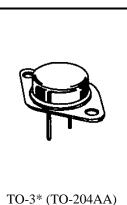


TECHNICAL DATA

NPN DARLINGTON POWER SILICON TRANSISTOR Qualified per MIL-PRF-19500/523


Devices			Qualified Level
2N6383	2N6384	2N6385	JAN, JANTX JANTXV

MAXIMUM RATING	8					
Ratin	gs	Symbol	2N6383	2N6384	2N6385	Unit
Collector-Emitter Voltage		V _{CEO}	40	60	80	Vdc
Collector-Base Voltage		V _{CBO}	40	60	80	Vdc
Emitter-Base Voltage		V _{EBO}			Vdc	
Base Current		IB	0.25		Adc	
Collector Current		I _C	10		Adc	
Total Power Dissipation	@ $T_A = +25^0 C^{(1)}$ @ $T_C = +25^0 C^{(2)}$	PT	6.0		W	
	$@ T_C = +25^{\circ}C^{(2)}$	- 1		100		W
Operating & Storage Temperature		Top, Tstg	-55 to +175		5	⁰ C
THERMAL CHARAC	TERISTICS					
Characteristics		Symbol	Max.			Unit
Thermal Resistance Junction-to-Case		$R_{\theta JC}$	1.75		⁰ C/W	
1) Derate linearly 34.2 m	$W^{0}C$ above $T_{A} > +2$	0	•			

Derate linearly 34.2 mW/°C above $T_A > +25$ °C 2) Derate linearly 571 mW/ 0 C above T_C > +25 0 C

ELECTRICAL CHARACTERISTICS ($T_c = +25^{\circ}C$ unless otherwise noted)

Characteris	tics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}$	2N6383		40		
	2N6384	V _{(BR)CEO}	60		Vdc
	2N6385		80		
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}, R_{BB} = 100 \Omega$	2N6383		40		
	2N6384	V _{(BR)CER}	60		Vdc
	2N6385		80		
Collector-Base Cutoff Current					
$V_{CE} = 40 \text{ Vdc}$	2N6383			1.0	
$V_{CE} = 60 V dc$	2N6384	I _{CBO}		1.0	mAdc
$V_{CE} = 80 \text{ Vdc}$	2N6385			1.0	

*See Appendix A for package outline

Characterist	ics	Symbol	Min.	Max.	Unit
Emitter-Base Cutoff Current		т		5.0	mAda
$V_{EB} = 5.0 \text{ Vdc}$		I _{EBO}		5.0	mAdc
Collector-Emitter Cutoff Current					
$V_{CE} = 40 \text{ Vdc}$	2N6383			1.0	mAdc
$V_{CE} = 60 \text{ Vdc}$	2N6384	I _{CEO}		1.0	
$V_{CE} = 80 \text{ Vdc}$	2N6385			1.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 40$ Vdc, $V_{BE} = 1.5$ Vdc	2N6383	I _{CEX}		0.3	mAdc
$V_{CE} = 60$ Vdc, $V_{BE} = 1.5$ Vdc	2N6384			0.3	
$V_{CE} = 80$ Vdc, $V_{BE} = 1.5$ Vdc	2N6385			0.3	
ON CHARACTERISTICS ⁽³⁾					
Forward-Current Transfer Ratio					
$I_C = 5.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$		h _{FE}	1,000 100	20,000	
$I_{C} = 10 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$					
Collector-Emitter Saturation Voltage					
$I_C = 5.0$ Adc, $I_B = 10$ mAdc		V _{CE(sat)}		2.0	Vdc
$I_{C} = 10 \text{ Adc}, I_{B} = 0.1 \text{ Adc}$				3.0	
Base-Emitter Voltage					
$I_C = 5.0$ Adc, $V_{CE} = 3.0$ Vdc		V _{BE(on)}		2.8	Vdc
$I_C = 10$ Adc, $V_{CE} = 3.0$ Vdc			4.5		
DYNAMIC CHARACTERISTICS					
Small-Signal Short-Circuit Forward Cur	rent Transfer Ratio	h _{fe}	20	300	
$I_{C} = 1.0$ Adc, $V_{CE} = 5.0$ Vdc, $f = 1.0$ MHz		II _{fe}	20	300	
Output Capacitance		C _{obo}		200	pF
$V_{CB} = 10$ Vdc, $I_E = 0$, 100 kHz $\le f \le 1.0$ MHz		C_{obo}		200	рг
SWITCHING CHARACTERISTIC	S				
Turn-On Time		ton		2.5	116
$V_{CC} = 30$ Vdc; $I_C = 5.0$ Adc; $I_{B1} = 20$ mAdc		OII		2.5	μs
Turn-Off Time		toff		10	116
$V_{CC} = 30$ Vdc; $I_C = 5.0$ Adc; $I_{B1} = -I_{B2} = 20$ mAdc		011		10	μs
SAFE OPERATING AREA					
DC Tests					
$T_{C} = +25^{0}C$, 1 Cycle, t = 1.0 s					
Test 1					
$V_{CE} = 10$ Vdc, $I_C = 10$ Adc	All Types				
Test 2					
$V_{CE} = 30$ Vdc, $I_C = 3.33$ Adc	All Types				
Test 3					
$V_{CE} = 40$ Vdc, $I_C = 1.5$ Adc	2N6383				
$V_{CE} = 60$ Vdc, $I_C = 0.4$ Adc	2N6384				
$V_{CE} = 80 \text{ Vdc}, I_{C} = 0.16 \text{ Adc}$	2N6385				

ELECTRICAL CHARACTERISTICS (con't)

(3) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

 NJVMJD128T4G
 281287X
 BDV64B
 NJVMJD117T4G
 LB1205-L-E
 2N6053
 MPSA14
 TIP140
 MPSA13
 TIP127L-BP
 2N6383

 ULN2003ACM/TR
 2N7371
 2N6058
 2N6059
 2N6051
 MJ2501
 MJ3001
 2SB1383
 2SB1560
 2SB852KT146B
 2SD2560
 TIP112TU
 BCV27

 MMBTA13-TP
 MMSTA28T146
 NTE2557
 NJVNJD35N04T4G
 MPSA29-D26Z
 MJD127T4
 FJB102TM
 BSP61H6327XTSA1
 BU941ZPFI

 2SD1980TL
 NTE2350
 NTE245
 NTE2649
 NTE46
 NTE98
 ULN2003ADR2G
 NTE2344
 NTE2405
 NTE243
 NTE243

 NTE247
 NTE248
 NTE249
 NTE253