

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

### NPN POWER SILICON TRANSISTOR

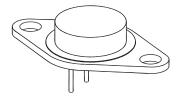
Qualified per MIL-PRF-19500/454

**DEVICES** 

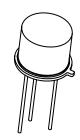
2N5660 2N5661 2N5662 2N5660U3 2N5661U3 2N5663

LEVELS **JAN JANTX JANTXV** 

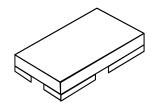
### **ABSOLUTE MAXIMUM RATINGS** ( $T_C = +25$ °C unless otherwise noted)


| Parameters / Test Conditions                                                 | Symbol                                                        | 2N5660<br>2N5662                        | 2N5661<br>2N5663                        | Unit |
|------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------|
| Collector-Emitter Voltage                                                    | $V_{CEO}$                                                     | 200                                     | 300                                     | Vdc  |
| Collector-Base Voltage                                                       | $V_{CBO}$                                                     | 250                                     | 400                                     | Vdc  |
| Collector-Emitter Voltage                                                    | $V_{CER}$                                                     | 250                                     | 400                                     | Vdc  |
| Emitter-Base Voltage                                                         | $V_{\rm EBO}$                                                 | (                                       | 6                                       | Vdc  |
| Base Current                                                                 | I <sub>B</sub> 0.5                                            |                                         |                                         | Adc  |
| Collector Current                                                            | $I_{C}$                                                       | 2.0                                     |                                         | Adc  |
| Operating & Storage Junction Temperature<br>Range                            | T <sub>j</sub> , T <sub>stg</sub>                             | -65 to +200                             |                                         | °C   |
|                                                                              |                                                               | 2N5660<br>2N5661                        | 2N5662<br>2N5663                        |      |
| Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$ @ $T_C = +100^{\circ}C$ | $P_{T}$                                                       | 2.0 <sup>(1)</sup><br>20 <sup>(3)</sup> | 1.0 <sup>(2)</sup><br>15 <sup>(4)</sup> | W    |
| Thermal Resistance, Junction-to-Case Junction-to-Ambient                     | $\begin{array}{c} R_{\theta JC} \\ R_{\theta JA} \end{array}$ | 5.0<br>87.5                             | 6.7<br>175                              | °C/W |
| Thermal Resistance, Junction-to-Case  2N5660U3 2N5661U3                      | $R_{	heta JC}$                                                | 4.5<br>4.0                              |                                         | °C/W |

### **Note:**


- 1. Derate linearly 11.4mW/ $^{\circ}$ C for T<sub>A</sub> > +25 $^{\circ}$ C
- 2. Derate linearly  $5.7 \text{mW/}^{\circ}\text{C}$  for  $T_A > +25 ^{\circ}\text{C}$
- 3. Derate linearly  $200 \text{mW/}^{\circ}\text{C}$  for  $T_C > +100 ^{\circ}\text{C}$
- 4. Derate linearly  $150 \text{mW/}^{\circ}\text{C}$  for  $T_C > +100 ^{\circ}\text{C}$

### ELECTRICAL CHARACTERISTICS ( $T_A = +25$ °C, unless otherwise noted)


| Parameters / Test C                         | Symbol             | Min.          | Max. | Unit |     |
|---------------------------------------------|--------------------|---------------|------|------|-----|
| OFF CHARACTERTICS                           |                    |               |      |      |     |
| Collector-Emitter Breakdown Volta           |                    |               |      |      |     |
| $I_C = 10 \text{mAdc}$                      | 2N5660, U3, 2N5662 | $V_{(BR)CEO}$ | 200  |      | Vdc |
|                                             | 2N5661, U3, 2N5663 |               | 300  |      | vac |
| Collector-Base Breakdown Voltage            |                    |               |      |      |     |
| $I_C = 10 \text{mAdc}, R_{BE} = 100 \Omega$ | 2N5660, U3, 2N5662 | $V_{(BR)CER}$ | 250  |      | Vdc |
|                                             | 2N5661, U3, 2N5663 |               | 400  |      | vac |



**TO-66** 2N5660, 2N5661



**TO-5** 2N5662, 2N5663



U32N5660U3, 2N5661U3



6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

### ELECTRICAL CHARACTERISTICS ( $T_A = +25$ °C, unless otherwise noted)

| Parameters / Test Conditions                             |                    |                      | Min. | Max. | Unit |
|----------------------------------------------------------|--------------------|----------------------|------|------|------|
| OFF CHARACTERTICS                                        |                    |                      |      |      |      |
| Emitter-Base Breakdown Voltage                           |                    | 3.7                  | ( )  |      | 37.1 |
| $I_E = 10 \mu Adc$                                       |                    | $V_{(BR)EBO}$        | 6.0  |      | Vdc  |
| Collector-Emitter Cutoff Current                         |                    |                      |      |      |      |
| $V_{CE} = 200 \text{Vdc}$                                | 2N5660, U3, 2N5662 | $I_{CES}$            |      | 0.2  | μAdc |
| $V_{CE} = 300 \text{Vdc}$                                | 2N5661, U3, 2N5663 |                      |      | 0.2  |      |
| Collector-Base Cutoff Current                            |                    |                      |      |      |      |
| $V_{CB} = 200 Vdc$                                       | 2N5660, U3, 2N5662 |                      |      | 0.1  | μAdc |
| $V_{CB} = 250 \text{Vdc}$                                | 2N5660, U3, 2N5662 | $I_{CBO}$            |      | 1.0  | mAdc |
| $V_{CB} = 300 \text{Vdc}$                                | 2N5661, U3, 2N5663 |                      |      | 0.1  | μAdc |
| $V_{CB} = 400 \text{Vdc}$                                | 2N5661, U3, 2N5663 |                      |      | 1.0  | mAdc |
| ON CHARACTERISTICS (5)                                   |                    |                      |      |      |      |
| Forward-Current Transfer Ratio                           |                    |                      |      |      |      |
| $I_C = 50 \text{mAdc}, V_{CE} = 2.0 \text{Vdc}$          | 2N5660, U3, 2N5662 |                      | 40   |      |      |
| ic sommitte, ver 2.0 vae                                 | 2N5661, U3, 2N5663 |                      | 25   |      |      |
| $I_C = 0.5 \text{Adc}, V_{CE} = 5.0 \text{Vdc}$          | 2N5660, U3, 2N5662 | 1                    | 40   | 120  |      |
| 10 0.57 tue, v CE 5.6 v tue                              | 2N5661, U3, 2N5663 | $h_{\mathrm{FE}}$    | 25   | 75   |      |
| $I_C = 1.0 Adc$ , $V_{CE} = 5.0 Vdc$                     | All types          |                      | 15   |      |      |
| $I_C = 2.0 \text{Adc}, V_{CE} = 5.0 \text{Vdc}$          | All types          |                      | 5.0  |      |      |
| Collector-Emitter Saturation Voltage                     |                    |                      |      |      |      |
| $I_C = 1.0 \text{Adc}, I_B = 0.1 \text{Adc}$             |                    | V <sub>CE(sat)</sub> |      | 0.4  | Vdc  |
| $I_{\rm C} = 2.0 \text{Adc}, I_{\rm B} = 0.4 \text{Adc}$ |                    | ▼ CE(sat)            |      | 0.8  | , de |
| Base-Emitter Saturation Voltage                          |                    |                      |      |      |      |
| $I_C = 1.0 Adc, I_B = 0.1 Adc$                           |                    | $V_{BE(sat)}$        |      | 1.2  | Vdc  |
| $I_C = 2.0 \text{Adc}, I_B = 0.4 \text{Adc}$             |                    |                      |      | 1.5  |      |

### DYNAMIC CHARACTERISTICS

| Parameters / Test Conditions                                                                                                        | Symbol             | Min. | Max. | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------|------|
| Magnitude of Common Emitter Small–Signal Short-Circuit Forward Current Transfer Ratio $I_C = 0.1 Adc, V_{CE} = 5.0 Vdc, f = 10 MHz$ | $ { m h}_{ m fe} $ | 2.0  | 7.0  |      |
| Output Capacitance $V_{CB} = 10 \text{Vdc}, I_E = 0, 100 \text{kHz} \le f \le 1.0 \text{MHz}$                                       | $C_{obo}$          |      | 45   | pF   |

### SWITCHING CHARACTERISTICS

| Parameters / Test Conditions                                                                                                                                                                                          |                                          | Symbol           | Min. | Max.         | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|------|--------------|------|
| $\begin{aligned} & \text{Turn-On Time} \\ & V_{CC} = 100 \text{Vdc}; \ I_C = 0.5 \text{Adc}; \ I_{B1} = 15 \text{mAdc} \\ & V_{CC} = 100 \text{Vdc}; \ I_C = 0.5 \text{Adc}; \ I_{B1} = 25 \text{mAdc} \end{aligned}$ | 2N5660, U3, 2N5662<br>2N5661, U3, 2N5663 | <sup>t</sup> on  |      | 0.25<br>0.25 | μs   |
|                                                                                                                                                                                                                       | 2N5660, U3, 2N5662<br>2N5661, U3, 2N5663 | <sup>t</sup> off |      | 0.85<br>1.2  | μs   |



6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

#### SAFE OPERATING AREA

| DC    | Poot  |
|-------|-------|
| 17( . | Les L |

 $T_C = +100$ °C, 1 cycle,  $t \ge 1.0$ s

Test 1

 $V_{CE} = 10 \text{Vdc}, I_C = 2.0 \text{Adc}$  2N5660, U3, 2N5661, U3

 $V_{CE} = 7.5 \text{Vdc}, I_C = 2.0 \text{Adc}$  2N5662, 2N5663

Test 2

 $V_{CE} = 40 \text{Vdc}, I_{C} = 500 \text{mAdc}$  2N5660, U3, 2N5661, U3

 $V_{CE} = 25 \text{Vdc}, I_C = 600 \text{mAdc}$  2N5662, 2N5663

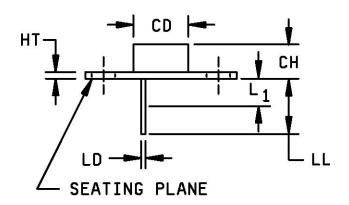
Test 3

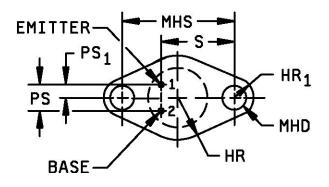
 $V_{CE} = 200 \text{Vdc}, I_{C} = 36 \text{mAdc}$  2N5660, U3

 $V_{CE} = 200 Vdc, I_C = 27 mAdc$  2N5662

Test 4

 $V_{CE} = 300 V dc, I_{C} = 19 mAdc$  2N5661, U3  $V_{CE} = 300 V dc, I_{C} = 14 mAdc$  2N5663


(5) Pulse Test: Pulse Width =  $300\mu s$ , Duty Cycle  $\leq 2.0\%$ .




6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

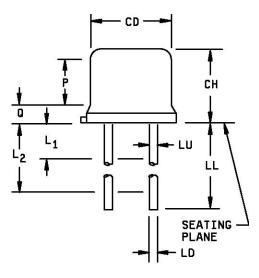
### PACKAGE DIMENSIONS

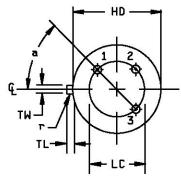




| Ltr    | Inches Millimeters |      | Notes |       |      |
|--------|--------------------|------|-------|-------|------|
|        | Min                | Max  | Min   | Max   |      |
| CD     | .470               | .500 | 11.94 | 12.70 | 7    |
| СН     | .250               | .340 | 6.35  | 8.64  |      |
| HR     |                    | .350 |       | 8.89  |      |
| $HR_1$ | .115               | .145 | 2.92  | 3.68  | 4    |
| HT     | .050               | .075 | 1.27  | 1.91  |      |
| LD     | .028               | .034 | 0.71  | 0.86  | 4, 6 |
| LL     | .360               | .500 | 9.14  | 12.70 | 4    |
| $L_1$  |                    | .050 |       | 1.27  | 4, 6 |
| MHD    | .142               | .152 | 3.61  | 3.86  | 4    |
| MHS    | .958               | .962 | 24.33 | 24.43 |      |
| PS     | .190               | .210 | 4.83  | 5.33  | 3    |
| $PS_1$ | .093               | .107 | 2.36  | 2.72  | 3    |
| S      | .570               | .590 | 14.48 | 14.99 | 3    |

### **NOTES:**


- 1 Dimensions are in inches.
- 2 Millimeters are given for general information only.
- These dimensions should be measured at points .050 inch (1.27 mm) +.005 inch (0.13 mm) -.000 inch (0.00 mm) below seating plane. When gauge is not used, measurement will be made at the seating plane.
- 4 Two places.
- 5 The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 6 Lead diameter shall not exceed twice LD within L<sub>1</sub>.
- 7 Body contour is optional within zone defined by CD.
- 8 In accordance with ASME Y14.5M, diameters are equivalent to \$\phi\$x symbology.
- 9 Lead 1 is emitter, lead 2 is base, and case is collector.


FIGURE 1. Physical dimensions, 2N5660 and 2N5661, (similar to TO-66).



6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com





|       |         | Notes |        |             |    |
|-------|---------|-------|--------|-------------|----|
| Ltr   | Inc     | hes   | Millir | Millimeters |    |
|       | Min     | Max   | Min    | Max         |    |
| CD    | .305    | .355  | 7.75   | 9.02        |    |
| СН    | .240    | .260  | 6.10   | 6.60        |    |
| HD    | .335    | .370  | 8.51   | 9.40        |    |
| LC    | .200 TP |       | 5.08   | 3 TP        | 6  |
| LD    | .016    | .021  | 0.41   | 0.53        | 7  |
| LL    | 1.500   | 1.750 | 38.10  | 44.45       | 7  |
| LU    | .016    | .019  | 0.407  | 0.482       | 7  |
| $L_1$ |         | .050  |        | 1.27        | 7  |
| $L_2$ | .250    |       | 6.35   |             | 7  |
| TL    | .029    | .045  | 0.74   | 1.14        | 3  |
| TW    | .028    | .034  | 0.712  | 0.863       | 9  |
| P     | .100    |       | 2.54   |             |    |
| Q     |         | .050  |        | 1.27        | 4  |
| r     |         | .010  |        | 0.25        | 10 |
| α     | 45° TP  |       | 45° TP |             | 6  |

#### NOTES:

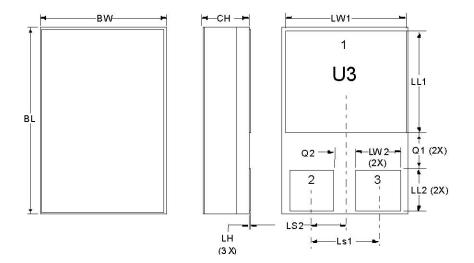

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- 5. Symbol CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Leads at gauge plane .054 inch (1.37 mm) +.001 inch (0.03 mm) .000 inch (0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of TP relative to tab. Device may be measured by direct methods or by gauge.
- 7. Symbol LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum.
- 8. Lead number three is electrically connected to case.
- 9. Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
- 10. Symbol r applied to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- 12. Lead 1 is emitter, lead 2 is base, and lead 3 is collector.

FIGURE 2. Physical dimensions, 2N5662 and 2N5663, (similar to TO-5)



6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com



|                 | Dimensions |       |          |        |  |  |
|-----------------|------------|-------|----------|--------|--|--|
| Symbol          | Inches     |       | Millir   | neters |  |  |
|                 | Min        | Max   | Min      | Max    |  |  |
| BL              | .395       | .405  | 10.04    | 10.28  |  |  |
| BW              | .291       | .301  | 7.40     | 7.64   |  |  |
| СН              | .1085      | .1205 | 2.76     | 3.06   |  |  |
| LH              | .010       | .020  | 0.25     | 0.51   |  |  |
| $LW_1$          | .281       | .291  | 7.14     | 7.39   |  |  |
| LW <sub>2</sub> | .090       | .100  | 2.29     | 2.54   |  |  |
| $LL_1$          | .220       | .230  | 5.59     | 5.84   |  |  |
| $LL_2$          | .115       | .125  | 2.93     | 3.17   |  |  |
| $LS_1$          | .150       | BSC   | 3.81     | BSC    |  |  |
| $LS_2$          | .075       | BSC   | 1.91 BSC |        |  |  |
| $Q_1$           | .030       |       | 0.762    |        |  |  |
| $Q_2$           | .030       |       | 0.762    |        |  |  |
| Term 1          | Collector  |       |          |        |  |  |
| Term 2          | Base       |       |          |        |  |  |
| Term 3          | Emitter    |       |          |        |  |  |

FIGURE 3. Physical dimensions, 2N5660U3 and 2N5661U3(U3).

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001