

GPT65C0WMA

650V ▲ 230mΩ ▲ GaN FET

GALLIUM NITRIDE GaN FET ▲ THT type

Normally off device

Easy to drive with standard MOSFET driver

TO-220AB package

Very low switching losses

Ultra-low Q_{RR} and very robust design

Item (T _c = 25°C, unless otherwise noted)		Characteristics
Operating Temperature Range	Tı	-55°C to +150°C
Storage Temperature Range	Ts	-55°C to +150°C
Drain-Source Voltage	V _{DSS}	650V
Transient Drain-Source Voltage Note 1	V _{TR(DSS)}	800V
Drain-Source On-State Resistance Note 2	R _{DS(ON)TYP}	230mΩ
Typical Recovered Charge Note 3	Q _{RR}	18.6nC
Typical Total Gate Charge	\mathbf{Q}_{G}	16nC

Notes

1: Spike duty cycle DC < 0.01, spike duration time < 20µs during off-state mode

2: $V_{GS} = 10V, I_{DS} = 6A$

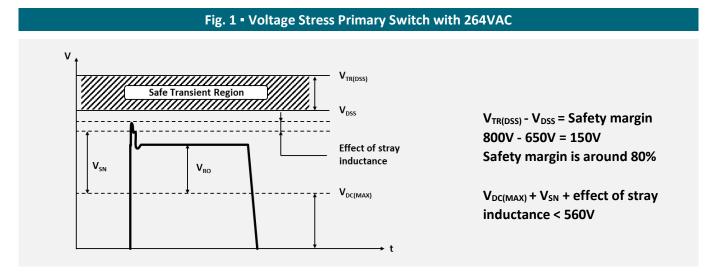
3: See diode reverse recovery test circuit and waveform, Fig. 15, and Fig. 16

APPLICATIONS

Battery	Power	LED	Wireless	AC/DC	DC/DC	Class D Audio
Chargers	Adapters	Lighting	Power	Converter	Converter	Amplifiers
	· ·	-)-			<u>=/</u>	

PIN DESCRIPTION

Circuit Diagram	Outline • Front View	Pin No.	Symbol	Description
G S		1 2 3	G S D	Gate Source Drain

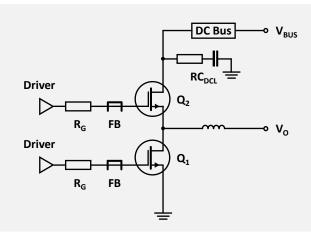


ABSOLUT MAXIMUM RATINGS ▲ T_C = 25°C, unless otherwise noted

Item	Condition	Symbol		Unit
Drain-Source Breakdown Voltage		V_{DSS}	650	V
Transient Drain-Source Voltage Note1		$V_{(TR)DSS}$	800	V
Gate-Source Voltage		V_{GSS}	±18	V
Continuous Drain Current	T _C = 25°C Note 2	I_D	6	Α
Continuous Drain Current	T _C = 100°C Note 2	I_D	3.9	Α
Pulse Drain Current	Pulse Width = 10μs	I_{DM}	27	Α
Operating Temperature Range	Case	T_C	-55 to +150	°C
Operating Temperature Range	Junction	TJ	-55 to +150	°C
Storage Temperature Range		T_S	-55 to +150	°C

Note:

- 1: Spike duty cycle DC < 0.01, spike duration time < 20µs during off-state mode
- 2: See application information for increased stability at high current operation, fig. 2



 $\begin{array}{lll} V_{DC(MAX)} & & Maximum \ input \ voltage \\ V_{RO} & & Reflected \ output \ voltage \\ V_{SN} & & Snubber \ capacitor \ voltage \\ V_{DSS} & & Drain-Source \ breakdown \ voltage \\ V_{(TR)DSS} & & Transient \ Drain-source \ voltage \\ \end{array}$

APPLICATION INFORMATION

Fig. 2 • Recommended Circuit for Improved Stability at High Current Operation

A ferrite bead (FB) should be connected in series with the gate pin to dampen the resonant circuit of gate-source loop inductance and the input capacitance of the GaN-FET. The ferrite bead should be placed as close as possible to the gate pin to minimize the gate-source loop. (See figure 2). This causes fast switching stability. We recommend an impedance of 240Ω at 100MHz for the ferrite bead. In addition, a series resistance (R_G) of 10 to 15Ω should be provided.

Furthermore, a DC-link snubber should always be used to eliminate instability of the GaN-FET. In the simplest case, an RC combination is connected in parallel to the DC link bus, which significantly reduces the Q factor of any resonance in the bus. We recommend an MLCC between 4.7 and 10nF and an SMD resistor with 5.1Ω as well-suited values.

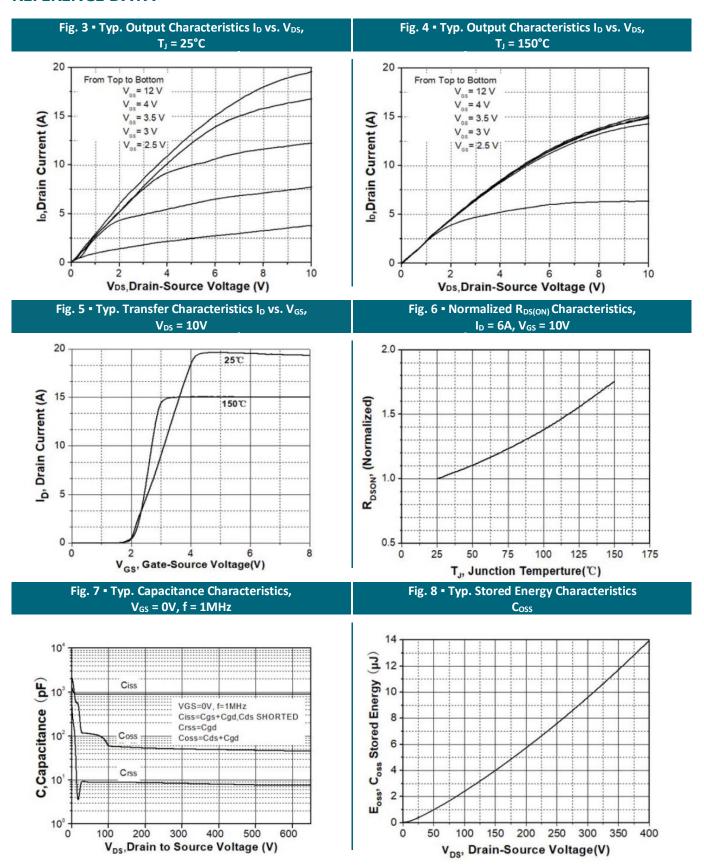
THERMAL CHARACTERISTIC RATINGS

Items	Тур.	
Thermal Resistance Junction to Ambient Note 1	R _{thJA}	53°C/W
Thermal Resistance Junction to Case	R _{thJC}	1°C/W

Note:

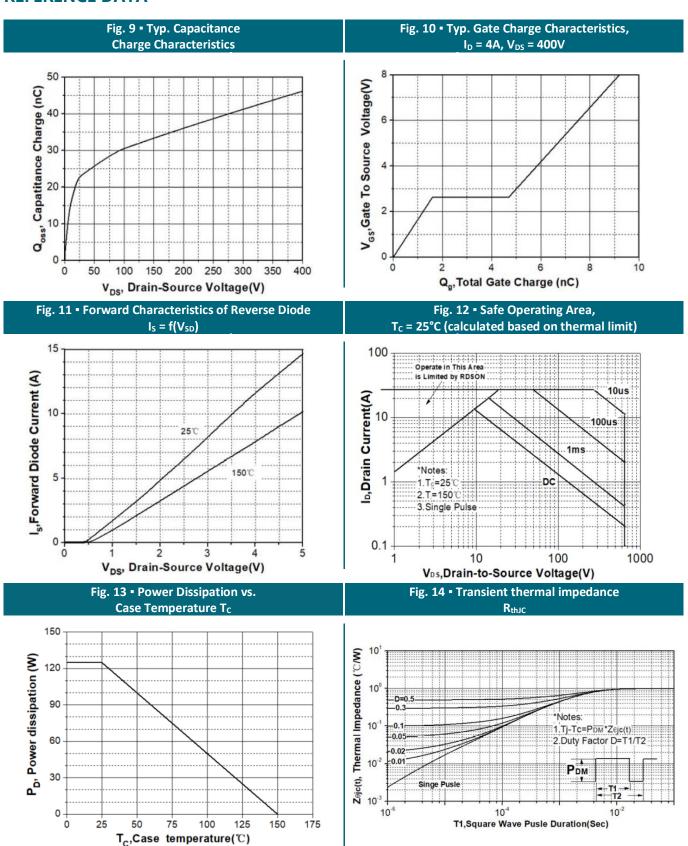
1: Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper and 70μm thickness

ELECTRICAL CHARACTERISTICS ▲ T_C = 25°C, unless otherwise noted


Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	$V_{GS} = 0V$	V_{DSS}	650			V
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_{D} = 500 \mu A$	V_{GSth}	1	1.7	2.5	V
Gate-Source Leakage Current	$V_{GS} = 18V, V_{DS} = 0V$	I _{GSS}			100	nA
Gate-Source Leakage Current	$V_{GS} = -18V, V_{DS} = 0V$	I _{GSS}			-100	nA
Drain-Source Leakage Current	$V_{DS} = 650V, V_{GS} = 0V$	I _{DSS}		5	10	μΑ
Drain-Source Leakage Current	$V_{DS} = 650V$, $V_{GS} = 0V$, $T_{J} = 150$ °C	I _{DSS}		15		μΑ
Drain-Source On-State Resistance	$V_{GS} = 10V$, $I_{DS} = 6A$	R _{DS(ON)}		230	300	mΩ
Drain-Source On-State Resistance	V_{GS} = 10V, I_{DS} = 6A, T_J = 150°C	R _{DS(ON)}		405		mΩ
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Dynamic Characteristics		-				
Input Capacitance	$V_{DS} = 400V$, $V_{GS} = 0V$, $f = 1MHz$	C _{ISS}		400		pF
Output Capacitance	$V_{DS} = 400V$, $V_{GS} = 0V$, $f = 1MHz$	Coss		40		pF
Reverse Transfer Capacitance	$V_{DS} = 400V$, $V_{GS} = 0V$, $f = 1MHz$	C_{RSS}		8		pF
Effective Output Capacitance, Energy Related Note 1	$V_{DS} = 0$ to 400V, $V_{GS} = 0$ V	$C_{O(ER)}$		175		pF
Effective Output Capacitance, Time Related Note 2	$V_{DS} = 0$ to 400V, $V_{GS} = 0$ V	C _{O(TR)}		116		pF
Total Gate Charge	$V_{DS} = 400V$, $V_{GS} = 0$ to 8V, $I_D = 4A$	Q_{G}		16		nC
Gate-Source Charge	$V_{DS} = 400V$, $V_{GS} = 0$ to 8V, $I_D = 4A$	Q_{GS}		2.8		nC
Gate-Drain Charge	V_{DS} = 400V, V_{GS} = 0 to 8V, I_{D} = 4A	Q_{GD}		4.1		nC
Output Charge	$V_{DS} = 0 \sim 400V$, $V_{GS} = 0V$	Qoss		46		nC
Turn-On Delay	V_{DS} = 400V, V_{GS} = 0 to 8V, I_D = 6A, R_G = 30Ω	$t_{D(ON)}$		8		ns
Rise Time	V_{DS} = 400V, V_{GS} = 0 to 8V, I_D = 6A, R_G = 30Ω	t_R		4		ns
Turn-Off Delay	V_{DS} = 400V, V_{GS} = 0 to 8V, I_D = 6A, R_G = 30Ω	$t_{\text{D(OFF)}}$		17		ns
Fall Time	V_{DS} = 400V, V_{GS} = 0 to 8V, I_D = 6A, R_G = 30Ω	t _F		8		ns
Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Source-Drain Diode						
Reverse Current	V _{GS} = 0V	Is			6	Α
Source Drain Voltage	$I_S = 3A$, $V_{GS} = 0V$	V		1.4		V
Source-Drain Voltage	$I_S = 6A, V_{GS} = 0V$	V_{SD}		2.4		V
Reverse Recovery Time Note 3	$I_S = 4A$, $V_{DS} = 400V$, $di/dt = 200A/\mu s$	t_{RR}		11		ns
Recovered Charge Note 4	$I_S = 4A$, $V_{DS} = 400V$, $di/dt = 200A/\mu s$	Q_{RR}		18.6		nC

Notes:

- 1: Equivalent capacitance to give same stored energy from 0V to the stated V_{DS}
- 2: Equivalent capacitance to give same charging time from 0V to the stated V_{DS}
- 3: See diode reverse recovery test circuit and waveform, fig. 15 and fig 16
- 4: See diode reverse recovery test circuit and waveform, fig 15 and fig. 16



REFERENCE DATA

REFERENCE DATA

TEST CIRCUITS AND WAVEFORMS

Fig. 15 • Diode reverse recovery test circuit

DUT A V_{DS}

Fig. 16 • Diode reverse recovery waveform

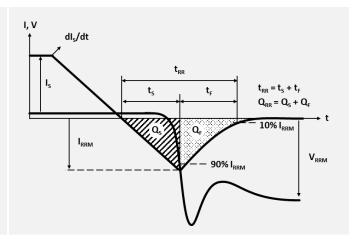


Fig. 17 • Switching time test circuit

SiC Diode V_{DS}

Fig. 18 • Switching time waveform

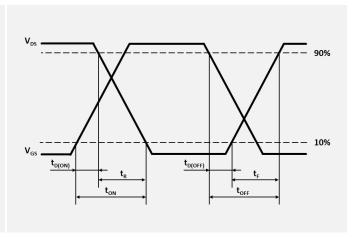
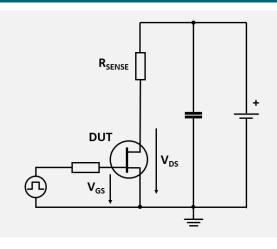
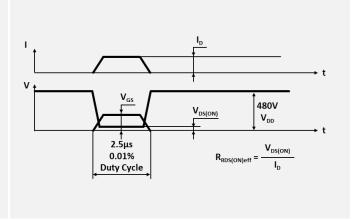
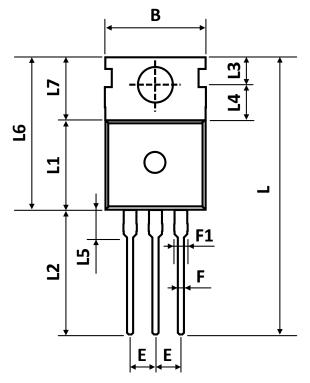
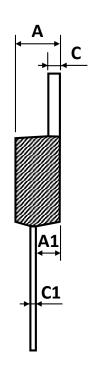
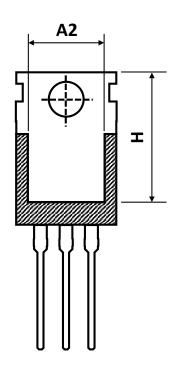


Fig. 19 - Dynamic R_{DS(ON)eff} test circuit


Fig. 20 • Dynamic R_{DS(ON)eff} waveform



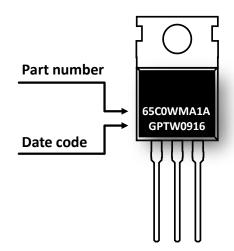
PACKAGE OUTLINE

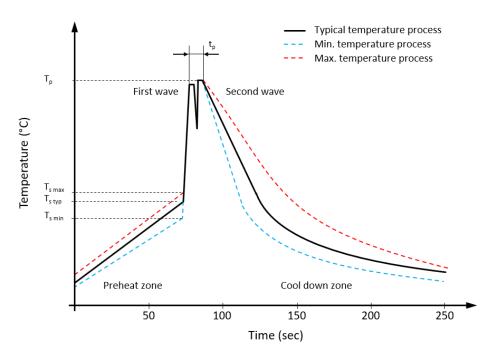
Sym	Millimeters (Min.)	Millimeters (Typ.)	Millimeters (Max.)
Α	4.43	4.53	4.63
A1	2.30	2.40	2.50
A2	7.70	7.90	8.10
В	9.80	10.00	10.20
С	1.25	1.30	1.40
C1	0.45	0.50	0.60
D	3.45	3.60	3.70
E	2.45	2.54	2.60
F	0.70	0.80	0.95
F1	1.15	1.33	1.50
L	26.80	28.80	30.80
L1	9.20	9.30	9.40
L2	12.80	13.10	13.40
L3	2.70	2.80	2.90
L4	3.50	3.70	3.80
L5	2.60	2.90	3.20
L6	15.40	15.80	16.20
L7	6.20	6.50	6.80
Н	12.95	13.25	13.55

ORDERING INFORMATION

Part Number	Package	Packing	Tube Qty.	Inner Box Qty.	Outer Box Qty.
GPT65C0WMA	TO-220AB	Tube	50pcs	1,000pcs	5,000pcs

MGT


Manufacturer Group of Technology


DATE CODE AND PART MARKING

Example: 0916

0	9	1	6
Week of t	he Month	Year	
		16	2022
01	1 st	17	2023
02	2 nd	18	2024
03	3 rd	19	2025
04	4 th	1A	2026
•••	•••	1B	2026
52	52 nd		•••
		1F	2031

RECOMMENDED WAVE SOLDERING PROFILE A THT PACKAGE

Classification wave soldering profile ▲ Refer to EN 61760-1: 2006

Profile Features		Value ▲ Sn-Pb Assembly	Value ▲ Pb-free Assembly
Preheat temperature min.	T_{smin}	100 °C	100 °C
Preheat temperature typical	T _{s typ}	120 °C	120 °C
Preheat temperature max.	$T_{s max}$	130 °C	130 °C
Preheat time t_s from T_{smin} to T_{smax}	ts	70 seconds	70 seconds
Peak temperature	T_p	235 °C to 260 °C	245 °C to 260 °C
Time of actual peak temperature	tp	Max. 10 seconds Max. 5 second each wave	Max. 10 seconds Max. 5 second each wave
Ramp-down date min.		~ 2 °C/second	~ 2 °C/second
Ramp-down rate typical		~ 3.5 °C/second	~ 3.5 °C/second
Ramp-down rate max.		~ 5 °C/second	~ 5 °C/second
Time 25°C to 25°C		4 minutes	4 minutes

MGT ▲ Manufacturer Group of Technology

REVISION TABLE

Revision	Date	Status	Notes
001	01/04/2022	Initial release	Initial publication
002	15/05/2022	Second release	Part number marking

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website www.mgt.co.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by MGT Brightek manufacturer:

Other Similar products are found below:

614233C 648584F FDPF9N50NZ IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPP110N20N3GXK
IPS70R2K0CEAKMA1 DMN3404LQ-7 NTE6400 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W
FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2969
NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B
DMN1006UCA6-7 DMN16M9UCA6-7