

APT17F120J

1200V, 18A, 0.58Ω Max, t_{rr} ≤330ns

N-Channel FREDFET

POWER MOS 8[®] is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced trr, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent niose immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

file # F14559 ISOTOP APT17F120J ח Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant *J*

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full full bridge
- · Half bridge
- · PFC and other boost converter
- · Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit	
1	Continuous Drain Current @ T _C = 25°C	18		
'D	Continuous Drain Current @ T _C = 100°C	12	A	
I _{DM}	Pulsed Drain Current ^①	104		
V _{GS}	Gate-Source Voltage	±30	V	
E _{AS}	Single Pulse Avalanche Energy	2165	mJ	
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	14	А	

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit
P _D	Total Power Dissipation @ T_{c} = 25°C			545	W
R _{θJC}	Junction to Case Thermal Resistance			0.23	- °C/W
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface	d Surface 0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range			150	°C
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr from Terminals to Mounting Base for 1 Min.)	2500			V
W _T	Deckers Maisht		1.03		oz
I	Package Weight		29.2		g
Torque	Transische and Maustine Orange			10	in∙lbf
loique	Terminals and Mounting Screws.			1.1	N∙m

Static Characteristics

T_{.I} = 25°C unless otherwise specified

APT17F120J

Symbol	Parameter	Test Conditions		Min	Тур	Мах	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$		1200			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250 \mu A$			1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 14A			0.55	0.58	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	- V _{GS} = V _{DS} , I _D = 2.5mA		2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zaro Cata Valtago Drain Current	V _{DS} = 1200V	T _J = 25°C			250	
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	T _J = 125°C			1000	μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

Dynamic Characteristics

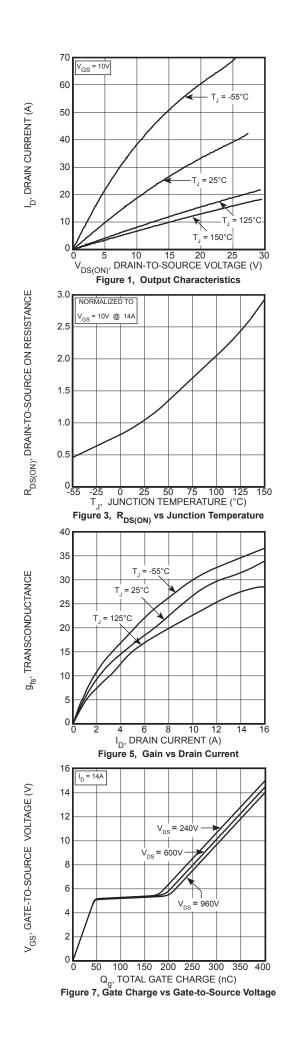
T_J = 25°C unless otherwise specified

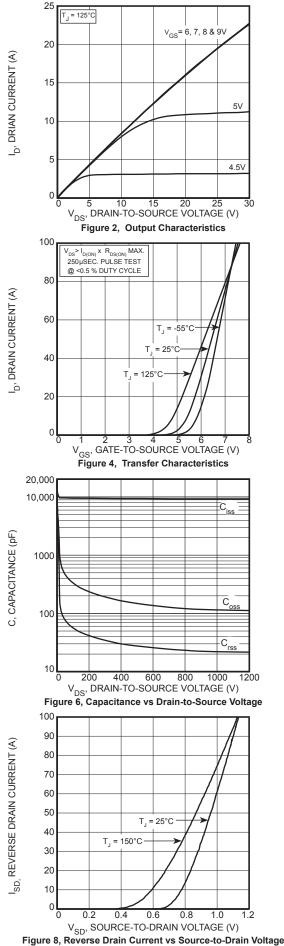
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 14A		31		S
C _{iss}	Input Capacitance			9670		
C _{rss}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 25V f = 1MHz		115		
C _{oss}	Output Capacitance	1 111112		715		pF
C _{o(cr)} ④	Effective Output Capacitance, Charge Related			275		
C _{o(er)} (5)	Effective Output Capacitance, Energy Related	V_{GS} = 0V, V_{DS} = 0V to 800V		140		
Qg	Total Gate Charge			300		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0$ to 10V, $I_{D} = 14A$,		50		nC
Q _{gd}	Gate-Drain Charge	$V_{\rm DS} = 600V$		140		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		50		
t _r	Current Rise Time	$V_{DD} = 800V, I_D = 14A$ $R_G = 2.2\Omega^{(0)}, V_{GG} = 15V$		31		
t _{d(off)}	Turn-Off Delay Time			170		ns
t _f	Current Fall Time			48		

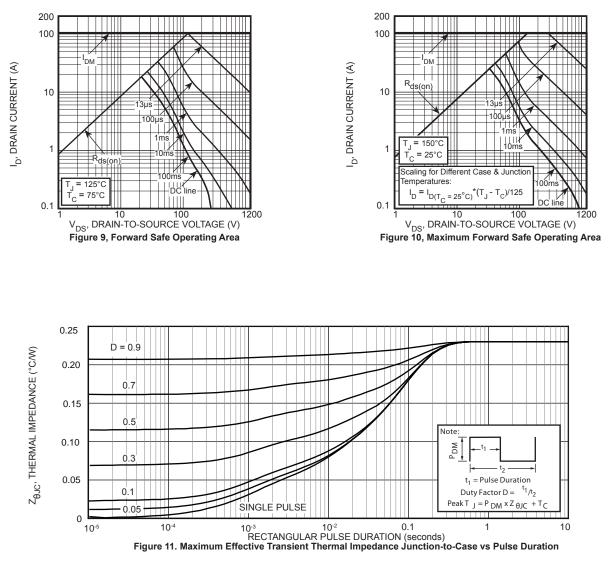
Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			18	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	5		104	
V _{SD}	Diode Forward Voltage	I _{SD} = 14A, T _J = 25°C, V _{GS} = 0V			1.2	V
t _{rr}		T _J = 25°C			330	20
'n	Reverse Recovery Time	T _J = 125°C			660	ns
Q _{rr}		$I_{SD} = 14A^{3}$ $T_{J} = 25^{\circ}C$		1.72		
~rr	Reverse Recovery Charge	$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$		4.67		μC
1	Deveree Deserver Current	T _J = 25°C		11		Α
rrm	Reverse Recovery Current	T _J = 125°C		16		A
dv/dt	Peak Recovery dv/dt	I_{SD} ≤ 14A, di/dt ≤1000A/µs, V_{DD} = 100V, T_J = 125°C			25	V/ns

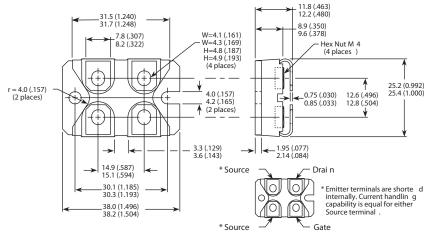
(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.


(2) Starting at $T_J = 25^{\circ}C$, L = 22.1mH, $R_G = 25\Omega$, $I_{AS} = 14A$.


(3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.


(4) C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
(5) C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -8.27E-7/V_{DS}² + 1.01E-7/V_{DS} + 1.43E-10.

6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)


Microsemi reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u> <u>DD380N16A</u> <u>DD89N1600K-A</u> <u>APT2X21DC60J</u> <u>APT58M80J</u> <u>B522F-2-YEC</u> <u>MSTC90-16</u> <u>25.163.0653</u>
<u>25.163.2453.0</u> <u>25.163.4253.0</u> <u>25.190.2053.0</u> <u>25.194.3453.0</u> <u>25.320.4853.1</u> <u>25.320.5253.1</u> <u>25.326.3253.1</u> <u>25.326.3553.1</u> <u>25.330.1653.1</u>
<u>25.330.4753.1</u> <u>25.330.5253.1</u> <u>25.334.3253.1</u> <u>25.334.3353.1</u> <u>25.350.2053.0</u> <u>25.352.4753.1</u> <u>25.522.3253.0</u> <u>T483C</u> <u>T484C</u> <u>T485F</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u> <u>T554</u> <u>T612FSE</u> <u>25.161.3453.0</u> <u>25.179.2253.0</u> <u>25.194.3253.0</u> <u>25.325.1253.1</u> <u>25.326.4253.1</u> <u>25.330.0953.1</u>
<u>25.332.4353.1</u> <u>25.350.1653.0</u> <u>25.350.2453.0</u> <u>25.352.1453.0</u> <u>25.352.1653.0</u> <u>25.352.2453.0</u> <u>25.352.5453.1</u> <u>25.522.3353.0</u> <u>25.602.4053.0</u>
25.640.5053.0