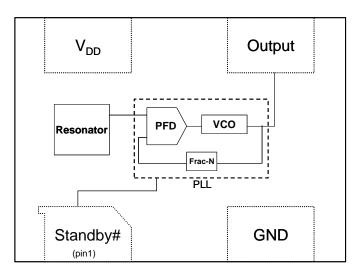


1.8~3.3V

Programmable Low-Power Precision CMOS Oscillator


General Description

The DSC8004 is a programmable silicon MEMS based CMOS oscillator offering excellent jitter and stability performance over a wide range of supply voltages and temperatures. The device operates from 1 to 150MHz in increments of 100Hz (up to four decimal point resolution) with supply voltages between 1.8 to 3.3 Volts and extended temperatures from -40°C to 105°C. The DSC8004 has the same functionality and performance as the DSC8001 but with greater output drive (C_L =40pf).

The DSC8004 incorporates an all silicon resonator that is extremely robust and nearly immune to stress related fractures, common to crystal based oscillators. Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC8004 ideal for rugged, industrial, and portable applications where stress, shock, and vibration can damage quartz crystal based systems.

Available in industry standard packages, the DSC8004 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

Block Diagram

Features

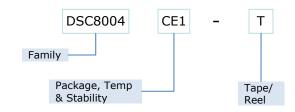
- Frequency Range: Programmable from 1 to 150MHz
- Exceptional Stability over Temperature
 - ±20 PPM , ±25 PPM, ±50 PPM
- Operating voltage
 - o 1.71 to 3.60V
- Operating Temperature Range
 - Ext. Industrial -40°C to 105°C
 - Industrial -40°C to 85°C
 - $_{\odot}$ $\,$ Ext. Commercial -20°C to 70°C $\,$
 - Low Operating and Standby Current
 - 8mA Operating (40MHz)
 - 15uA Standby
- Ultra Miniature Footprint
 - o 2.5 x 2.0 x 0.85 mm
 - o 3.2 x 2.5 x 0.85 mm
 - o 5.0 x 3.2 x 0.85 mm
 - o 7.0 x 5.0 x 0.85 mm
- Excellent shock and Vibration Resistance
- Lead Free, RoHS & Reach SVHC Compliant

Benefits

- Pin for pin "drop in" replacement for industry standard oscillators
- Semiconductor level reliability, significantly higher than quartz
- Frequency Resolution to 4 decimals
- Short mass production lead-times
- Longer Battery Life / Reduced Power
- Compact Plastic package
- Cost Effective

Applications

- Mobile Applications
- Consumer Electronics
- Portable Electronics
- CCD Clock for VTR Cameras
- Low Profile Applications
- Industrial


1 | MK-O-B-P-D-090110-02-1

Absolute Maximum Ratings¹

Item	Min.	Max	Unit	Condition			
Supply Voltage	-0.3	+4.0	V				
Input Voltage	-0.3	VDD+0.3	V				
Junction Temp	-	+150	°C				
Storage Temp	-55	+150	°C				
Soldering Temp	-	+260	°C	40 sec max.			
ESD	-		V				
НВМ		4000					
ММ		200					
CDM		1500					

Ordering Code

^{*} See Ordering Information for details

Recommended Operating Conditions

Parameter	Symbol	Range
Supply Voltage	V_{DD}	1.71 - 3.60V
Output Load	Z_L	R>10KΩ, C≤40pF
Operating Temperature Option 1 Option 2 Option 3	Т	-40 to +105 °C -40 to +85 °C -20 to +70 °C

Specifications (VDD = 1.8 to 3.3v) $T_A=85^{\circ}C$ unless otherwise specified

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Frequency	f_0	Single Frequency	1		150	MHz
Frequency Tolerance	Δf	Includes frequency variations due to initial tolerance, temperature and power supply voltage			±10,±25,±50	ppm
Aging	Δf	1 year @25°C			±5	ppm
Supply Current, standby	I_{DD}	T=25°C			15	uA
Output Startup Time ²	t _{su}	T=25°C		1.0	1.3	ms
Output Disable Time	t _{DA}			20	100	ns
Output Duty Cycle	SYM		45		55	%
Input Logic Levels Input logic high Input logic low	V _{IH} V _{IL}		0.75*V _{DD}		- 0.25* V _{DD}	Volts

Notes:

- 1. Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated beyond these limits.
- 2. t_{SU} is time to stable output frequency after V_{DD} is applied. t_{SU} and t_{EN} (after EN is asserted) are identical values.
- 3. Measured over 50k clock cycles.

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 2 | MK-Q-B-P-D-090110-02-1

1.8~3.3V

VDD = 1.8v

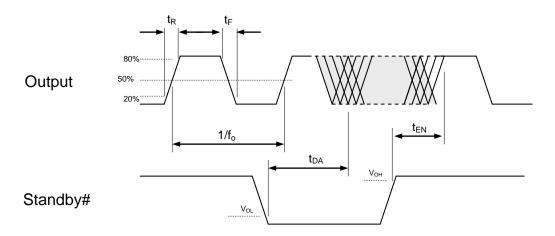
Parameter	Symbol	C	ondition	Min	Тур	Max	Unit
Supply Current, no load	${ m I}_{ m DD}$	$C_L=0p$ $R_L=\infty$ $T=25$ °C	1MHz 27MHz 70MHz 150MHz		5.9 6.7 8.1 10.6	6.2 7.1 8.5 11.9	mA
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}		-6mA 6mA	0.8*V _{DD}		- 0.2*V _{DD}	Volts
Output Transition time Rise Time Fall Time	t _R t _F		0pF; T=25°C %/80%*V _{DD}		1.4 1.1	3 3	ns
Output Transition time Rise Time Fall Time	t _R t _F	C _L =40pF; T=25°C 10%/90%*V _{DD}			2.2 1.8	4 4	ns
Period Jitter	J_p	F =	= 100MHz ³		10	15	ps rms

VDD = 2.5v

Parameter	Symbol	C	ondition	Min	Тур	Max	Unit
Supply Current, no load	${ m I}_{ m DD}$	C _L =0p R _L =∞ T=25°C	1MHz 27MHz 70MHz 150MHz		6.1 7.2 8.9 12.2	6.4 7.5 9.4 13.9	mA
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}		-6mA 6mA	0.9*V _{DD}		- 0.1*V _{DD}	Volts
Output Transition time Rise Time Fall Time	t _R t _F	C _L =40pF; T=25°C 20%/80%*V _{DD}			1.0 0.9	2 2	ns
Output Transition time Rise Time Fall Time	t _R t _F	C _L =40pF; T=25°C 10%/90%*V _{DD}			1.7 1.5	3.5 3	ns
Period Jitter	J_p	F=	= 100MHz ³		5	10	ps rms

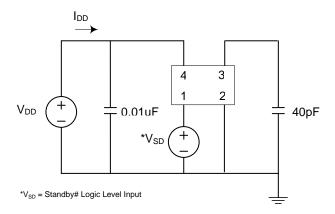
VDD = 3.3v

Parameter	Symbol	C	Condition	Min	Тур	Max	Unit
Supply Current, no load	${ m I}_{ m DD}$	C _L =0p R _L =∞ T=25°C	1MHz 27MHz 70MHz 150MHz		6.2 7.6 10.0 14.4	6.5 8.0 10.5 16.6	mA
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}		-8mA 8mA	0.9*V _{DD}		- 0.1*V _{DD}	Volts
Output Transition time Rise Time Fall Time	t _R t _F	C _L =40pF; T=25°C 20%/80%*V _{DD}			0.8 0.8	2 2	ns
Output Transition time Rise Time Fall Time	t _R t _F	C _L =40pF; T=25°C 10%/90%*V _{DD}			1.4 1.3	3 3	ns
Period Jitter	J_p	F =	= 100MHz ³		5	10	ps rms

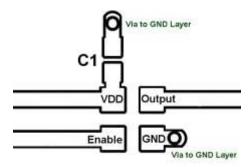

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 3 | MK-Q-B-P-D-090110-02-1

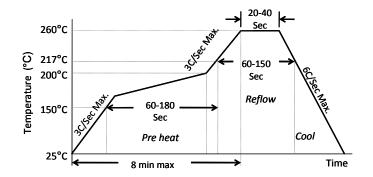
MK-Q-B-P-D-090110-02-1


Output Waveform

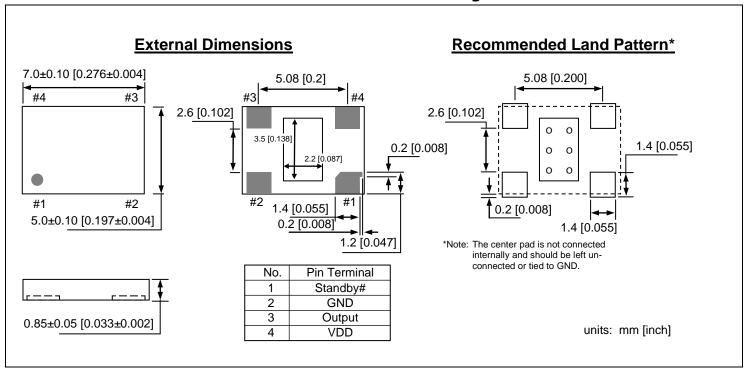
Standby Function


Standby# (pin 1)	Output (pin 3)
Hi Level	Output ON
Open (no connect)	Output ON
Low Level	High Impedance

Test Circuit



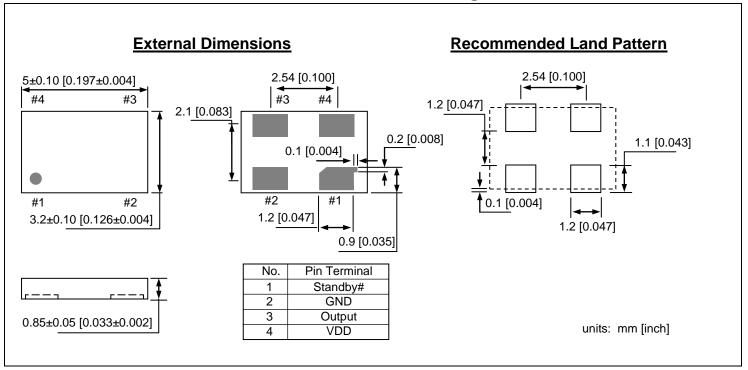
Board Layout (recommended)


Solder Reflow Profile

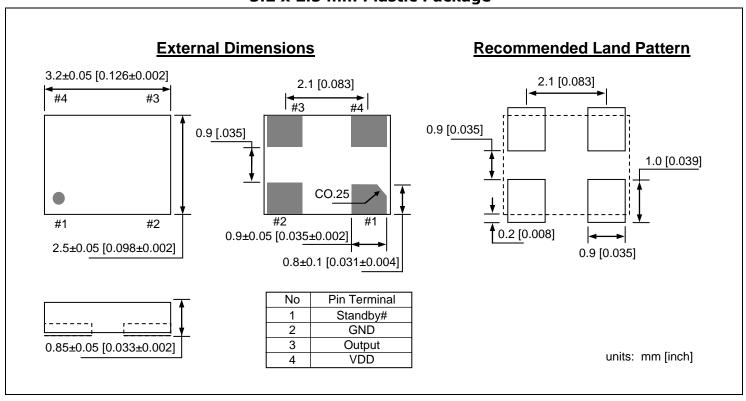
MSL 1 @ 260°C refer to JSTD-020C						
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.					
Preheat Time 150°C to 200°C	60-180 Sec					
Time maintained above 217°C	60-150 Sec					
Peak Temperature	255-260°C					
Time within 5°C of actual Peak	20-40 Sec					
Ramp-Down Rate	6°C/Sec Max.					
Time 25°C to Peak Temperature	8 min Max.					

Package Dimensions

7.0 x 5.0 mm Plastic Package

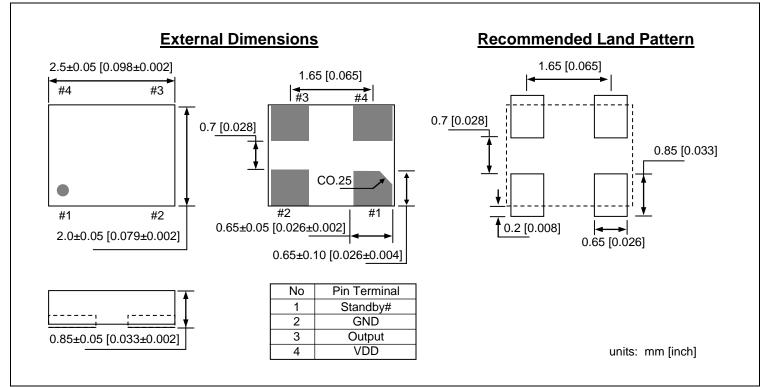


All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.


Page 5 | MK-Q-B-P-D-090110-02-1

5.0 x 3.2 mm Plastic Package

3.2 x 2.5 mm Plastic Package


All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 6 | MK-Q-B-P-D-090110-02-1

MK-Q-B-P-D-090110-02-1

2.5 x 2.0 mm Plastic Package

Ordering Information

DSC8004 PTS - T

PART NUMBERING GUIDE							
Package (Plastic QFN)	Temperature	Stability	Packing Option				
P=A: 7.0x5.0mm P=B: 5.0x3.2mm P=C: 3.2x2.5mm P=D: 2.5x2.0mm	T=E: -20° ~ +70° C T=I: -40° ~ +85° C T=L: -40° ~ +105° C	S=1: ±50ppm S=2: ±25ppm S=3: ±20ppm	Blank: Tubes T: Tape & Reel				

Disclaimer:

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

MICREL, Inc. 2180 Fortune Drive, San Jose, California USA

Phone: +1 (408) 944-0800 Fax: +1 (408) 474-1000 • Email: hbwhelp@micrel.com www.micrel.com

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use. Page 7 |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Programmable Oscillators category:

Click to view products by Micrel manufacturer:

Other Similar products are found below:

8N4Q001LG-0102CDI 8N4Q001LG-0139CDI 8N4Q001LG-0055CDI DSC8121CII DSC8102DI2 DSC8124CI2 DSC8121CL5 ECS-P143
10-AN SG-8002CA 2.4576M-PCBB ECS-3525-250-B-TR DSC6013JI1A-000.0000 DSC6013HI1A-002.5000T DSC6011JE2A-000.0000

DSC6011HI1A-002.5000T DSC6083HE1A-032K800T DSC6001JI1A-000.0000 DSC6001CI1A-011.0592 8008AI-71-18E-98.280000G

SIT8008BI-22-33E-8.000000G DSC8002CI2 AD2S99APZ AD2S99BPZ LTC6903HMS8#PBF LTC6903IMS8#PBF

LTC6991CDCB#TRMPBF SG-8018CB 98.304MTJHPA DS1086LU+C66 DS1090U-2/V+T DSC2211FL2-E0016 DSC6083CI1A-010K000

DSC6011CI2A-018.0000 DSC6001CI1A-016.9344T DSC6001CI1A-016.3690T DSC6001CE2A-025.0000 DSC6001CI1A-016.3690

DSC6051CE2A-003.0720 DSC6083CI1A-350K000 DSC6053CE2A-003.0720 DSC6083CI1A-350K000T DSC6001CI2A-007.3728T

DSC6011CI1A-013.5600 DSC6083CI1A-425K000 DSC6053CE2A-003.0720T DSC6051CE2A-003.0720T DSC6083CI1A-425K000T

DSC6083CI1A-010K000T DSC6001CI1A-003.6864 DSC6001CI1A-011.2896T DSC6001CI1A-012.0000 DSC6001CI2A-004.0000T