GALLIUM NITRIDE (GaN) JFET A GPT65Z1SHD

GaN POWER TECHNOLOGY

GPT65Z1SHD

100V A 140mA A GaN JFET

GALLIUM NITRIDE GAN JFET ▲ SMD type Normally-on device Depletion mode HEMT for non-switching use Small size ▲ 3535 PLCC package Larger input voltage compared to linear IC ▲ V_{DSOP} = 100V Simple to design ▲ Few peripheral components

SPECIFICATION

Item (T _c = 25°C, unless otherwise noted)	Characteristics	
Operating Temperature Range TJ		-55°C to +150°C
Storage Temperature Range Ts		-55°C to +150°C
Drain-Source Maximum Operating Voltage	V _{DSOP}	100V
Drain-Source Breakdown Voltage	BV _{DS}	650V
Continuous Drain Load Current	I _{DL}	140mA

RoHS

REACH

HALOGEN

FREE

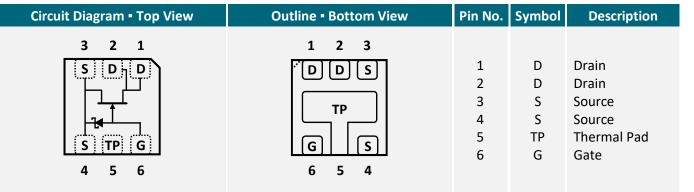
DESCRIPTION

GPT65Z1SHD, Gallium Nitride (GaN) JFET is a normally-on device. Depletion Mode HEMT design for non-switching use.

GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

APPLICATIONS

AC/DC LED	LED AC	LED DC
Power Supply	Lamps < 50W	Lamps < 50W
		-Ò


BENEFITS

- Small size linear constant current IC
- High V_{DS}, larger input voltage range compared to general linear IC
- ▲ Usable for AC or DC LED designs from 4W to 50W

MGT **A** Manufacturer Group of Technology

▲ Few peripheral passive components necessary

PIN DESCRIPTION

GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 1

Copyright by MGT A www.mgt.co.com A All rights reserved A The information in this document is subject to change without notice.

MGT **A** Manufacturer Group of Technology

ABSOLUT MAXIMUM RATINGS **A** T_C = 25°C, unless otherwise noted

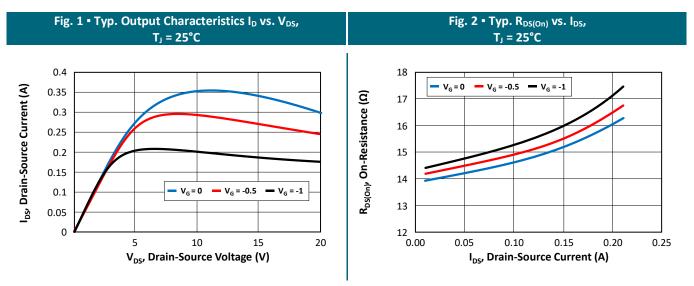
Item	Symbol	Limit	Unit	
Drain-Source Breakdown Voltage	BV_{DS}	650	V	
Gate-Source Voltage	V _{GSS}	±20	V	
Continuous Drain Current Note 1	I _{DS}	350	mA	

Note

Maximum operating voltage is 100V. Maximum continuous load current is 140mA. 1: Operating power $P_{OP} = V_{DSOP} \times I_{DL} \le 3.5W$

ELECTRICAL CHARACTERISTICS A T_c = 25°C, unless otherwise noted

Item	Condition	Symbol	Min.	Тур.	Max.	Unit
Forward Device Characteristics						
Drain-Source Voltage	$V_{GS} = -6V$, $I_{D} = 100\mu A$	V_{DSS}	650			V
Gate-Source Threshold Voltage	$V_{DS} = 10V, I_{D} = 1mA$	V_{GSth}		-4.7		V
Drain-Source Leakage Current	V_{DS} = 500V, V_{GS} = -5V	I _{DSS}			90	μA
Gate-Source Leakage Current	V_{GS} = -5V, V_{DS} = 0V	I _{GSS}			5	μA
Continuous Drain Load Current	$V_{DS} = 2V, V_{GS} = 0V$	I _{DL}			140	mA
Saturation Drain Current	$V_{DS} = 10V, V_{GS} = 0V$	I _{DSat (DC 10V)}			350	mA
Saturation Drain Current	$V_{DS} = 20V$, $V_{GS} = 0V$	I _{DSat (DC 20V)}			300	mA
Drain-Source On-State Resistance	$V_{GS} = 0V, I_{D} = 50mA$	R _{DS(ON)}			16	Ω


THERMAL CHARACTERISTIC RATINGS

Items	S		
Thermal Resistance Junction to Ambient Note 2	R _{thJA}	35°C/W	
Thermal Resistance Junction to Case	R _{thJC}	8.5°C/W	

Note

1: Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper and 70µm thickness.

REFERENCE DATA


GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 2

Copyright by MGT A www.mgt.co.com A All rights reserved A The information in this document is subject to change without notice.

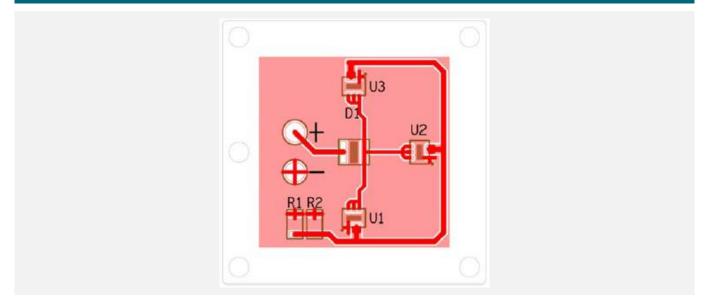
TYPICAL APPLICATION CIRCUIT A UVC LED MODULE

Fig. 3 • UVC LED Module Circuit Diagram

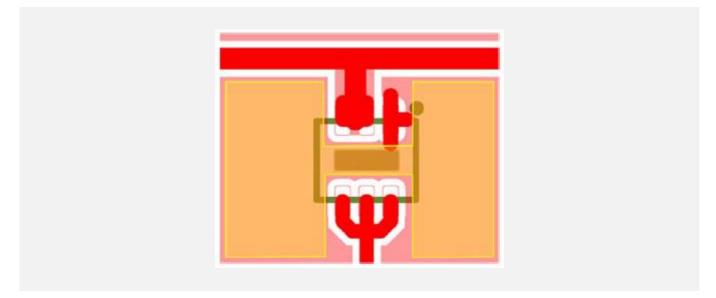
BILL OF MATERIAL

Item No.	Quantity	Value	Ref. Des.	Description	Package
1	1		D1	UVC LED 2.6W, λ = 260nm to 270nm	SON3535-2P
2	2	8.2Ω	R1, R2	Resistor 8.2Ω, 1%, ±100ppm, 0.25W	1206
3	3		U1, U2, U3	GPT65Z1SHD, GaN FET	SON3535-6P

GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 3


MGT 🔺 Manufacturer Group of Technology

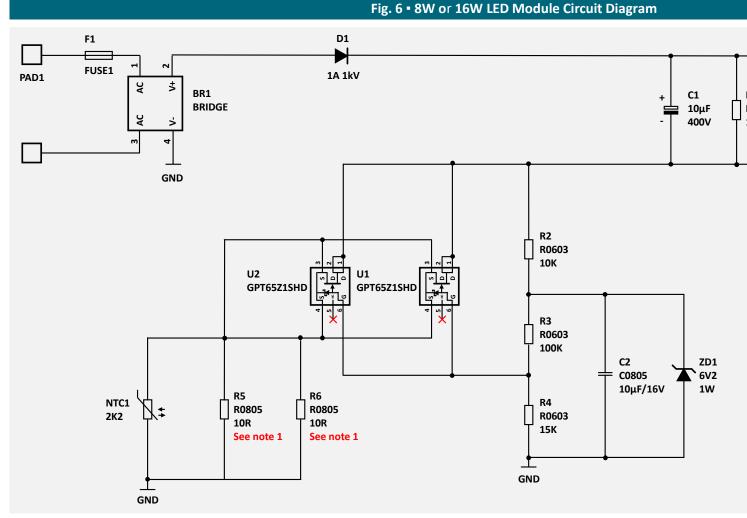
Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.



TYPICAL APPLICATION CIRCUIT A UVC LED MODULE

Fig. 4 • System Diagram

Fig. 5 • PCB Layout Note



- **1**. Copper pouring process at the bottom, heat dissipation increases reliability.
- 2. The copper casting area is as large as possible, the min. area : 12mm X 12mm.
- 3. Keep away from high power components.

GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 4

TYPICAL APPLICATION CIRCUIT A 8W or 16 W LED MODULE

Note

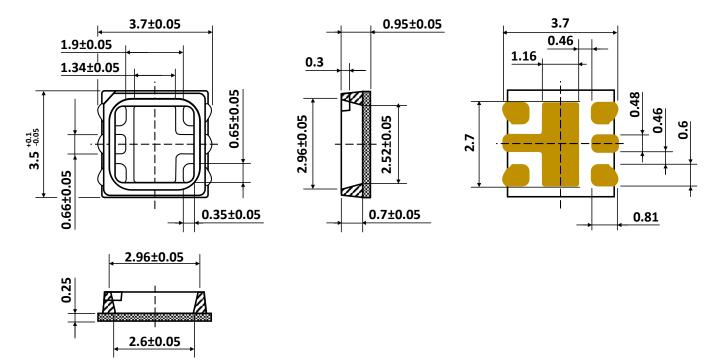
1: R5/R6 sets the output current and therefore the output power. High ohm values reduce the output power. See recommende

RECOMMENDED RESISTORS TO SET THE OUTPUT CURRENT

Output Power	4W	8W	12W	16W
Output Current	30mA	60mA	90mA	120mA
Resistor Value R5	120Ω	43Ω	24Ω	10Ω
Resistor Value R6	120Ω	43Ω	24Ω	10Ω

Note:

For safety reasons, it is not recommended to use the full 140mA load in circuit design. 20mA less than full load is a good value.


BILL OF MATERIAL ▲ MOTHERBOARD

Item	Туре	Designator	Description	Qty
1	Fuse	F1	2410/500mA/250V	1
2	Bridge Rectifier	BR1	MBLS 500mA/1kV	1
3	Alu Electrolytic Cap.	C1	10uF/400V/10x18mm/105°C/10000h	1
4	MLCC	C2	0805 10µF/16V/X7R/10%	1
5	Rectifier	D1	S1MFL 1A/1kV/SOD-123FL	1
6	Zener Diode	ZD1	KDZV6.2B 6.2V/1W/SOD-123	1
7	GaN Fet	U1,U2	GPT65Z1SHD 140mA/100V/PLCC3535	2
8	Chip Resistor	R1	0805 1M/5%/200ppm	1
9	Chip Resistor	R2	0603 10K/5%/200ppm	1
10	Chip Resistor	R3	0603 100K/5%/200ppm	1
11	Chip Resistor	R4	0603 15K/5%/200ppm	1
12	Chip Resistor	R5,R6	1206 10R/1%/100ppm	2
13	Chip NTC	NTC1	0805 2K2/5%/200mW	1

PACKAGE OUTLINE

STORAGE AND HANDLING CONDITIONS

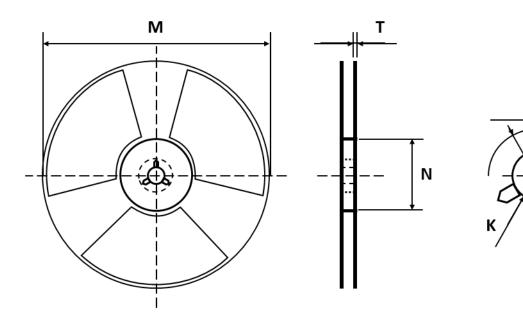
ESD level	Floor life	Conditions	MSL
HBM class 2	168 hours	T _A < 30°C, RH < 60%	3

ORDERING INFORMATION

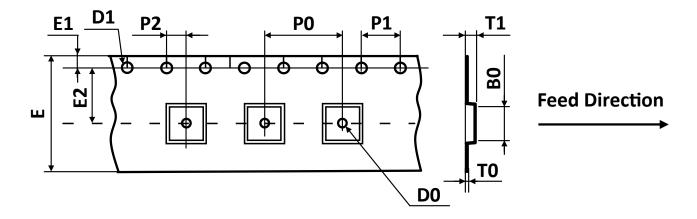
Part N	lumber	Package	Packing	Quantity	Reel Diameter
GPT65	Z1SHD	3535 PLCC	Tape and Reel	3000pcs	330mm (13")
Outside D	X DIMEN Dimensions	ISION All dimension	ns in mm		\mathcal{A}
W	450				
L	450			\mathcal{M}	
Н					
				*	L

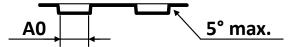
GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 7

Copyright by MGT A www.mgt.co.com All rights reserved The information in this document is subject to change without notice.


S

Н

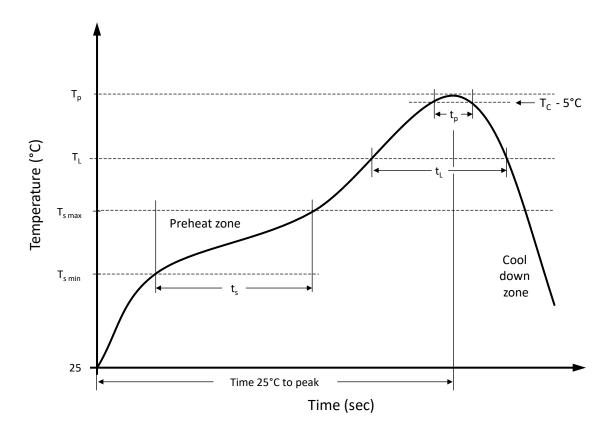

GaN POWER TECHNOLOGY


REEL DIMENSIONS All dimensions in mm

Tape Size	Reel Size	М	N	Т	Н	К	S
		Ø330.00	Ø102.00	2.00	13.00	10.50	2.00
12mm	Ø330	±0.20	±0.10	±2.0	+0.50 -0.20	±0.25	±0.25

TAPE DIMENSIONS All dimensions in mm

Package	A0	B0	D0	D1	E	E1	E2	P0	P1	P2	Т0	T1
2525	4.01	3.81	1.50	1.50	12.00	1.75	5.50	8.00	4.00	2.00	1.08	0.20
3535 PLCC	±0.05	±0.05	+0.25	±0.10	+0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05	±0.02
FLCC	10.05	10.05	+0.25	10.10	-0.10	10.10	10.05	10.10	10.10	10.05	10.05	10.02


Note: All dimensions meet EIA-481-D requirements.

GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 8

Copyright by MGT A www.mgt.co.com All rights reserved The information in this document is subject to change without notice.

RECOMMENDED REFLOW SOLDERING PROFILE

Recommended reflow soldering conditions ▲ **Refer to JEDEC J-STD-020E**

Profile Features		Sn-Pb Eutetic Assembly	Pb-Free Assembly
Preheat temperature min.	T _{s min}	100 °C	150 °C
Preheat temperature max.	T_{smax}	150 °C	200 °C
Preheat time t_s from $T_{s min}$ to $T_{s max}$	ts	120 seconds	120 seconds
Ramp-up rate (T_L to T_p)		max. 3 °C/second	max. 3 °C/second
Liquidous temperature	TL	183 °C	217 °C
Time t_L maintained above T_L	tL	150 seconds max.	150 seconds max.
Peak package body temperature	Tp	235°C	260°C
Timeframe of within 5°C below and up to max actual peak body temperature	t _p	20 seconds max. 30 seconds max.	
Ramp-down rate $(T_L \text{ to } T_p)$		max. 6 °C/second	max. 6 °C/second
Time 25°C to peak temperature		max. 6 minutes	max. 8 minutes

GPT65Z1SHD ▲ Rev.002 ▲ Date: 30/03/2022 ▲ Page: 9 Copyright by MGT ▲ www.mgt.co.com ▲ All rights reserved ▲ The information in this document is subject to change without notice.

REVISION TABLE

Revision	Date	Status	Notes
001	01/01/2022	Initial release	Initial publication
002	30/03/2022	Second release	Add recommended resistors to set the output current

DISCLAIMER

Except for the written expressed warranties, MGT does not implicitly, by assumption or whatever else, warrant, under-take, promise any other warranty or guaranty for any MGT product.

All information and technical specifications made available by MGT are for guidance only and we reserve the right to change or modify them without prior notice. Unless expressly stated in writing by MGT, we reject any guarantees, obligations, or warranties.

All MGT products with the technical specifications described are suitable for use in certain applications. Operating, production, storage and environmental conditions can have a massive influence on the parameters mentioned in the data sheets, which cause the performance to vary over time.

It is subject to the user's duty of care to design and validate his products in such a way that appropriate measures are taken, such as protective circuits or redundant systems to ensure the safety standards required in the application.

MGT components are not designed or rated for use in life support, rescue, safety critical, military, or aerospace applications where failure or malfunction could result in property or environmental damage, serious injury or death. In the aforementioned cases, please contact us before using MGT products.

In principle, we reserve all rights and MGT's general terms and conditions apply. You can find them on our website <u>www.mgt.co.com</u>.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by MGT Brightek manufacturer:

Other Similar products are found below :

614233C 648584F FDPF9N50NZ IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPP110N20N3GXK IPS70R2K0CEAKMA1 DMN3404LQ-7 NTE6400 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7