

Low Power NPN Silicon Transistor

Qualified per MIL-PRF-19500/391

Qualified Levels: JAN, JANTX, JANTXV, and JANS

DESCRIPTION

This 2N3700UB NPN ceramic surface mount device is military qualified for high-reliability applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent to JEDEC registered 2N3700 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/391.
- Rad hard levels are also available per MIL-PRF-19500/391. (See RHA datasheet for JANS_2N3700UB.)
- RoHS compliant versions available (commercial grade only).

- Ceramic UB surface mount package.
- Lightweight.
- Low power.

APPLICATIONS / BENEFITS

(leaded) 2N3019

(leaded)

2N3700

Military and other high-reliability applications.

TO-5 package (leaded) 2N3019S

UB Package

Also available in: TO-18 (TO-206AA)

TO-39 (TO-205AD)

TO-46 (TO-206AB)

(leaded) 2N3057A

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C
Thermal Impedance Junction-to-Ambient	R _{OJA}	325	°C/W
Thermal Impedance Junction-to-Solder Pad	R _{OJSP}	90	°C/W
Collector-Emitter Voltage	V_{CEO}	80	V
Collector-Base Voltage	V_{CBO}	140	V
Emitter-Base Voltage	V_{EBO}	7.0	V
Collector Current	Ic	1.0	Α
Total Power Dissipation: @ $T_A = +25$ °C (1)	P _D	0.5	W

1. Derate linearly 6.6 mW/°C for $T_A \ge +25$ °C.

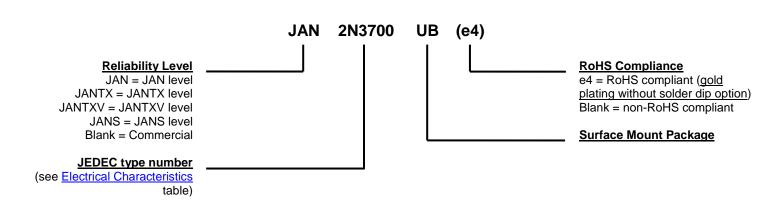
MSC - Lawrence

6 Lake Street. Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate (hot solder dip optional for military).
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-481D. Consult factory for quantities.
- WEIGHT: < 0.04 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

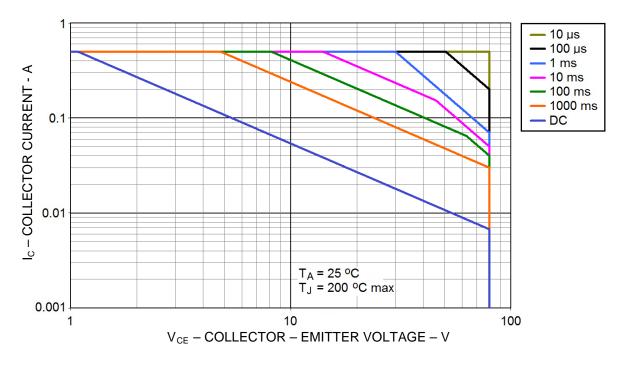
SYMBOLS & DEFINITIONS							
Symbol	Definition						
f	Frequency						
I _B	Base current (dc)						
I _E	Emitter current (dc)						
T _A	Ambient temperature						
T _C	Case temperature						
T _{SP}	Solder pad temperature						
V_{CB}	Collector to base voltage (dc)						
V_{CE}	Collector to emitter voltage (dc)						
$V_{\sf FB}$	Emitter to base voltage (dc)						

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit			
OFF CHARACTERISTICS							
Collector-Emitter Breakdown Voltage I _C = 30 mA	V _{(BR)CEO}	80		V			
Collector-Base Cutoff Current V _{CB} = 140 V	I _{CBO}		10	μA			
Emitter-Base Cutoff Current V _{EB} = 7 V	I _{EBO1}		10	μΑ			
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		10	nA			
Emitter-Base Cutoff Current V _{EB} = 5.0 V	I _{EBO2}		10	nA			
ON CHARACTERISTICS							
Forward-Current Transfer Ratio							
$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}$		100	300				
$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$		50	300				
$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	h _{FE}	90					
$I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$		50	300				
$I_C = 1.0 \text{ A}, V_{CE} = 10 \text{ V}$		15					
Collector-Emitter Saturation Voltage							
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	V _{CE(sat)}		0.2 0.5	V			
Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{BE(sat)}		1.1	V			

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio I_C = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 20 \text{ MHz}$	h _{fe}	5.0	20	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		12	pF
Input Capacitance $V_{EB} = 0.5 \text{ V, } I_{C} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{ibo}		60	pF

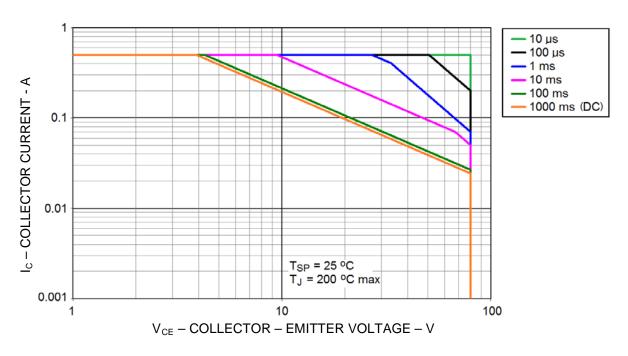


ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests T _C = 25 °C, 1 cycle, t = 1	0 ms	
Test 1 2N3700UB	$V_{CE} = 10 \text{ V}$ $I_{C} = 180 \text{ mA}$	
Test 2 2N3700UB	$V_{CE} = 40 \text{ V}$ $I_{C} = 45 \text{ mA}$	
Test 3 2N3700UB	$V_{CE} = 80 \text{ V}$ $I_C = 22.5 \text{ mA}$	

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.



Maximum Safe Operating Area @ T_A = 25 °C

See additional SOA graph on next page.

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted (continued)

Maximum Safe Operating Area (T_{SP} = 25°C)

GRAPHS

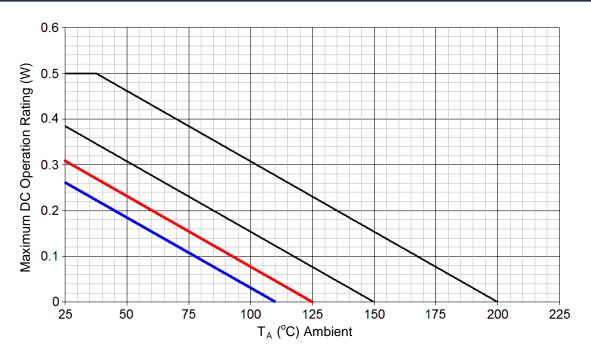


FIGURE 1
Temperature-Power Derating (R_{OJA})

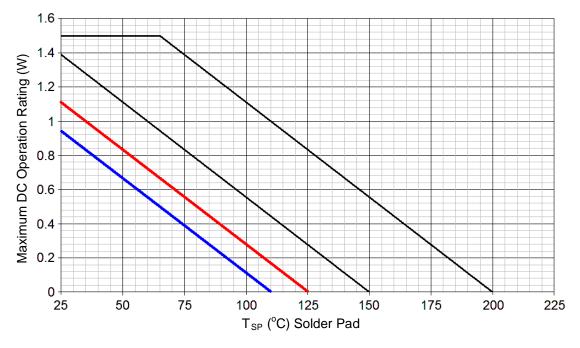
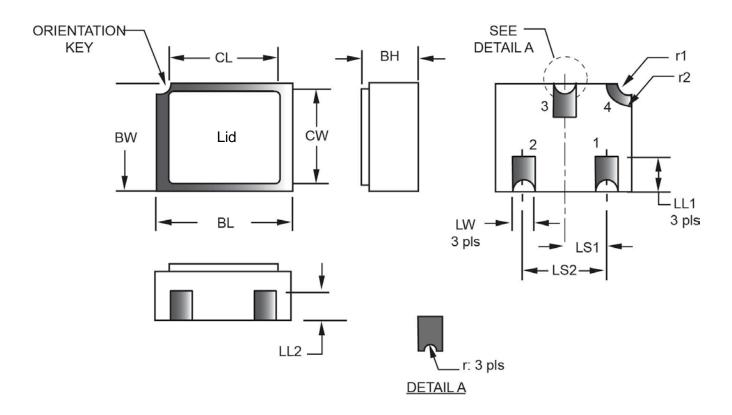



FIGURE 2 Temperature-Power Derating ($R_{\Theta JSP}$)

PACKAGE DIMENSIONS

	Dimensions					Dimensions					
Symbol	Inch		Millimeters		Note Symbol		Inch		Millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	0.046	0.056	1.17	1.42		LS₁	0.035	0.039	0.89	0.99	
BL	0.115	0.128	2.92	3.25		LS ₂	0.071	0.079	1.80	2.01	
BW	0.085	0.108	2.16	2.74		LW	0.016	0.024	0.41	0.61	
CL	-	0.128	-	3.25		r	-	0.008	-	0.20	
CW	-	0.108	-	2.74		r ₁	-	0.012	-	0.31	
LL ₁	0.022	0.038	0.56	0.96		r ₂	-	.022	-	0.56	
LL ₂	0.017	0.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001