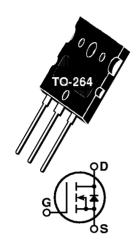


APT12080LVR

1200V 16A 0.800Ω

POWER MOS V®


Power MOS V® is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V® also achieves faster switching speeds through optimized gate layout.

Faster Switching

100% Avalanche Tested

Lower Leakage

Popular TO-264 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT12080LVR	UNIT	
V _{DSS}	Drain-Source Voltage	1200	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	16	A man a	
I _{DM}	Pulsed Drain Current ^①	64	Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	\	
V _{GSM}	Gate-Source Voltage Transient	±40	Volts	
P_D	Total Power Dissipation @ T _C = 25°C	520	Watts	
' D	Linear Derating Factor	4.16	W/°C	
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300] [
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	16	Amps	
E _{AR}	Repetitive Avalanche Energy ^①	50	mJ	
E _{AS}	Single Pulse Avalanche Energy ^④	2500] 1113	

STATIC ELECTRICAL CHARACTERISTICS

Avenue J.F. Kennedy Bât B4 Parc Cadéra Nord

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_D = 250\mu A$)	1200			Volts
I _{D(on)}	On State Drain Current $@(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	16			Amps
R _{DS(on)}	Drain-Source On-State Resistance (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.800	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = V_{DSS}, V_{GS} = 0V)$			25	μА
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			250	μΛ
I _{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30V, V_{DS} = 0V$)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 2.5 \text{mA})$	2		4	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

405 S.W. Columbia Street Bend, Oregon 97702-1035 Phone: (541) 382-8028 FAX: (541) 388-0364 **EUROPE** F-33700 Merignac - France

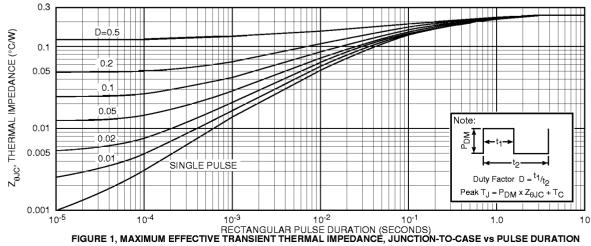
Phone: (33) 5 57 92 15 15

050-5567 Rev B

FAX: (33) 5 56 47 97 61

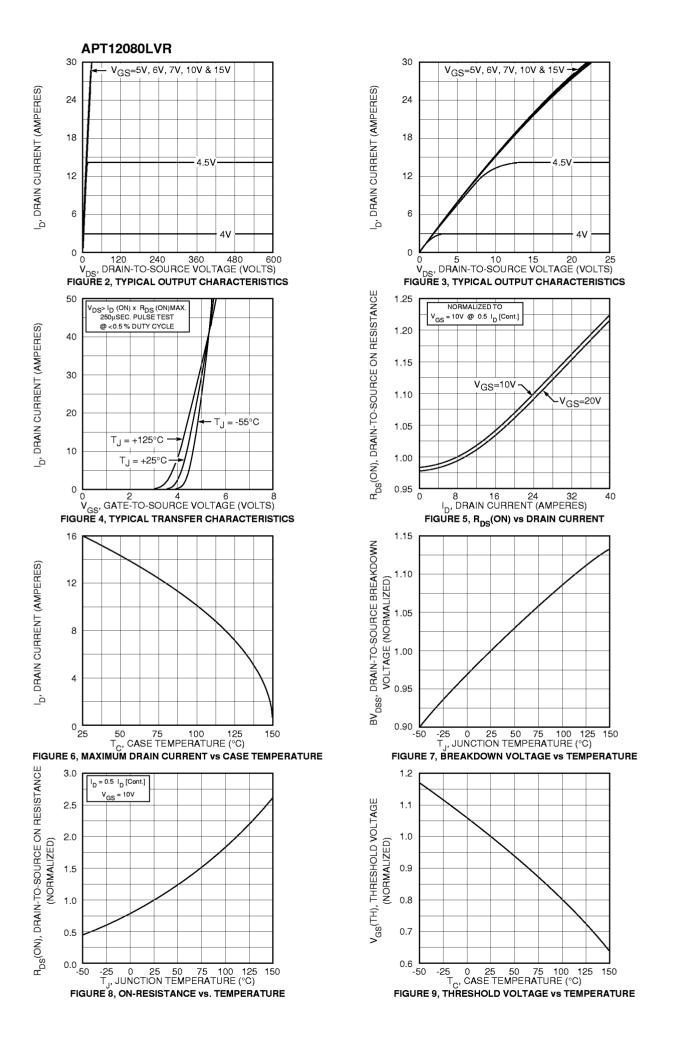
Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	$V_{GS} = 0V$		6500	7800	
C _{oss}	Output Capacitance	V _{DS} = 25V		530	740	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		250	375	
Q_g	Total Gate Charge ③	V _{GS} = 10V		325	485	
Q_{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		29	45	nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = I _{D[Cont.]} @ 25°C		143	215	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		16	32	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		12	24	ns
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C		59	90	115
t _f	Fall Time	$R_G^{} = 0.6\Omega$		12	24	

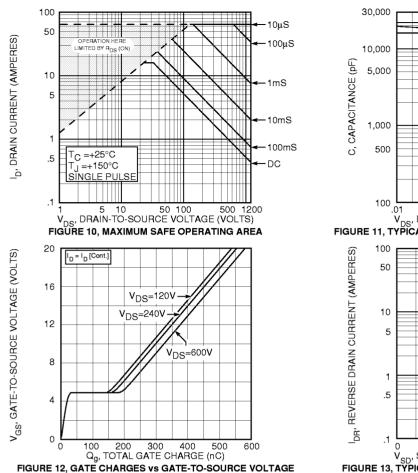
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

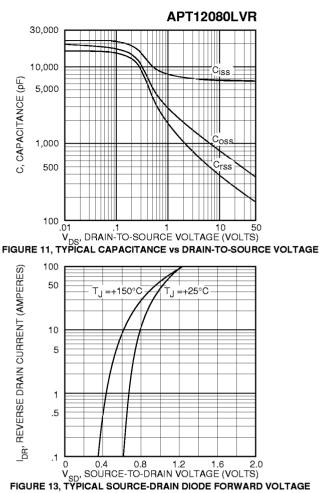

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I _s	Continuous Source Current (Body Diode)			16	Amno
I _{SM}	Pulsed Source Current ① (Body Diode)			64	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		1080		ns
Q _{rr}	Reverse Recovery Charge $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		22		μC

THERMAL CHARACTERISTICS

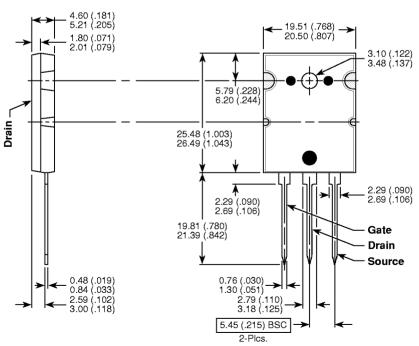
Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case			0.24	°C/W
R_{\thetaJA}	Junction to Ambient			40	C/ VV


 $[\]ensuremath{ \textcircled{\scriptsize 1}}$ Repetitive Rating: Pulse width limited by maximum junction temperature.


APT Reserves the right to change, without notice, the specifications and information contained herein.



³ See MIL-STD-750 Method 3471


 $[\]textcircled{4}$ Starting $T_i = +25^{\circ}C$, L = 19.53mH, $R_G = 25\Omega$, Peak $I_L = 16A$

TO-264 Package Outline

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237

2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T)

405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G

614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK
M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U

JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI APT1201R6BVFRG