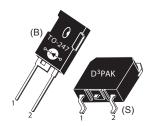


Ultrasoft Recovery Rectifier Diode

PRODUCT APPLICATIONS

- Anti-Parallel Diode

 Switchmode Power Supply
 Inverters
- Applications
 Induction Heating
- Resonant Mode Circuits


 ZVS and ZCS Topologies
 Phase Shifted Bridge

PRODUCT FEATURES

- Ultrasoft Recovery Times (t_{rr})
- Popular TO-247 Package or Surface Mount D³PAK Package
- Ultra Low Forward Voltage
- Low Leakage Current

PRODUCT BENEFITS

- Soft Switching High Q_{rr}
- Low Noise Switching
 Reduced Ringing
- · Higher Reliability Systems
- Minimizes or eliminates snubber

- 1 Cathode
- 2 Anode Back of Case - Cathode

MAXIMUM RATINGS

All Ratings: T_C = 25°C unless otherwise specified.

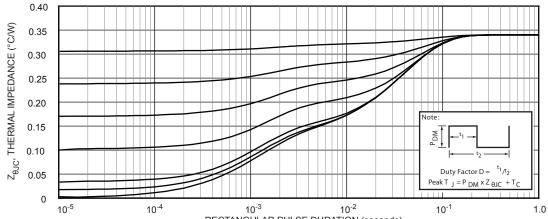
Symbol	Characteristic / Test Conditions	Ratings	Unit
V_R	Maximum D.C. Reverse Voltage		
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	600	Volts
V _{RWM}	Maximum Working Peak Reverse Voltage		
I _{F(AV)}	Maximum Average Forward current (1) (T _C = 124°C, Duty Cycle = 0.5)	100	
I _{F(RMS)}	RMS Forward Currrent (Square wave, 50% duty)	131	Amps
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3 ms)	600	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 175	°C
T _L	Lead Temperature for 10 Seconds	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		Min	Тур	Max	Unit
V _F	Forward Voltage	I _F = 100A		1.25	1.6	Volts
		I _F = 200A		2.0		
		I _F = 100A, T _J = 125°C		1.28		
I _{RM}	Maximum Reverse Leakage Current	V _R = 600V			25	- μΑ
		V _R = 600V, T _J = 125°C			250	
C _T	Junction Capacitance, V _R = 200V			97		pF

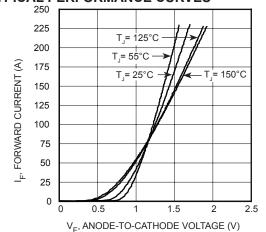
DYNAMIC CHARACTERISTICS

APT100DL60B_S(G)


Symbol	Characteristic / Test Conditions		Min	Тур	Max	Unit
t _m	Reverse Recovery Time $I_F = 1A$, $di_F/dt = -100A/\mu s$, $V_R = 30V$, $T_J = 25$ °C			45		no
t _m	Reverse Recovery Time	I _F = 100A, di _F /dt = -200A/ μs V _R = 400V, T _C = 25°C		487		ns
Q_{rr}	Reverse Recovery Charge			2328		nC
I _{RRM}	Maximum Reverse Recovery Current			11		Amps
t _m	Reverse Recovery Time	I _F = 100A, di _F /dt = -200A/μs V _R = 400V, T _C = 125°C		716		ns
Q_{rr}	Reverse Recovery Charge			5954		nC
I _{RRM}	Maximum Reverse Recovery Current			18		Amps
t _m	Reverse Recovery Time	I _F = 100A, di _F /dt = -1000A/ μs V _R = 400V, T _C = 125°C		333		ns
Q _{rr}	Reverse Recovery Charge			10002		nC
I _{RRM}	Maximum Reverse Recovery Current			49		Amps

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	Min	Тур	Max	Unit
R _{eJC}	Junction-to-Case Thermal Resistance			0.34	°C/W
W _T	Package Weight		0.22		oz
			5.9		g
Torque	Maximum Mounting Torque			10	lb∙in
				1.1	N·m


① Continuous current limited by package lead temperature.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

RECTANGULAR PULSE DURATION (seconds)
FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

TYPICAL PERFORMANCE CURVES

FIGURE 2, Forward Current vs. Forward Voltage

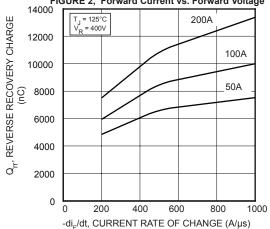
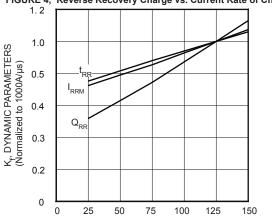



FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change

 $\rm T_{\rm J},$ JUNCTION TEMPERATURE (°C) FIGURE 6, Dynamic Parameters vs Junction Temperature

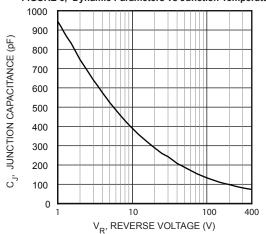


FIGURE 8, Junction Capacitance vs. Reverse Voltage

APT100DL60B_S(G)

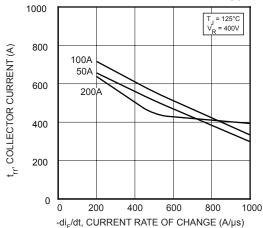


FIGURE 3, Reverse Recovery Time vs. Current Rate of Change

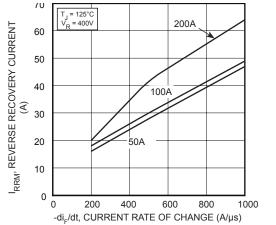


FIGURE 5, Reverse Recovery Current vs. Current Rate of Change

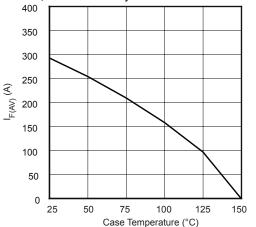
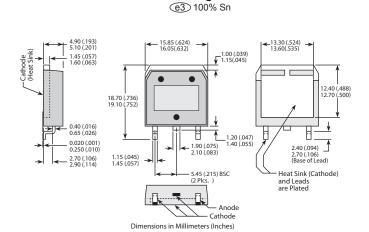


FIGURE 7, Maximum Average Forward Current vs. Case Temperature


Figure 9. Diode Test Circuit

- 1 I_F Forward Conduction Current
 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
 3 I_{RRM} Maximum Reverse Recovery Current
 4 t_{rr} Reverse Recovery Time measured from zero crossing where diode current goes from positive to negative, to the point at
- which the straight line through I_{RRM} and 0.25, I_{RRM} passes through zero. Q_{rr} - Area Under the Curve Defined by I_{RRM} and t_{RR} .

Figure 10. Diode Reverse Recovery Waveform Definition

TO-247 Package Outline ©1 SAC: Tin, Silver, Copper 4.69 (185) 5.31 (209) 1.49 (059) 2.49 (098) 20.80 (819) 21.46 (845) 1.016 (.040)

Dimensions in Millimeters and (Inches)

D³PAK Package Outline

Disclaimer:

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60
70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850 SKN300/16