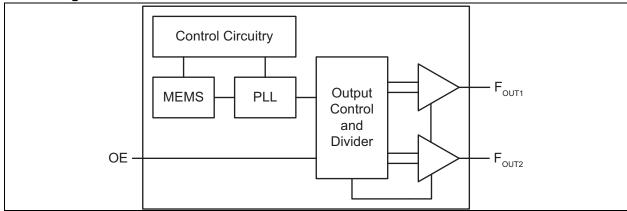


Crystal-lessTM Configurable Two-Output Clock Generator

Features

- · Two Simultaneous CMOS Outputs
 - Output 1 Range: 2.3 MHz to 170 MHz
- Output 2 Range: 2.3 MHz to 170 MHz
- Low RMS Phase Jitter: <1 ps (typ.)
- High Stability: ±25 ppm, ±50 ppm
- · Wide Temperature Range
 - Automotive: -40°C to +125°C
 - Ext. Industrial -40°C to +105°C
 - Industrial -40°C to +85°C
 - Ext. Commercial -20°C to +70°C
- High Supply Noise Rejection: -50 dBc
- · High Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- · High Reliability
 - 20x higher MTBF than crystal-based clock generator designs
- · Supply Range of 2.25V to 3.6V
- · Lead Free and RoHS-Compliant

Applications


- · Consumer Electronics
- · Camera and Imaging Modules
- Home Automation
- · Industrial and Power Conversion
- Mobile Communications, Internet, and Sensor Devices
- · Solid State, Hard Drive, and Flash Drive Storage

General Description

The DSC2311 is a crystal-less™ clock generator that is factory-configurable to simultaneously output two separate frequencies from 2.3 MHz to 170 MHz. The clock generator uses proven silicon MEMS technology to provide low jitter and high frequency stability across a wide range of supply voltages and temperatures. By eliminating the external quartz crystal, crystal-less clock generators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of consumer electronics, communications, and storage applications.

DSC2311 has an Output Enable/Disable feature that allows it to disable the outputs when OE is low. The device is available in a space-saving 6-pin 2.5 mm x 2.0 mm crystal-less VDFN package that uses only a single external bypass capacitor. This requires a PCB footprint equivalent to that of a 1.0 mm x 1.0 mm crystal-based clock generator.

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage	–0.3V to +4.0V
Input Voltage	0.3V to V _{DD} +0.3V
ESD Protection (HBM)	
ESD Protection (CDM)	1.5 kV

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Specifications: V_{DD} = 3.3V; T_A = +25°C unless otherwise specified.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Supply Voltage (Note 1)	V_{DD}	2.25	1	3.6	٧	_
Supply Current (Note 2)	I _{DD}	_	21	23	mA	EN pin low. All outputs disabled.
		_	-	±25		Includes frequency
Frequency Stability (Note 3)	Δf	_		±50	ppm	variations due to initial tolerance, temperature, and power supply voltage.
Aging	Δf	_	_	±5	ppm	One year at +25°C
Start-up Time (Note 4)	t _{SU}	_		5	ms	T = +25°C
Input Logic Levels	V_{IH}	0.75 x V _{DD}	_	_	V	Input logic high
input Logic Levels	V_{IL}	_	_	0.25 x V _{DD}	V	Input logic low
Output Disable Time	t _{DA}	_	1	5	ns	_
Output Enable Time	t _{EN}	_	-	20	ns	_
Pull-Up Resistor (Note 2)		_	40	_	kΩ	Pull-up exists on all digital IO
Output Logic Lovele	V_{OH}	0.9 x V _{DD}	1	_	V	Output logic high, I = ±6 mA
Output Logic Levels	V_{OL}	_	1	0.1 x V _{DD}	٧	Output logic low, I = ±6 mA
Output Transition Time	t _R	_	1.1	2.0	no	Rise time. 20% to 80%; C _L = 15 pF
Output Transition Time	t _F	_	1.4	2.0	ns	Fall time. 20% to 80%; C _L = 15 pF
Frequency	uency f ₀	2.3		170	MHz	Commercial/Industrial temp. range
		3.3		100		Automotive temp. range
		3.3	_	170		Extended Industrial temp. range

- **Note 1:** Pin 4 V_{DD} should be filtered with a 0.01 μF capacitor.
 - 2: Output is enabled if Enable pad is floated or not connected. Operating current = disabled current + ΔI_{DD} from F_{OUT1} + ΔI_{DD} from F_{OUT2} . See Current Consumption graph for more information.
 - **3:** For other ppm stabilities, please contact the factory.
 - **4:** t_{SU} is time to 100 ppm stable output frequency after V_{DD} is applied and outputs are enabled.
 - 5: Period jitter includes crosstalk from adjacent output.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Specifications: V_{DD} = 3.3V; T_A = +25°C unless otherwise specified.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Output Duty Cycle	SYM	45	_	55	%	_
Period Jitter (Note 5)	J_{PER}	_	3	1	ps _{RMS}	F _{O1} = F _{O2} = 25 MHz
		_	0.3	_	ps _{RMS}	200 kHz to 20 MHz @ 25 MHz
Integrated Phase Noise	J _{CC}	_	0.38	_		100 kHz to 20 MHz @ 25 MHz
		_	1.7	2		12 kHz to 20 MHz @ 25 MHz

- **Note 1:** Pin 4 V_{DD} should be filtered with a 0.01 μF capacitor.
 - 2: Output is enabled if Enable pad is floated or not connected. Operating current = disabled current + ΔI_{DD} from F_{OUT1} + ΔI_{DD} from F_{OUT2} . See Current Consumption graph for more information.
 - 3: For other ppm stabilities, please contact the factory.
 - **4:** t_{SU} is time to 100 ppm stable output frequency after V_{DD} is applied and outputs are enabled.
 - **5:** Period jitter includes crosstalk from adjacent output.

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
	T _A	-20	_	+70	°C	Ordering Option E
Operating Temperature Range (T)	T _A	-40	_	+85	°C	Ordering Option I
	T _A	-40	_	+105	°C	Ordering Option L
	T _A	-40	_	+125	°C	Ordering Option M
Junction Temperature	TJ	_	_	+150	°C	_
Storage Temperature Range	T _S	-40	_	+150	°C	_
Soldering Temperature Range	_	_	_	+260	°C	40 sec. max.

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	ENABLE	Output Enable for both CLK0 and CLK1.
2	N/C	Do not connect.
3	GROUND	Ground.
4	CLK0	Clock Output 0 (CMOS).
5	CLK1	Clock Output 1 (CMOS).
6	VDD	Supply Voltage.

3.0 OUTPUT WAVEFORM

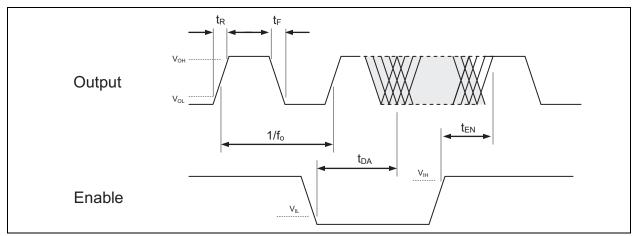
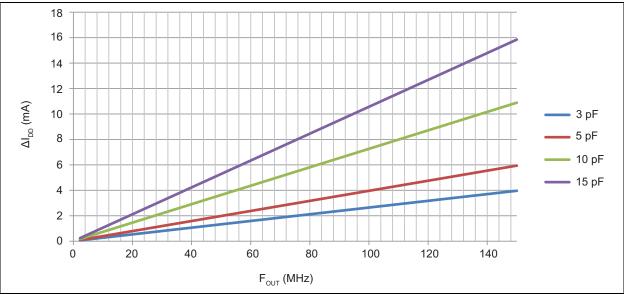
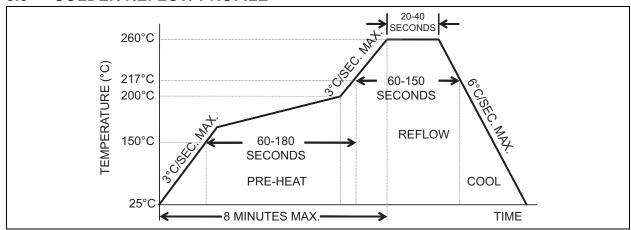
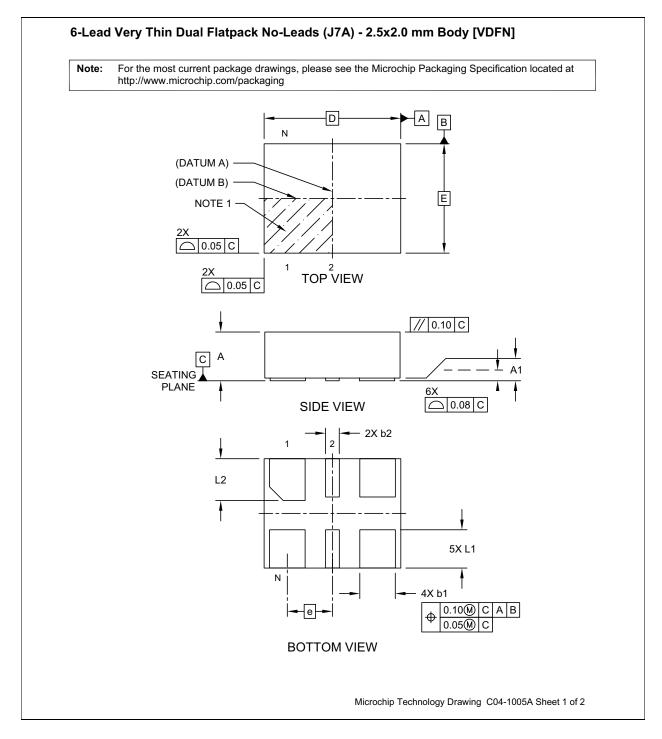



FIGURE 3-1: OE Function and Output Waveform: LVCMOS.

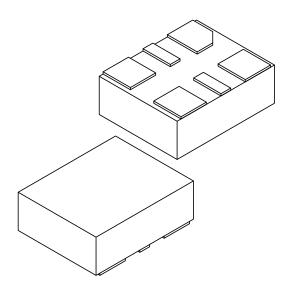

4.0 CURRENT CONSUMPTION

Total Current = Disabled Current + $\Delta I_{DD} F_{OUT1} + \Delta I_{DD} F_{OUT2}$

FIGURE 4-1: ΔI_{DD} / Output vs. Frequency and Load @ 3.3V V_{DD}


5.0 SOLDER REFLOW PROFILE

6-PIN QFN MSL 1 @ 260°C refer to JSTD-020C				
Ramp-Up Rate (200°C to Peak Temp)	3°C/sec. max.			
Preheat Time 150°C to 200°C	60-180 sec.			
Time Maintained above 217°C	60-150 sec.			
Peak Temperature	255°C to 260°C			
Time within 5°C of Actual Peak	20-40 sec.			
Ramp-Down Rate	6°C/sec. max.			
Time 25°C to Peak Temperature	8 minutes max.			


6.0 PACKAGE MARKING INFORMATION

6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern

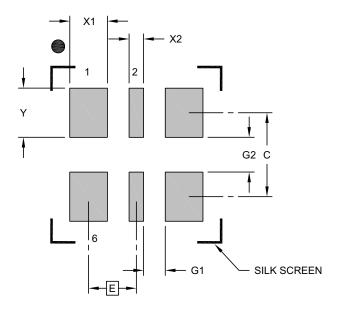
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N	6			
Pitch	е	0.825 BSC			
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Overall Length	D	2.50 BSC			
Overall Width	Е	2.00 BSC			
Terminal Width	b1	0.60	0.65	0.70	
Terminal Width	b2	0.20	0.25	0.30	
Terminal Length	L1	0.60	0.70	0.80	
Terminal Length	L2	0.665	0.765	0.865	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1005A Sheet 2 of 2

6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Е	0.825 BSC			
Contact Pad Width (X4)	X1			0.65	
Contact Pad Width (X2)	X2			0.25	
Contact Pad Length (X6)	Υ			0.85	
Contact Pad Spacing	С		1.45		
Space Between Contacts (X4)	G1	0.38			
Space Between Contacts (X3)	G2	0.60			

Notes:

Note:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3005A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2016)

- Converted Micrel data sheet DSC2311 to Microchip DS20005611A.
- Minor text changes throughout.
- · Package name updated to VDFN.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO. -Rxxxx **Device** Package Temperature Stability Frequency Package

Device: DSC2311: Crystal-less Configurable Two-Output Clock

Generator

Package: 6-LEAD 2.5 mm x 2.0 mm VDFN Κ

-20°C to +70°C (Extended Commercial) Temperature

Range:

-40°C to +85°C (Industrial) -40°C to +105°C (Extended Industrial) M -40°C to +125°C (Automotive)

Stability: ±50 ppm

Frequency: Rxxxx Custom Frequency Code

Packing Option: Blank Tube Tape & Reel

Output Clock Frequencies

Output frequencies are factory-configured to individual customer and product requirements, subject to output control and divider limitations. Contact sales with your custom frequency needs.

Frequency Code	F _{OUT1} (MHz)	F _{OUT2} (MHz)
R0001	127	127
R0002	25	125

Examples:

DSC2311KE1-RxxxxT: Crystal-less Configurable

Two-Output Clock Generator, 6-LD VDFN, Extended Commercial Temp. Range, ±50 ppm Stability, Custom Frequency (F_{OUT1} and

F_{OUT2}), Tape & Reel DSC2311KM2-Rxxxx: Crystal-less Configurable

> Two-Output Clock Generator, 6-LD VDFN, Automotive Temp. Range, ±25 ppm Stability, Custom Frequency (F_{OUT1} and F_{OUT2}), Tube

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0986-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-7889
China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393 **China - Shenzhen** Tel: 86-755-8864-2200

Fax: 86-755-8203-1760 **China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard Clock Oscillators category:

Click to view products by Micrel manufacturer:

Other Similar products are found below:

601252 F335-12 F335-25 F535L-33.333 F535L-50 ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C-66.6666MHZ SiT8209AI-32-33E-125.000000 SM4420TEV-40.0M-T1K F335-24 F335-40 F535L-10 F535L-12 F535L-16 F535L-24 F535L-27 F535L-48 PE7744DW-100.0M CSX-750FCC14745600T ASF1-3.686MHZ-N-K-S XO57CTECNA3M6864 ECS-2100A-147.4 601251 EP16E7E2H26.000MTR SIT8918AA-11-33S-16.000000G XO3003 9120AC-2D2-33E212.500000 9102AI-243N25E100.00000 8208AC-82-18E-25.00000 ASDK2-32.768KHZ-LR-T3 8008AI-72-XXE-24.545454E 8004AC-13-33E-133.33000X AS-4.9152-16-SMD-TR ASFL1-48.000MHZ-LC-T SIT8920AM-31-33E-25.0000 DSC1028DI2-019.2000 9121AC-2C3-25E100.00000 9102AI-233N33E100.00000X 9102AI-233N25E200.00000 9102AI-232H25S125.00000 9102AI-133N25E200.00000 9102AC-283N25E200.00000 9001AC-33-33E1-30.000 XLH536125.000JS4I 3921AI-2CF-33NZ125.000000 5730-1SF PXA000010 SIT1602BC-83-33E-10.0000000Y