23A640/23K640

64K SPI Bus Low-Power Serial SRAM

Device Selection Table

Part Number	Vcc Range	Page Size	Temp. Ranges	Packages
23K640	2.7-3.6V	32 Byte	I, E	P, SN, ST
23A640	1.5-1.95V	32 Byte	I	P, SN, ST

Features:

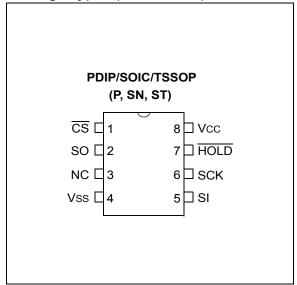
- · Max. Clock 20 MHz
- · Low-Power CMOS Technology:
 - Read Current: 3 mA at 1 MHz
 - Standby Current: 4 μA Max. at +85°C
- 8192 x 8-bit Organization
- · 32-Byte Page
- HOLD pin
- · Flexible Operating modes:
 - Byte read and write
 - Page mode (32 Byte Page)
 - Sequential mode
- · Sequential Read/Write
- · High Reliability
- · Temperature Ranges Supported:

Industrial (I): -40°C to +85°C
 Automotive (E): -40°C to +125°C

· Pb-Free and RoHS Compliant, Halogen Free

Pin Function Table

Name	Function
CS	Chip Select Input
SO	Serial Data Output
Vss	Ground
SI	Serial Data Input
SCK	Serial Clock Input
HOLD	Hold Input
Vcc	Supply Voltage


Description:

The Microchip Technology Inc. 23X640 are 64 Kbit Serial SRAM devices. The memory is accessed via a simple Serial Peripheral Interface (SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select $(\overline{\text{CS}})$ input.

Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts.

The 23X640 is available in standard packages including 8-lead PDIP and SOIC, and advanced packaging including 8-lead TSSOP.

Package Types (not to scale)

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Vcc	4.5V
All inputs and outputs w.r.t. Vss	-0.3V to Vcc +0.3V
Storage temperature	65°C to 150°C
Ambient temperature under bias	-40°C to 125°C
ESD protection on all pins	2kV

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS		Industrial (I): $TA = -40^{\circ}C$ to $+85^{\circ}C$ Automotive (E): $TA = -40^{\circ}C$ to $+125^{\circ}C$					
Param. No.	Sym.	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Test Conditions
D001	Vcc	Supply voltage	1.5	_	1.95	V	23A640 (I-Temp)
D001	Vcc	Supply voltage	2.7	_	3.6	V	23K640 (I, E-Temp)
D002	ViH	High-level input voltage	.7 Vcc	_	Vcc +0.3	V	
D003	VIL	Low-level input voltage	-0.3	_	0.2xVcc 0.15xVcc	V V	23K640 (E-Temp)
D004	Vol	Low-level output voltage	_	_	0.2	V	IOL = 1 mA
D005	Vон	High-level output voltage	Vcc -0.5	_		٧	ΙΟΗ = -400 μΑ
D006	ILI	Input leakage current	_	_	±0.5	μА	CS = Vcc, Vin = Vss or Vcc
D007	ILO	Output leakage current	_	_	±0.5	μА	CS = Vcc, Vout = Vss or Vcc
D008	Icc Read		_	_	3	mA	FCLK = 1 MHz; SO = O
		On a ration or a command	_	_	6	mA	FCLK = 10 MHz; SO = 0
		Operating current	_	_	10	mA	FCLK = 20 MHz; SO = O
D009	Iccs	Standby ourrant	_	0.2	1	μΑ	CS = Vcc = 1.8V, Inputs tied to Vcc or Vss
		Standby current	_	1	4	μА	CS = Vcc = 3.6V, Inputs tied to
			_	5	10	μΑ	CS = Vcc = 3.6V, Inputs tied to Vcc or Vss @ 125°C
D010	CINT	Input capacitance			7	pF	Vcc = 0V, f = 1 MHz, Ta = 25°C (Note 1)
D011	VDR	RAM data retention voltage (2)	_	1.2	_	V	

Note 1: This parameter is periodically sampled and not 100% tested. Typical measurements taken at room temperature (25°C).

^{2:} This is the limit to which VDD can be lowered without losing RAM data. This parameter is periodically sampled and not 100% tested.

TABLE 1-2: AC CHARACTERISTICS

AC CHA	AC CHARACTERISTICS			Industrial (I): TA = -40 °C to $+85$ °C Automotive (E): TA = -40 °C to $+125$ °C			
Param. No.	Sym.	Characteristic	Min.	Max.	Units	Test Conditions	
1	FCLK	Clock frequency	_	10	MHz	Vcc = 1.5V (I-Temp)	
				16	MHz	Vcc = 1.8V (I-Temp)	
			_	16	MHz	Vcc = 3V (E-Temp)	
			_	20	MHz	VCC = 3.0V (I-Temp)	
2	Tcss	CS setup time	50	_	ns	VCC = 1.5V (I-Temp)	
			32	_	ns	Vcc = 1.8V (I-Temp)	
			32	_	ns	Vcc = 3.0V (E-Temp)	
			25	_	ns	Vcc = 3.0V (I-Temp)	
3	Tcsh	CS hold time	50	_	ns	VCC = 1.5V (I-Temp)	
			50	_	ns	Vcc = 1.8V (I-Temp)	
			50	_	ns	Vcc = 3.0V (E-Temp)	
			50	_	ns	Vcc = 3.0V (I-Temp)	
4	TCSD	CS disable time	50	_	ns	Vcc = 1.5V (I-Temp)	
			32	_	ns	Vcc = 1.8V (I-Temp)	
			32	_	ns	Vcc = 3.0V (E-Temp)	
			25	_	ns	Vcc = 3.0V (I-Temp)	
5	Tsu	Data setup time	10	_	ns	Vcc = 1.5V (I-Temp)	
		·	10	_	ns	Vcc = 1.8V (I-Temp)	
			10	_	ns	Vcc = 3.0V (E-Temp)	
			10	_	ns	VCC = 3.0V (I-Temp)	
6	THD	Data hold time	10	_	ns	Vcc = 1.5V (I-Temp)	
			10	_	ns	Vcc = 1.8V (I-Temp)	
			10	_	ns	Vcc = 3.0V (E-Temp)	
			10	_	ns	Vcc = 3.0V (I-Temp)	
7	TR	CLK rise time	_	2	us	Note 1	
8	TF	CLK fall time	_	2	us	Note 1	
9	Тні	Clock high time	50	_	ns	Vcc = 1.5V (I-Temp)	
			32	_	ns	Vcc = 1.8V (I-Temp)	
			32	_	ns	Vcc = 3.0V (E-Temp)	
			25	_	ns	Vcc = 3.0V (I-Temp)	
10	TLO	Clock low time	50	_	ns	Vcc = 1.5V (I-Temp)	
			32	_	ns	Vcc = 1.8V (I-Temp)	
			32	_	ns	Vcc = 3.0V (E-Temp)	
			25	_	ns	VCC = 3.0V (I-Temp)	
11	TCLD	Clock delay time	50		ns	Vcc = 1.5V (I-Temp)	
			32	_	ns	Vcc = 1.8V (I-Temp)	
			32	_	ns	VCC = 3.0V (E-Temp)	
			25	_	ns	VCC = 3.0V (I-Temp)	
12	Tv	Output valid from clock low	_	50	ns	Vcc = 1.5V (I-Temp)	
			_	32	ns	Vcc = 1.8V (I-Temp)	
			_	32	ns	Vcc = 3.0V (E-Temp)	
			_	25	ns	VCC = 3.0V (I-Temp)	
13	Тно	Output hold time	0	<u> </u>	ns	Note 1	

Note 1: This parameter is periodically sampled and not 100% tested.

TABLE 1-2: AC CHARACTERISTICS (CONTINUED)

		Industrial (I): $TA = -40^{\circ}C$ to $+85^{\circ}C$ Automotive (E): $TA = -40^{\circ}C$ to $+125^{\circ}C$						
Param. No.	Sym.	Characteristic	Min. Max. Units Test Conditions					
14	TDIS	Output disable time	_ _ _ _	20 20 20 20	ns ns ns ns	VCC = 1.5V (I-Temp) VCC = 1.8V (I-Temp) VCC = 3.0V (E-Temp) VCC = 3.0V (I-Temp)		
15	THS	HOLD setup time	10		ns	_		
16	Тнн	HOLD hold time	10	_	ns	_		
17	THZ	HOLD low to output High-Z	10	_	ns	_		
18	THV	HOLD high to output valid	_	50	ns	_		

Note 1: This parameter is periodically sampled and not 100% tested.

TABLE 1-3: AC TEST CONDITIONS

AC Waveform:	AC Waveform:						
Input pulse level	0.1 Vcc to 0.9 Vcc						
Input rise/fall time	5 ns						
Operating temperature	-40°C to +125°C						
CL = 100 pF	_						
Timing Measurement Reference Level:							
Input	0.5 Vcc						
Output	0.5 Vcc						

FIGURE 1-1: HOLD TIMING

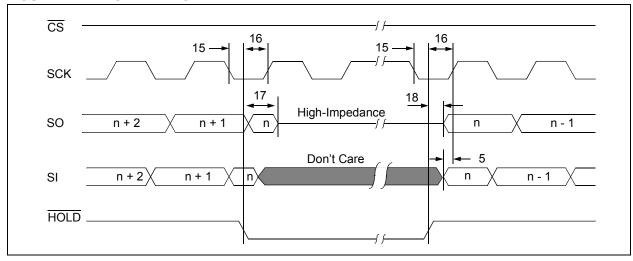


FIGURE 1-2: SERIAL INPUT TIMING

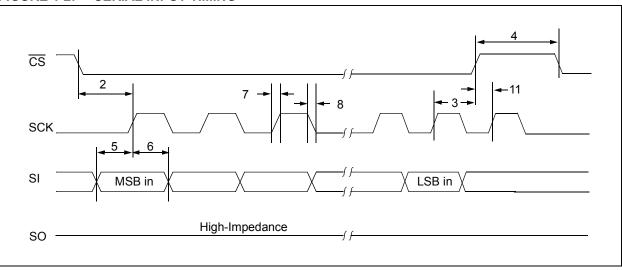
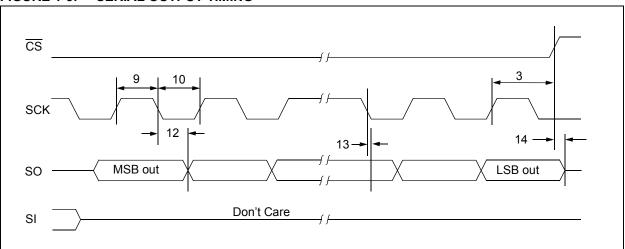



FIGURE 1-3: SERIAL OUTPUT TIMING

2.0 FUNCTIONAL DESCRIPTION

2.1 Principles of Operation

The 23X640 is a 8192-byte Serial SRAM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PIC® microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol.

The 23X640 contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the <u>rising</u> edge of SCK. The CS pin must be low and the HOLD pin must be high for the entire operation.

Table 2-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses and data are transferred MSB first, LSB last.

Data $\underline{(SI)}$ is sampled on the first rising edge of SCK after \overline{CS} goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the \overline{HOLD} input and \underline{place} the 23X640 in 'HOLD' mode. After releasing the \underline{HOLD} pin, operation will resume from the point when the \overline{HOLD} was asserted.

2.2 Modes of Operation

The 23A256/23K256 has three modes of operation that are selected by setting bits 7 and 6 in the STATUS register. The modes of operation are Byte, Page and Burst.

Byte Operation – is selected when bits 7 and 6 in the STATUS register are set to 00. In this mode, the read/write operations are limited to only one byte. The Command followed by the 16-bit address is clocked into the device and the data to/from the device is transferred on the next 8 clocks (Figure 2-1, Figure 2-2).

Page Operation – is selected when bits 7 and 6 in the STATUS register are set to 10. The 23A640/23K640 has 1024 pages of 32 Bytes. In this mode, the read and write operations are limited to within the addressed page (the address is automatically incremented internally). If the data being read or written reaches the page boundary, then the internal address counter will increment to the start of the page (Figure 2-3, Figure 2-4).

Sequential Operation – is selected when bits 7 and 6 in the STATUS register are set to 01. Sequential operation allows the entire array to be written to and read from. The internal address counter is automatically incremented and page boundaries are ignored. When the internal address counter reaches the end of the array, the address counter will roll over to 0x0000 (Figure 2-5, Figure 2-6).

2.3 Read Sequence

The device is selected by pulling $\overline{\text{CS}}$ low. The 8-bit READ instruction is transmitted to the 23X640 followed by the 16-bit address, with the first MSB of the address being a "don't care" bit. After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin.

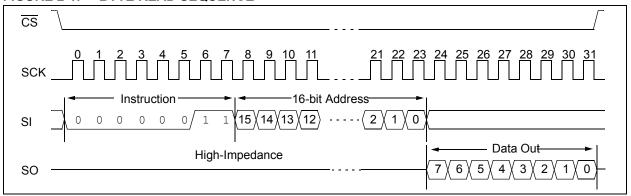
If operating in Page mode, after the first byte of data is shifted out, the next memory location on the page can be read out by continuing to provide clock pulses. This allows for 32 consecutive address reads. After the 32nd address read the internal address counter wraps back to the byte 0 address in that page.

If operating in Sequential mode, the data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal Address Pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached (1FFFh), the address counter rolls over to address 0000h, allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the $\overline{\text{CS}}$ pin (Figure 2-1).

2.4 Write Sequence

Prior to any attempt to write data to the 23X640, the device must be selected by bringing $\overline{\text{CS}}$ low.

Once the device is selected, the Write command can be started by issuing a \mathtt{WRITE} instruction, followed by the 16-bit address, with the first three MSBs of the address being a "don't care" bit, and then the data to be written. A write is terminated by the $\overline{\text{CS}}$ being brought high.


If operating in Page mode, after the initial data byte is shifted in, additional bytes can be shifted into the device. The Address Pointer is automatically incremented. This operation can continue for the entire page (32 Bytes) before data will start to be overwritten.

If operating in Sequential mode, after the initial data byte is shifted in, additional bytes can be clocked into the device. The internal Address Pointer is automatically incremented. When the Address Pointer reaches the highest address (1FFFh), the address counter rolls over to (0000h). This allows the operation to continue indefinitely, however, previous data will be overwritten.

TABLE 2-1: INSTRUCTION SET

Instruction Name	Instruction Format	Description				
READ	0000 0011	Read data from memory array beginning at selected address				
WRITE	0000 0010	Write data to memory array beginning at selected address				
RDSR	0000 0101	Read STATUS register				
WRSR	0000 0001	Write STATUS register				

FIGURE 2-1: BYTE READ SEQUENCE

FIGURE 2-2: BYTE WRITE SEQUENCE

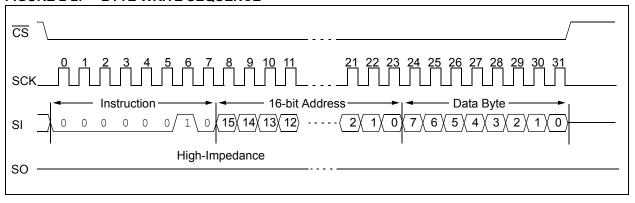
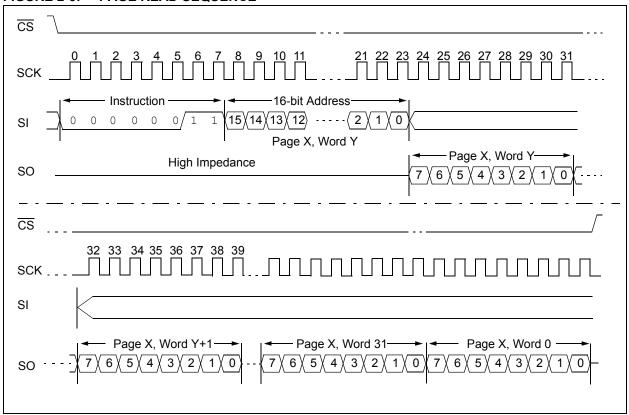
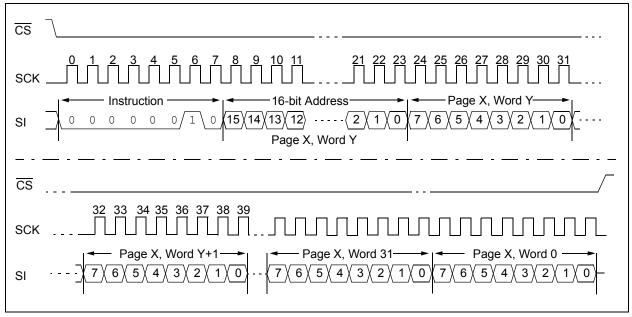
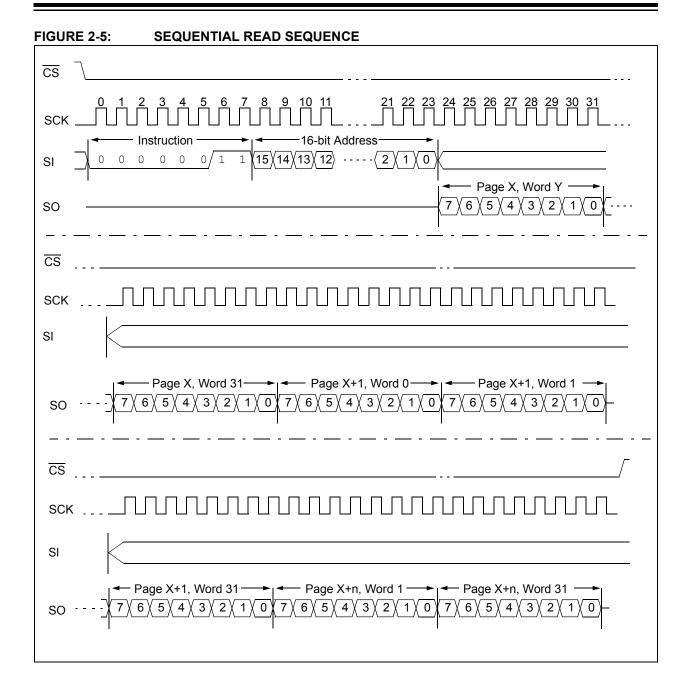
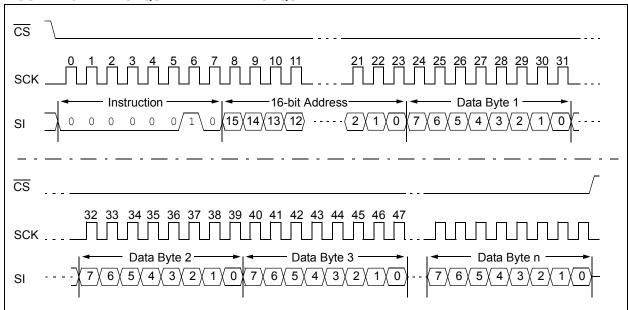





FIGURE 2-3: PAGE READ SEQUENCE


FIGURE 2-4: PAGE WRITE SEQUENCE

23A640/23K640

FIGURE 2-6: SEQUENTIAL WRITE SEQUENCE

2.5 Read Status Register Instruction (RDSR)

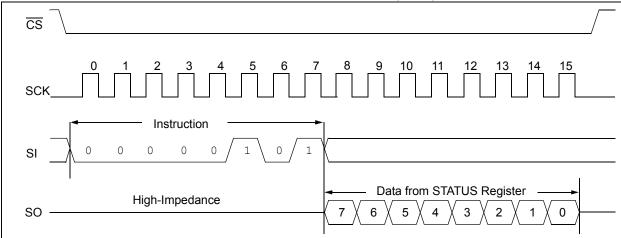
The Read Status Register instruction (RDSR) provides access to the STATUS register. The STATUS register may be read at any time. The STATUS register is formatted as follows:

TABLE 2-2: STATUS REGISTER

7	6	5	4	3	2	1	0
W/R	W/R	_	_	_	_	_	W/R
MODE	MODE	0	0	0	0	1	HOLD
W/R = writable/readable.							

The mode bits indicate the operating mode of the SRAM. The possible modes of operation are:

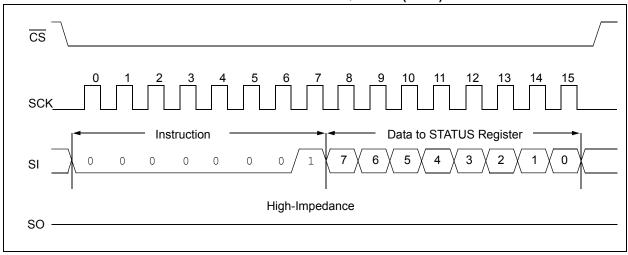
- 0 0 = Byte mode (default operation)
- 1 0 = Page mode
- 0 1 = Sequential mode
- 1 1 = Reserved


Write and read commands are shown in Figure 2-7 and Figure 2-8.

The HOLD bit enables the Hold pin functionality. It must be set to a '0' before HOLD pin is brought low for HOLD function to work properly. Setting HOLD to '1' disables feature.

Bits 2 through 5 are reserved and should always be set to '0'. Bit 1 will read back as '1' but should always be written as '0'.

See Figure 2-7 for the RDSR timing sequence.


FIGURE 2-7: READ STATUS REGISTER TIMING SEQUENCE (RDSR)

2.6 Write Status Register Instruction (WRSR)

The Write Status Register instruction (WRSR) allows the user to write to the bits in the STATUS register as shown in Table 2-2. This allows for setting of the Device operating mode. Several of the bits in the STATUS register must be cleared to '0'. See Figure 2-8 for the WRSR timing sequence.

FIGURE 2-8: WRITE STATUS REGISTER TIMING SEQUENCE (WRSR)

2.7 Power-On State

The 23X640 powers on in the following state:

- The device is in low-power Standby mode (CS = 1)
- A high-to-low-level transition on CS is required to enter active state

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Name	PDIP/SOIC TSSOP	Function
CS	1	Chip Select Input
SO	2	Serial Data Output
Vss	4	Ground
SI	5	Serial Data Input
SCK	6	Serial Clock Input
HOLD	7	Hold Input
Vcc	8	Supply Voltage

3.1 Chip Select (CS)

A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. After power-up, a low level on $\overline{\text{CS}}$ is required, prior to any sequence being initiated.

3.2 Serial Output (SO)

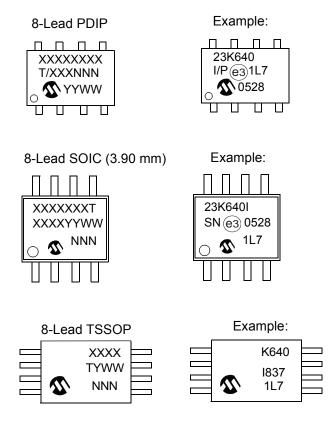
The SO pin is used to transfer data out of the 23X640. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock.

3.3 Serial Input (SI)

The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock.

3.4 Serial Clock (SCK)

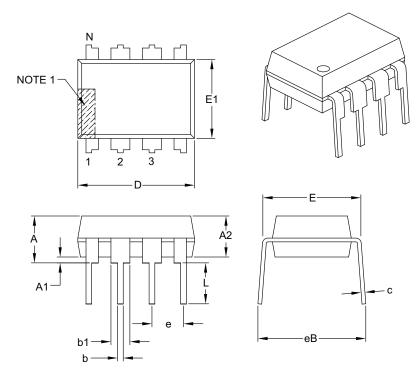
The SCK is used to synchronize the communication between a master and the 23X640. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input.


3.5 Hold (HOLD)

The HOLD pin is used to suspend transmission to the 23X640 while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-to-low transition. The 23X640 must remain selected during this sequence. The SI, SCK and SO pins are in a highimpedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Lowering the HOLD line at any time will tri-state the SO line.

Hold functionality is disabled by the STATUS register bit.

4.0 PACKAGING INFORMATION


4.1 Package Marking Information

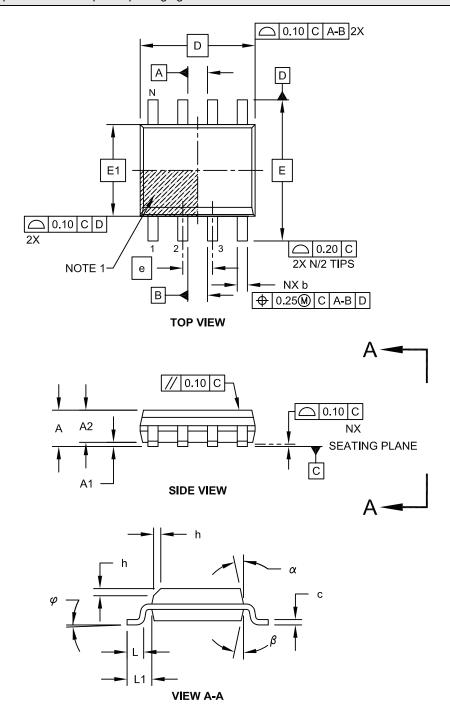
Legend: XX...X Part number or part number code Τ Temperature (I, E) Υ Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') Alphanumeric traceability code (2 characters for small packages) NNN Pb-free JEDEC designator for Matte Tin (Sn) (e3) Note: For very small packages with no room for the Pb-free JEDEC designator (e3), the marking will only appear on the outer carton or reel label. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	N 8		
Pitch	е		.100 BSC	
Top to Seating Plane	A	_	_	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	_	_
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	_	.430

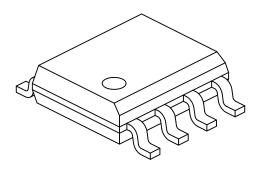
Notes:


- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

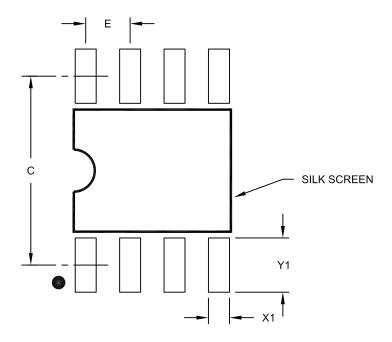
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	Α	ı	İ	1.75	
Molded Package Thickness	A2	1.25	ı	-	
Standoff §	A1	0.10	ı	0.25	
Overall Width	Е	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D		4.90 BSC		
Chamfer (Optional)	h	0.25	ı	0.50	
Foot Length	L	0.40	ı	1.27	
Footprint	L1		1.04 REF		
Foot Angle	φ	0°	į	8°	
Lead Thickness	С	0.17 - 0.25			
Lead Width	b	0.31 - 0.51			
Mold Draft Angle Top	α	5° - 15°			
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

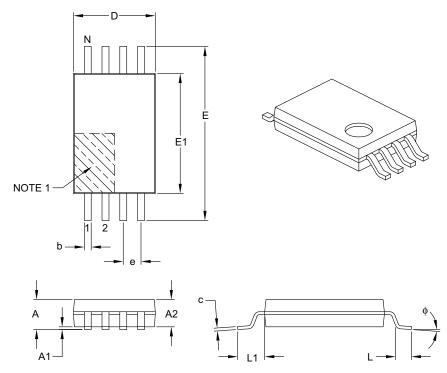
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

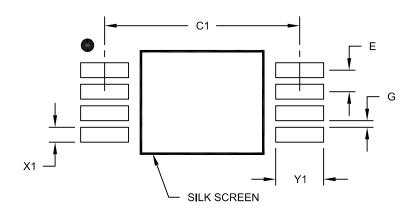
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е	0.65 BSC		
Overall Height	A	_	_	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	2.90	3.00	3.10
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	_	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- $2. \ \ Dimensions \ D \ and \ E1 \ do \ not \ include \ mold \ flash \ or \ protrusions. \ Mold \ flash \ or \ protrusions \ shall \ not \ exceed \ 0.15 \ mm \ per \ side.$
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-086B

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2086A

APPENDIX A: REVISION HISTORY

Revision A (12/2008)

Original Release.

Revision B (01/2009)

Revised Section 2.5: Added a paragraph.

Revision C (04/2009)

Removed Preliminary status; Revised Standby Current; Revised Table 1-1, Param. No. D009; Revised TSSOP Package marking information; Revised Product ID.

Revision D (08/2010)

Revised Table 1-1, Param. No. D009; Revised Package Drawings.

Revision E (10/2010)

Revised Parameter D003 in Table 1-1: DC Characteristics.

23A640/23K640

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	· ·	Total Pages Sent				
	m: Name					
	Company					
	Address					
	Telephone: ()	FAX: ()				
Арр	lication (optional):					
Wou	uld you like a reply?YN					
Dev	rice: 23A640/23K640	Literature Number: DS22126E				
Que	estions:					
1.	What are the best features of this document?					
2	How does this document meet your hardware and	I software development needs?				
۷.	Tiow does this document meet your natuware and	r software development needs:				
3.	3. Do you find the organization of this document easy to follow? If not, why?					
4.	What additions to the document do you think would enhance the structure and subject?					
5.	What deletions from the document could be made without affecting the overall usefulness?					
6.	Is there any incorrect or misleading information (w	/hat and where)?				
7	How would you improve this document?					
7.	How would you improve this document?					

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X Tape & Red	_ X <u>/XX</u> el Temp Range Package	Ex	xamples: 23K640-I/ST = 64 Kbit, 3.6V Serial SRAM, Industrial temp., TSSOP package
			b)	23A640T-I/SN = 64 Kbit, 1.8V Serial SRAM, Industrial temp., Tape & Reel, SOIC package
Device:	23A640 = 23K640 =	64 Kbit, 1.8V, SPI Serial SRAM 64 Kbit, 3.6V, SPI Serial SRAM	(c)	
Tape & Reel:	Blank = T =	Standard packaging (tube) Tape & Reel		
Temperature Range:	I = E =	-40°C to+85°C -40°C to +125°C		
Package:	P = SN = ST =	Plastic PDIP (300 mil body), 8-lead Plastic SOIC (3.90 mm body), 8-lead TSSOP, 8-lead		

23A640/23K640

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-674-7

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2009

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869

Fax: 44-118-921-5820

08/02/11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0

IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70

CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL
10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA

5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 5962-9161705MXA

GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-8161708MYA 5962-8971203XA 5962-8971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8866205YA 5962-88667519XA