

APT22F100J

1000V, 23A, 0.38Ω Max, t_{rr} ≤300ns

N-Channel FREDFET

Power MOS 8TM is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr}, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

APT22F100J Single die FREDFET

FEATURES

- Fast switching with low EMI
- Low t_{rr} for high reliability
- Ultra low C_{rss} for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- Single and two switch forward
- Flyback

Absolute Maximum Ratings Symbol Parameter Ratings Unit Continuous Drain Current @ $T_C = 25^{\circ}C$ 23 I_D Continuous Drain Current @ T_{C} = 100°C 15 A Pulsed Drain Current^① I_{DM} 140 V_{GS} V Gate-Source Voltage ±30 EAS 2165 Single Pulse Avalanche Energy ² mJ I_{AR} Avalanche Current, Repetitive or Non-Repetitive 18 A

Thermal and Mechanical Characteristics

Characteristic	Min	Тур	Max	Unit	
Total Power Dissipation @ T_{c} = 25°C			545	W	
Junction to Case Thermal Resistance		0.23 °C/W			
Case to Sink Thermal Resistance, Flat, Greased Surface		0.11			
Operating and Storage Junction Temperature Range			150	°C	
RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
Deskars Weisht		1.03		oz	
Package weight		29.2		g	
Tomicale and Mauritian Oceanie			10	in∙lbf	
reminais and mounting Screws.			1.1	N∙m	
	Junction to Case Thermal Resistance Case to Sink Thermal Resistance, Flat, Greased Surface Operating and Storage Junction Temperature Range	Junction to Case Thermal Resistance Case to Sink Thermal Resistance, Flat, Greased Surface Operating and Storage Junction Temperature Range -55 RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 2500 Package Weight	Junction to Case Thermal Resistance 0 Case to Sink Thermal Resistance, Flat, Greased Surface 0.11 Operating and Storage Junction Temperature Range -55 RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 2500 Package Weight 1.03 29.2 1	Junction to Case Thermal Resistance 0.23 Case to Sink Thermal Resistance, Flat, Greased Surface 0.11 Operating and Storage Junction Temperature Range -55 150 RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 2500 1.03 Package Weight 29.2 10 Terminals and Mounting Screws. 10	

Static Characteristics

T_J = 25°C unless otherwise specified

APT22F100J

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$		1000			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 18A			0.32	0.38	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 1000V	T _J = 25°C			250	μA
DSS	Zelo Gale Voltage Drain Current	$V_{GS} = 0V$	T _J = 125°C			1000	μΛ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$				±100	nA

Dynamic Characteristics

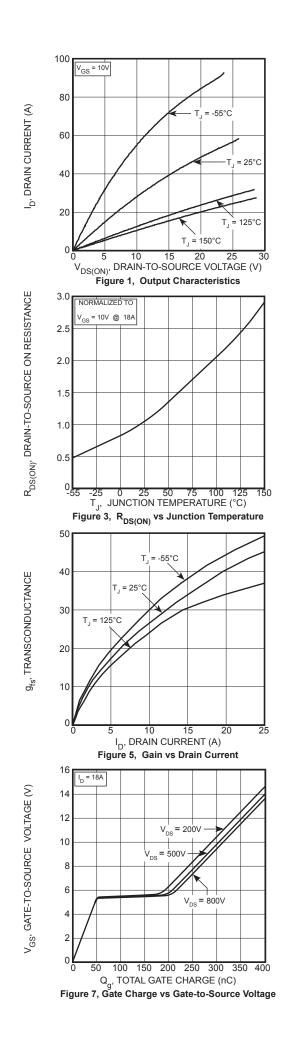
T_J = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 18A$		39		S
C _{iss}	Input Capacitance			9835		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		130		
C _{oss}	Output Capacitance			825		pF
C _{o(cr)} ④	Effective Output Capacitance, Charge Related			335		
C _{o(er)} (5	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 667V$		170		
Q _g	Total Gate Charge	- V _{GS} = 0 to 10V, I _D = 18A,		305		nC
Q _{gs}	Gate-Source Charge			55		
Q _{gd}	Gate-Drain Charge	$V_{\rm DS} = 500V$		145		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		44		
t _r	Current Rise Time	V _{DD} = 667V, I _D = 18A		40		ns
t _{d(off)}	Turn-Off Delay Time	R _G = 2.2Ω [®] , V _{GG} = 15V		150		
t _f	Current Fall Time]		38		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
۱ _s	Continuous Source Current (Body Diode)	showing the			23	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)	s		140	A
V _{SD}	Diode Forward Voltage	I _{SD} = 18A, T _J = 25°C, V _{GS} = 0V			1.2	V
t _{rr}		T _J = 25°C			300	20
'n	Reverse Recovery Time	T _J = 125°C			650	ns
Q _{rr}	Reverse Resevery Charge	$I_{SD} = 18A^{(3)}$ $T_{J} = 25^{\circ}C$		1.61		μC
<u> </u>	Reverse Recovery Charge	$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		4.21		
1		$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$	$DA/\mu s$ $T_{J} = 25^{\circ}C$ 11.6		٨	
' rrm	Reverse Recovery Current	T _J = 125°C		15.8		A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 18A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 667V$, $T_{J} = 125^{\circ}C$			25	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.


(2) Starting at $T_J = 25^{\circ}C$, L = 13.36mH, $R_G = 25\Omega$, $I_{AS} = 18A$.

(3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.

(4) C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 (5) C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -2.85E-7/V_{DS}² + 5.04E-8/V_{DS} + 9.75E-11.

(6) R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

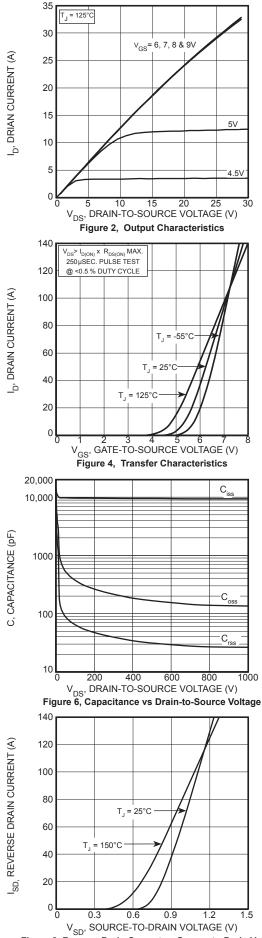
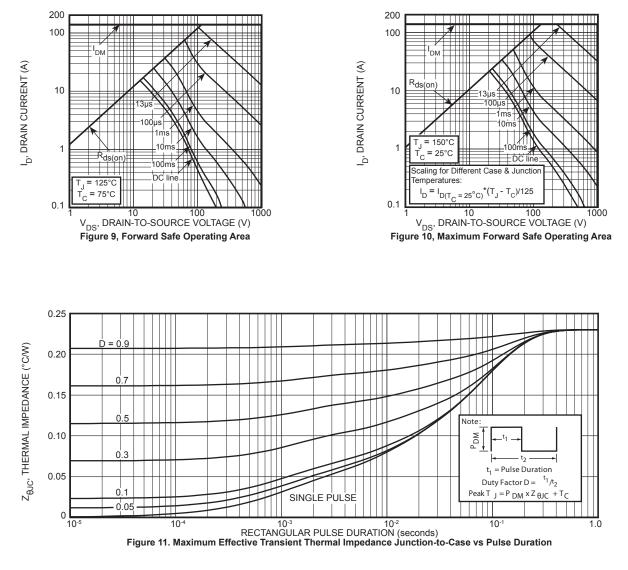
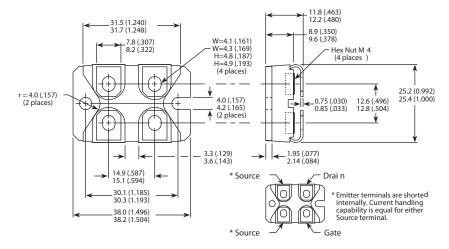




Figure 8, Reverse Drain Current vs Source-to-Drain Voltage

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u> <u>DD380N16A</u> <u>DD89N1600K-A</u> <u>APT2X21DC60J</u> <u>APT58M80J</u> <u>B522F-2-YEC</u> <u>MSTC90-16</u> <u>25.163.0653</u>
<u>25.163.2453.0</u> <u>25.163.4253.0</u> <u>25.190.2053.0</u> <u>25.194.3453.0</u> <u>25.320.4853.1</u> <u>25.320.5253.1</u> <u>25.326.3253.1</u> <u>25.326.3553.1</u> <u>25.330.1653.1</u>
<u>25.330.4753.1</u> <u>25.330.5253.1</u> <u>25.334.3253.1</u> <u>25.334.3353.1</u> <u>25.350.2053.0</u> <u>25.352.4753.1</u> <u>25.522.3253.0</u> <u>T483C</u> <u>T484C</u> <u>T485F</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u> <u>T554</u> <u>T612FSE</u> <u>25.161.3453.0</u> <u>25.179.2253.0</u> <u>25.194.3253.0</u> <u>25.325.1253.1</u> <u>25.326.4253.1</u> <u>25.330.0953.1</u>
<u>25.332.4353.1</u> <u>25.350.1653.0</u> <u>25.350.2453.0</u> <u>25.352.1453.0</u> <u>25.352.1653.0</u> <u>25.352.2453.0</u> <u>25.352.5453.1</u> <u>25.522.3353.0</u> <u>25.602.4053.0</u>
25.640.5053.0