Crystal Oscillator


A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about 18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time.

2.2. FSK Modulation

FSK modulation can be achieved by pulling the crystal oscillator frequency. A CMOS-compatible data stream applied at the pin FSKDTA digitally modulates the XOSC via an integrated NMOS switch. Two external pulling capacitors CX1 and CX2 allow the FSK deviation Δf and the center frequency f_c to be adjusted independently. At FSKDTA = 0, CX2 is connected in parallel to CX1 leading to the low-frequency component of the FSK spectrum (f_{min}); while at FSKDTA = 1, CX2 is deactivated and the XOSC is set to its high frequency f_{max} .

An external reference signal can be directly AC-coupled to the reference oscillator input pin ROI. Then the transmitter is used without a crystal. Now the reference signal sets the carrier frequency and may also contain the FSK (or FM) modulation.

FSKDTA	Description
0	f_{min} = f_c - Δf (FSK switch is closed)
1	$f_{max} = f_c + \Delta f$ (FSK switch is open)

2.3. Crystal Pulling

A crystal is tuned by the manufacturer to the required oscillation frequency f_0 at a given load capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CL_{eff} seen by the crystal.

Figure 3 shows the oscillation frequency of a crystal as a function of the effective load capacitance. This capacitance changes in accordance with the logic level of FSKDTA around the specified load capacitance. The figure illustrates the relationship between the external pulling capacitors and the frequency deviation.

It can also be seen that the pulling sensitivity increases with the reduction of CL. Therefore, applications with a high frequency deviation require a low load capacitance. For narrow band FSK applications, a higher load capacitance could be chosen in order to reduce the frequency drift caused by the tolerances of the chip and the external pulling capacitors.

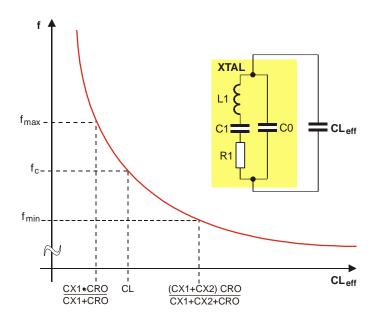


Fig. 3: Crystal pulling characteristic

For ASK applications CX2 can be omitted. Then CX1 has to be adjusted for center frequency.

2.4. ASK Modulation

The TH72016 can be ASK-modulated by applying data directly at pin PSEL. This turns the PA on and off which leads to an ASK signal at the output.

2.5. Output Power Selection

The transmitter is provided with an output power selection feature. There are four predefined output power steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the corresponding power levels are selected to cover a wide spectrum of different applications.

The implementation of the output power control logic is shown in figure 4. There are two matched current sources with an amount of about 8 µA. One current source is directly applied to the PSEL pin. The other current source is used for the generation of reference voltages with a resistor ladder. These reference voltages are defining the thresholds between the power steps. The four comparators deliver thermometer-coded control depending on the voltage level at the pin PSEL. In order to have a certain amount of ripple tolerance in a noisy environment the comparators are provided with a little hysteresis of about 20 mV. With these control signals, weighted current sources of the power amplifier are switched on or off to set the desired output power level (Digitally Controlled Current Source). The LOCK signal and the output of the low voltage detector are gating this current source.

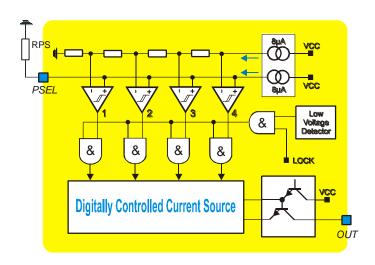


Fig. 4: Block diagram of output power control circuitry

There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL, then this voltage directly selects the desired output power step. This kind of power selection can be used if the transmission power must be changed during operation. For a fixed-power application a resistor can be used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixed-power applications at the highest power step this resistor can be omitted. The pin PSEL is in a high impedance state during the "TX standby" mode.

2.6. Lock Detection

The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted emission of the transmitter if the PLL is unlocked.

2.7. Low Voltage Detection

The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the transmitter if the supply voltage is too low.

2.8. Mode Control Logic

The mode control logic allows two different modes of operation as listed in the following table. The mode control pin EN is pulled-down internally. This guarantees that the whole circuit is shut down if this pin is left floating.

EN	Mode	Description
0	TX standby	TX disabled
1	TX active CKOUT active	TX / CKOUT enabled

2.9. Clock Output

The clock output CKOUT is CMOS-compatible and can be used to drive a microcontroller. The frequency of the clock can be changed by the clock divider control signal CKDIV, that can be selected according to the following table. A capacitor at pin CKOUT can be used to control the clock voltage swing and the spurious emission.

CKDIV	Clock divider ratio	Clock frequency / fc=433.92MHz
0	4	3.39MHz
1	16	848kHz

2.10. Timing Diagrams

After enabling the transmitter by the EN signal, the power amplifier remains inactive for the time t_{on} , the transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration t_{on} . After successful PLL lock, the LOCK signal turns on the power amplifier, and then the RF carrier can be FSK or ASK modulated.

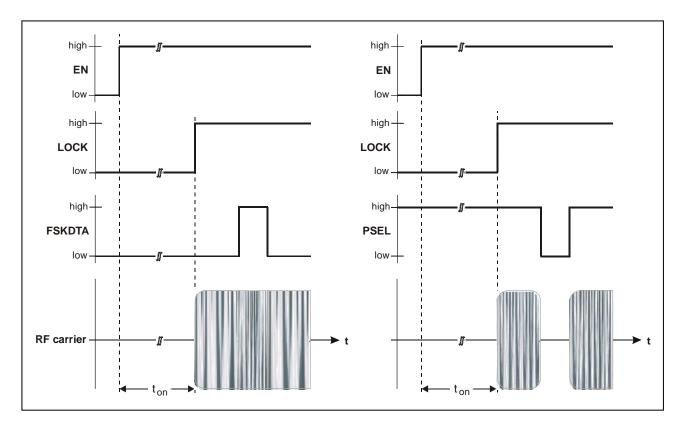


Fig. 5: Timing diagrams for FSK and ASK modulation

3. Pin Definition and Description

Pin No.	Name	I/O Type	Functional Schematic	Description
1	FSKDTA	input	FSKDTA 1.5kΩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FSK data input, CMOS compatible with internal pull-up circuit TX standby: no pull-up TX active: pull-up
2	FSKSW	analog I/O	FSKSW PVCC	XOSC FSK pulling pin, MOS switch
3	ROI	analog I/O	3 36p VEE	XOSC connection to XTAL, Colpitts type crystal oscillator
4	EN	input	1.5kΩ VCC VCC VCC VCC VCC VCC VCC VCC VCC VC	mode control input, CMOS-compatible with internal pull-down circuit
5	CKOUT	output	CKOUT 400Ω 1	clock output, CMOS-compatible
6	PSEL	analog I/O	PSEL 1.5kΩ 8μΑ 6	power select input, high- impedance comparator logic TX standby: $I_{PSEL} = 0$ TX active: $I_{PSEL} = 8\mu A$
7	CKDIV	input	CKDIV 1.5kΩ 0: ENTX=0 0: ENTX=1	clock divider control input, CMOS compatible with internal pull-down circuit TX standby: no pull-down TX active: pull-down
8	OUT	output	OUT VCC 8	power amplifier output, open collector
9	VEE	ground	_	negative power supply
10	VCC	supply		positive power supply

4. Electrical Characteristics

4.1. Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V_{CC}		0	7.0	V
Input voltage	V _{IN}		-0.3	V _{cc} +0.3	V
Storage temperature	T _{STG}		-65	150	°C
Junction temperature	T _J			150	°C
Thermal Resistance	R _{thJA}			49	K/W
Power dissipation	P _{diss}			0.12	W
Electrostatic discharge	V _{ESD}	human body model (HBM) according to CDF-AEC-Q100- 002	±2.0		kV

4.2. Normal Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	V _{cc}		1.95	5.5	V
Operating temperature	T _A		-40	125	°C
Input low voltage CMOS	V _{IL}	EN, FSKDTA		0.3*V _{cc}	V
Input high voltage CMOS	V _{IH}	EN, FSKDTA	0.7*V _{cc}		V
XOSC frequency	f_{ref}	set by the crystal	11.9	14	MHz
VCO frequency	f _c	$f_c = 32 \bullet f_{ref}$	380	450	MHz
	r.	CKDIV=0, $f_{CLK} = f_{ref}/4$	3	3.5	MHz
Clock frequency	f _{CLK}	CKDIV=1, $f_{CLK} = f_{ref} / 16$	750	875	kHz
FSK deviation	Δf	depending on CX1, CX2 and crystal parameters	±2.5	±40	kHz
FSK Data rate	R	NRZ		40	kbit/s
ASK Data rate	R	NRZ		40	kbit/s

4.3. Crystal Parameters

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	f_0	fundamental mode, AT	11.9	14	MHz
Load capacitance	C _L		10	15	pF
Static capacitance	C ₀			7	pF
Series resistance	R ₁			70	Ω
Spurious response	a _{spur}	only required for FSK		-10	dB

433MHz

FSK/ASK Transmitter

4.4. DC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 °C and VCC = 3 V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating Currents						
Standby current		EN=0, T _A =85°C		0.2	200	nA
Standby current	I _{SBY}	EN=0, T _A =125°C			4	μΑ
Supply current in power step 0	I _{cco}	EN=1	1.5	2.9	5.0	mA
Supply current in power step 1	I _{CC1}	EN=1	2.1	3.8	6.0	mA
Supply current in power step 2	I _{CC2}	EN=1	3.0	5.0	7.5	mA
Supply current in power step 3	I _{CC3}	EN=1	4.5	6.9	9.5	mA
Supply current in power step 4	I _{CC4}	EN=1	7.3	11.0	14.5	mA
Digital Pin Characteristics						
Input low voltage CMOS	V _{IL}	EN, FSKDTA	-0.3		0.3*V _{cc}	V
Input high voltage CMOS	V _{IH}	EN, FSKDTA	0.7*V _{CC}		V _{CC} +0.3	V
Pull down current, EN	I _{PDEN}	EN=1	0.2	4.0	40	μΑ
Low level input current, EN	I _{INLEN}	EN=0			0.02	μΑ
High level input current, FSKDTA	I _{INHDTA}	FSKDTA=1			0.02	μΑ
Pull up current FSKDTA active mode	I _{PUDTAa}	FSKDTA=0, EN=1	0.1	1.5	12	μΑ
Pull up current FSK standby mode	I _{PUDTAs}	FSKDTA=0, EN=0			0.02	μΑ
Low level input current CKDIV	I _{INLCKDIV}	CKDIV=0			0.02	μΑ
Pull-down current CKDIV active mode	I _{PDCKDIVa}	CKDIV=1, EN=1	0.1	1.5	12	μΑ
Pull-down current CKDIV standby mode	I _{PDCKDIVs}	CKDIV=1, EN=0			0.02	μΑ
FSK Switch Resistance						
MOS switch On resistance	R _{ON}	FSKDTA=0, EN=1		20	70	Ω
MOS switch Off resistance	R _{OFF}	FSKDTA=1, EN=1	1			МΩ
Power Select Characteristics			1			
Power select current	I _{PSEL}	EN=1	7.0	8.6	9.9	μΑ
Power select voltage step 0	V _{PS0}	EN=1			0.035	V
Power select voltage step 1	V _{PS1}	EN=1	0.14		0.24	V
Power select voltage step 2	V _{PS2}	EN=1	0.37		0.60	V
Power select voltage step 3	V _{PS3}	EN=1	0.78		1.29	V
Power select voltage step 4	V _{PS4}	EN=1	1.55			V
Low Voltage Detection Character						
Low voltage detect threshold	V _{LVD}	EN=1	1.75	1.85	1.95	V

433MHz

FSK/ASK Transmitter

4.5. AC Characteristics

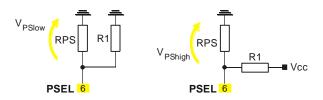
all parameters under normal operating conditions, unless otherwise stated;

typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 6, fc = 433.92 MHz

Parameter	Symbol	Condition	Min	Тур	Max	Unit
CW Spectrum Characteristics						
Output power in step 0 (Isolation in off-state)	P _{off}	EN=1			-70	dBm
Output power in step 1	P ₁	EN=1	-13	-12	-10 ¹⁾	dBm
Output power in step 2	P ₂	EN=1	-3.5	-3	-1.5 ¹⁾	dBm
Output power in step 3	P ₃	EN=1	2	3	4.5 ¹⁾	dBm
Output power in step 4	P ₄	EN=1	4.5	8	10 ¹⁾	dBm
Phase noise	L(f _m)	@ 200kHz offset		-88	-83	dBc/Hz
Spurious emissions according to EN 300 220-1 (2000.09) table 13	P _{spur}	47MHz< f <74MHz 87.5MHz< f <118MHz 174MHz< f <230MHz 470MHz< f <862MHz B=100kHz			-54	dBm
		f < 1GHz, B=100kHz			-36	dBm
		f > 1GHz, B=1MHz			-30	dBm
Clock output Characteristics						
Output low voltage CMOS	V _{OL}	depending on capacitor			0.3*V _{cc}	V
Output high voltage CMOS	V _{OH}	CCK and CKDIV	0.7*V _{CC}			V
Start-up Parameters						
Start-up time	t _{on}	from standby to transmit mode		0.8	1.2	ms
Frequency Stability						
Frequency stability vs. supply voltage	df _{vcc}				±3	ppm
Frequency stability vs. temperature	df _{TA}	crystal at constant temperature			±10	ppm
Frequency stability vs. variation range of C_{RO}	df _{CRO}				±20	ppm

¹⁾ output matching network tuned for 5V supply

4.6. Output Power Steps – FSK Mode


Power step	0	1	2	3	4
RPS / k??	< 3	22	56	120	not connected

4.7. Output Power Steps – ASK Mode

typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 6

Power step	1	2	3	4
RPS / k??	2.4	2.8	3.5	not connected
R1 / k ?	36	14	7	0

 V_{PSlow} = voltage across RPS if ASK_DTA at 0V V_{PShigh} = voltage across RPS if ASK_DTA at Vcc

If the transmitter is operated at any supply voltage V_{cc} , the values for R1 and RPS can be calculated as follows:

$$R_{1} = \frac{V_{CC} \cdot V_{PSlow}}{I_{PSEL} \cdot V_{PShigh}}$$

$$R_{PS} = R_1 \frac{V_{PShigh}}{V_{CC} - V_{PShigh}}$$

5. Test Circuit

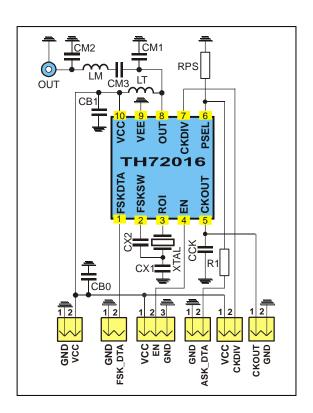


Fig. 6: Test circuit for FSK and ASK with 50 Ω matching network

5.1. Test circuit component list to Fig. 6

Part	Size	Value @ 433.92 MHz	Tolerance	Description		
CM1	0805	5.6pF	±5%	impedance matching capacitor		
CM2	0805	10 pF	±5%	impedance matching capacitor		
CM3	0805	82 pF	±5%	impedance matching capacitor		
LM	0805	33 nH	±5%	impedance matching inductor, note 2		
LT	0805	33 nH	±5%	output tank inductor, note 2		
CX1_FSK	0805	10 pF	±5%	XOSC FSK capacitor ($\Delta f = \pm 20 \text{ kHz}$), note 1		
CX1_ASK	0805	18 pF	±5%	XOSC ASK capacitor, trimmed to f _C , note 1		
CX2	0805	27 pF	±5%	XOSC capacitor ($\Delta f = \pm 20 \text{ kHz}$), note 1 only needed for FSK		
ССК	0805	18 pF / 180 pF	±5%	clock spur suppression capacitor, CKDIV 0 / 1		
RPS	0805	see section 4.6	±5%	FSK or CW mode power-select resistor		
R1	0805	see section 4.7	±5%	ASK power-select resistor, not used at FSK		
CB0	1206	220 nF	±20%	de-coupling capacitor		
CB1	0805	330 pF	±10%	de-coupling capacitor		
XTAL	SMD 6x3.5	13.56000MHz	±30ppm cal. ±30ppm temp.	fundamental wave crystal, CL = 10 pF, C0, max = 5 pF, R1 = 50 Ω		

Note 1: value depending on crystal parameters

Note 2: for high-power applications high-Q wire-wound inductors should be used

REVISION 010 - JUNE 14, 2017

3901072016

6. Package Description

The device TH72016 is RoHS compliant.

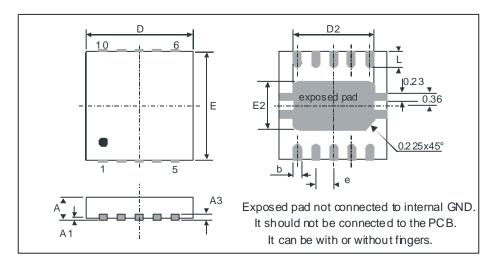


Fig. 7: 10L QFN 3x3 Dual

all D	all Dimensions in mm									
	D	E	D2	E2	Α	A1	А3	L	е	b
min	2.85	2.85	2.23	1.49	0.80	0	0.20	0.3	0.50	0.18
max	3.15	3.15	2.48	1.74	1.00	0.05	0.20	0.5	0.50	0.30
all D	all Dimensions in inch									
min	0.112	0.112	0.0878	0.051	0.0315	0	0.0079	0.0118	0.0197	0.0071
max	0.124	0.124	0.0976	0.055	0.0393	0.002	0.0079	0.0197		0.0118

6.1. Soldering Information

 The device TH72016 is qualified for MSL1 with soldering peak temperature 260 deg C according to JEDEC J-STD-20

6.2. Recommended PCB Footprints

all Di	mension	s in mm						
	Z	G	D2 _{th}	E2 _{th}	Х	Υ	C _{PL}	е
min	3.55	1.9	3.2	1.3	0.25	0.7	0.3	0.5
max	3.90	2.3	3.6	1.7	0.30	1.0	0.5	0.5
all Di	all Dimensions in inch							
min	0.1398	0.0748	0.1260	0.0512	0.0098	0.0276	0.0591	0.0197
max	0.1535	0.0906	0.1417	0.0669	0.0118	0.0394	0.0197	0.0197

Fig. 8: PCB land pattern style

433MHz FSK/ASK Transmitter

7. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 - Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 - Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20
 - Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

8. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).

Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

433MHz FSK/ASK Transmitter

9. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

10. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

 $This \ document \ supersedes \ and \ replaces \ all \ prior \ information \ regarding \ the \ Product(s) \ and/or \ previous \ versions \ of \ this \ document.$

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Transmitter category:

Click to view products by Melexis manufacturer:

Other Similar products are found below:

AX5031-1-TW30 TDK5100FHTMA1 MICRF112YMM-TR SI4063-C2A-GM ADF5901WCCPZ ADF5901ACPZ HMC6300BG46

HMC8200LP5ME SX1243IULTRT MICRF112YMM TR TDA7100HTMA1 TDK5100F MICRF114T-I/OT MAX2904ETI+

MAX1479ATE+ MAX2902ETI+ MAX2903ETI+ MAX41461GUB+ MAX41462GUB+ MAX41463GUB+ MAX41464GUB+

MAX7044AKA+T MAX1472AKA+T MAX7058ATG+ MICRF113YM6 TR MAQRF112YMM ATA8403C-6AQY-66 MICRF102YM

MICRF112YMM CMX998Q1 SX1230I066TRT Si4032-B1-FM SI4063-B1B-FM SI4060-C2A-GM TDA7110FHTMA1 CC1150RGVR

CC1175RHBR TL851CDR STS1TXQTR ATA8402C-6AQY-66 MAX7060ATG/V+ MAX7060ATG+ MAX7057ASE+ SQUIDBOARD-868 FOBLOQA-4T2 HORNETPRO-8S1 HORNETPRO-8S3 MD1730-V/M2 ATA5757C-6DQY-66 AFE7070IRGZT