

NPN MEDIUM POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/349

DESCRIPTION

This family of 2N3506 through 2N3507A high-frequency, epitaxial planar transistors feature low saturation voltage. These devices are also available in TO-5 and low profile U4 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3506 through 2N3507A series.
- RoHS compliant versions available (commercial grade only).
- $V_{CR(sat)} = 0.5 \text{ V} @ I_C = 500 \text{ mA}.$
- Rise time $t_r = 30$ ns max @ $I_C = 1.5$ A, $I_{B1} = 150$ mA.
- Fall time $t_f = 35$ ns max @ $I_C = 1.5$ A, $I_{B1} = I_{B2} = 150$ mA.

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching and low package profile.
- Military and other high-reliability applications.

MAXIMUM RATINGS

Parameters / Test Conditions	Symbol	2N3506	2N3507	Unit
Collector-Emitter Voltage	V _{CEO}	40	50	V
Collector-Base Voltage	V _{CBO}	60	80	V
Emitter-Base Voltage	V _{EBO}	5.0		V
Thermal Resistance Junction-to-Ambient	R _{θJA}	175		°C/W
Thermal Resistance Junction-to-Case	R _{θJC}	18		°C/W
Collector Current	Ic	3.0		Α
Total Power Dissipation	PD	-	.0 .0	W
Operating & Storage Junction Temperature Range	T_J, T_stg	-65 to	+200	°C

<u>Notes</u>: 1. Derate linearly 5.71 mW/°C for $T_A > +25$ °C.

2. Derate linearly 55.5 mW/°C for T_{C} > +110 °C.

<u>Qualified Levels</u>: JAN, JANTX and JANTXV

TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 2N3506L – 2N3507AL

U4 package (surface mount) 2N3506U4 – 2N3507AU4

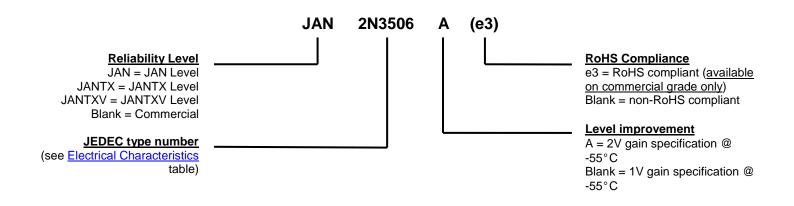
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Leads are kovar, nickel plated, and finish is solder dip (Sn63/Pb37). Can be RoHS compliant (commercial grade only) with pure matte-tin (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: NPN (see package outline).
- WEIGHT: Approximately 1.064 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
C _{obo}	Common-base open-circuit output capacitance.				
I _{CEO}	Collector cutoff current, base open.				
I _{CEX}	Collector cutoff current, circuit between base and emitter.				
I _{EBO}	Emitter cutoff current, collector open.				
h _{FE}	Common-emitter static forward current transfer ratio.				
V _{CEO}	Collector-emitter voltage, base open.				
V _{CBO}	Collector-emitter voltage, emitter open.				
V _{EBO}	Emitter-base voltage, collector open.				

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

OFF CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage					
I _C = 10 mA	2N3506 2N3507	V _{(BR)CEO}	40 50		V
Collector-Emitter Cutoff Current $V_{CE} = 40 V; V_{EB} = 4 V$ $V_{CE} = 60 V; V_{EB} = 4 V$	2N3506 2N3507	I _{CEX}		1.0 1.0	μA
Collector-Base Breakdown Voltage $I_C = 100 \ \mu A$	2N3506 2N3507	V _{(BR)CBO}	60 80		V
Emitter-Base Breakdown Voltage $I_E = 10 \ \mu A$		V _{(BR)EBO}	5		V

ON CHARACTERISTICS (1)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio $I_{C} = 500 \text{ mA}, V_{CE} = 1 \text{ V}$	2N3506 2N3507	h _{FE}	50 35	250 175	
Forward-Current Transfer Ratio $I_{C} = 1.5 \text{ A}, V_{CE} = 2 \text{ V}$	2N3506 2N3507	h _{FE}	40 30	200 150	
Forward-Current Transfer Ratio $I_{C} = 2.5 \text{ A}, V_{CE} = 3 \text{ V}$	2N3506 2N3507	h _{FE}	30 25		
Forward-Current Transfer Ratio $I_{C} = 3.0 \text{ A}, V_{CE} = 5 \text{ V}$	2N3506 2N3507	h _{FE}	25 20		
Forward-Current Transfer Ratio $I_{C} = 500 \text{ mA}, V_{CE} = 1.0 \text{ V} @ -55 ^{\circ}\text{C}$	2N3506 2N3507	h _{FE}	25 17		
Forward-Current Transfer Ratio $I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V} @ -55 ^{\circ}\text{C}$	2N3506A 2N3507A	h _{FE}	25 17		
Collector-Emitter Saturation Voltage $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$		V _{CE(sat)}		0.5	V
Collector-Emitter Saturation Voltage $I_{C} = 1.5 \text{ A}, I_{B} = 150 \text{ mA}$		V _{CE(sat)}		1.0	V
Collector-Emitter Saturation Voltage $I_{C} = 2.5 \text{ A}, I_{B} = 250 \text{ mA}$		V _{CE(sat)}		1.5	V
Base-Emitter Saturation Voltage $I_{C} = 500 \text{ mA}$, $I_{B} = 50 \text{ mA}$		$V_{\text{BE(sat)}}$		1.0	V
Base-Emitter Saturation Voltage $I_{C} = 1.5 \text{ A}, I_{B} = 150 \text{ mA}$		$V_{\text{BE(sat)}}$	0.8	1.3	V
Base-Emitter Saturation Voltage I_{C} = 2.5 A, I_{B} = 250 mA		$V_{\text{BE(sat)}}$		2.0	V

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short- Circuit Forward Current Transfer Ratio $I_{C} = 100 \text{ mA}, V_{CE} = 5 \text{ V}, f = 20 \text{ MHz}$	h _{fe}	3.0	15	
Output Capacitance V _{CB} = 10 V, I _E = 0, 100 kHz \leq f \leq 1.0 MHz	C _{obo}		40	pF
Input Capacitance V _{EB} = 3.0 V, I _C = 0, 100 kHz \leq f \leq 1.0 MHz	Cibo		300	pF

SWITCHING CHARACTERISTICS (2)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Delay Time I _C = 1.5 A, I _{B1} = 150 mA	t _d		15	ns
Rise Time $I_C = 1.5 \text{ A}, I_{B1} = 150 \text{ mA}$	tr		30	ns
Storage Time $I_C = 1.5 \text{ A}, I_{B1} = I_{B2} = 150 \text{ mA}$	t _s		55	ns
Fall Time $I_{C} = 1.5 \text{ A}, I_{B1} = I_{B2} = 150 \text{ mA}$	t _f		35	ns

(2) Consult MIL-PRF-19500/349 for additional information.

GRAPHS

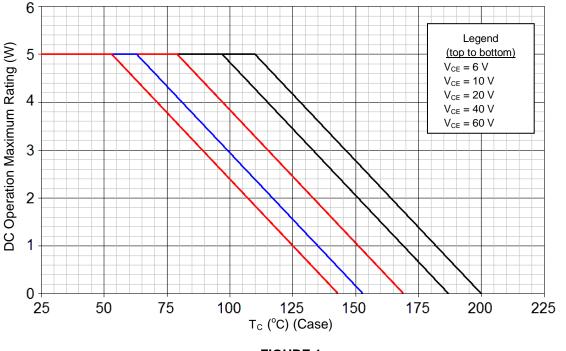


FIGURE 1 <u>Temperature-Power Derating Curve</u> NOTE: Thermal Resistance Junction to Case = 18.0 °C/W

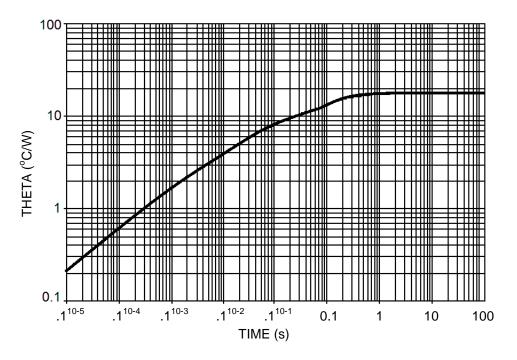
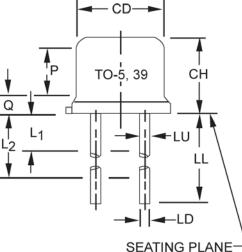
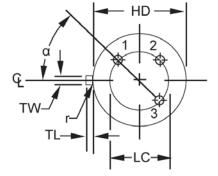



FIGURE 2 Maximum Thermal Impedance (R_{OJC})



PACKAGE DIMENSIONS

<u> </u>	- 1	
.D \ D.	L2	
	Р	
B PLANE	Q	

Symbol	Inc	Inches Milli		Millimeters		
	Min	Max	Min	Max		
CD	0.305	0.335	7.75	8.51		
СН	0.240	0.260	6.10	6.60		
HD	0.335	0.370	8.51	9.40		
LC	0.20	00 TP	5.08	B TP	6	
LD	0.016	0.021	0.41	0.53	7, 8	
LL	See notes 7, 8, 11					
LU	0.016	0.019	0.41	0.48	7, 8	
L1		0.050		1.27	7, 8	
L2	0.250		6.35		7, 8	
Р	0.100		2.54		5	
Q		0.050		1.27	4	
TL	0.029	0.045	0.74	1.14	3	
TW	0.028	0.034	0.71	0.86	2	
r		0.010		0.25	10	
α	45	° TP	45° TP		6	

NOTES:

- 1. Dimension are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TH shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. Dimension LL shall be .5 inches (12.7mm) minimum and .75 inches (19.0 mm) maximum.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 =emitter, lead 2 =base, lead 3 =collector.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001