

800V, 29A, 0.21Ω Max, t_{rr} ≤370ns

N-Channel FREDFET

POWER MOS 8° is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent niose immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full full bridge
- · Half bridge
- · PFC and other boost converter
- · Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
L	Continuous Drain Current @ T _C = 25°C	31	
D 'D	Continuous Drain Current @ T _C = 100°C	19	Α
I _{DM}	Pulsed Drain Current ¹	173	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ²	1979	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	24	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			543	w	
R _{0JC}	Junction to Case Thermal Resistance	€ 0.2		0.23	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15		°C/W	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	W Bashana Walanta		1.03		oz	
••т	Package Weight		29.2		g	
Torque	T			10	in·lbf	
	Terminals and Mounting Screws.			1.1	N⋅m	

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA		800			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250μA			1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance 3	V _{GS} = 10V, I _D = 24A			0.19	0.21	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	- V _{GS} = V _{DS} , I _D = 2.5mA		2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	I _{DSS} Zero Gate Voltage Drain Current	V _{DS} = 800V	T _J = 25°C			250	μA
DSS		V _{GS} = 0V	T _J = 125°C			1000] μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			·	±100	nA

Dvnamic Characteristics

T₁ = 25°C unless otherwise specified

Symbol	Parameter IJ = 23	Test Conditions	Min	Тур	Max	Unit	
		V _{DS} = 50V, I _D = 24A	IVIIII		IVIAA		
g _{fs}	Forward Transconductance	V _{DS} - 50V, I _D - 24A		43		S	
C _{iss}	Input Capacitance	V = 0V V = 25V		9326			
c_{rss}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 25V f = 1MHz		159			
C _{oss}	Output Capacitance			927			
C _{o(cr)} ⁴	Effective Output Capacitance, Charge Related	V - 0V V - 0V4- 522V		438		pF	
C _{o(er)} 5	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 533V		217			
Q _g	Total Gate Charge	V 04:40V I 044		303			
\mathbf{Q}_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 24A,$		51		nC	
Q _{gd}	Gate-Drain Charge	$V_{DS} = 400V$		155			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		53			
t _r	Current Rise Time	$V_{DD} = 533V, I_{D} = 24A$		76		no	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		231		ns	
t _f	Current Fall Time			67			

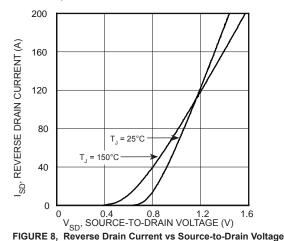
Source-Drain Diode Characteristics

Symbol	Parameter	Test Cond	Min	Тур	Max	Unit	
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n junction diode (body diode)	G S			31	
I _{sm}	Pulsed Source Current (Body Diode)					173	A
V _{SD}	Diode Forward Voltage	I _{SD} = 24A, T _J = 29			1.2	V	
t _{rr}	Reverse Recovery Time Reverse Recovery Charge		T _J = 25°C			370	no
		$I_{SD} = 24A^3$ $di_{SD}/dt = 100A/\mu s$	T _J = 125°C			710	ns
Q _{rr}			T _J = 25°C		1.91	l l	
			T _J = 125°C		5.18		μC
I _{rrm}	B]	T _J = 25°C		12		Α
	Reverse Recovery Current	T _J = 125°C			18		A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 24A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 100V$, $T_J = 125^{\circ}C$				25	V/ns

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Starting at $T_{LI} = 25$ °C, L = 6.9mH, $R_{G} = 25\Omega$, $I_{AS} = 24A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -8.27E-7/ V_{DS} ^2 + 1.01E-7/ V_{DS} + 1.43E-10.
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

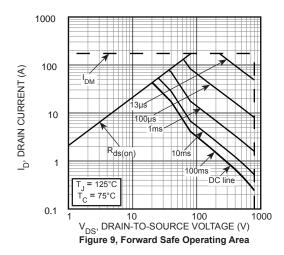
Microsemi reserves the right to change, without notice, the specifications and information contained herein.

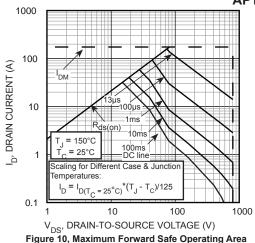
_{DS} = 480V

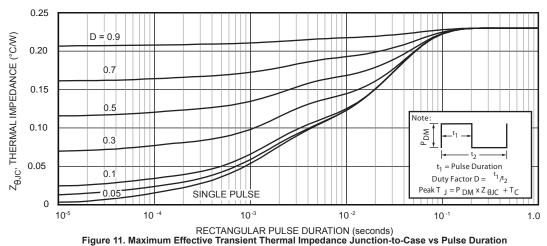

 $\mathbf{Q_g}, \text{TOTAL GATE CHARGE (nC)}$ FIGURE 7, Gate Charge vs Gate-to-Source Voltage

8

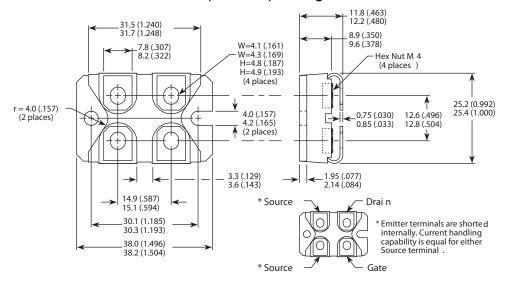
6


2


0



APT29F80J


35

SOT-227 (ISOTOP®) Package Outline

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

M252511FV M254043 DD260N12K-A DD380N16A DDB6U144N16R DDB6U145N16L DR7306 APT20M11JFLL APT2X101DL40J
APT2X21DC60J APT2X30D40J APT2X30D60J APT2X31DQ120J APT39M60J APT47M60J APT50DF170HJ APT50M50JLL
APT50M75JLLU3 APT50N60JCCU2 APT58M80J APT80F60J DZ540N26K B522F-2-YEC MSTC90-16 MT16HTF12864AZ-800G1
MT18HTF12872PZ-667G1 MT18HTF25672FDZ-667H1D6 MT18HTF25672PZ-80EH1 MT18RTF25672FDZ-667H1D6
MT36HTF51272FZ-667H1D4 MT36HTF51272FZ-667H1D6 MT8HTF12864HTZ-667H1 MT9HTF6472PZ-667G1 MT9HVF12872PZ80EH1 MT9HVF6472PZ-667G1 ND104N16K 25.163.0653.1 25.326.3253.1 25.330.3253.1 25.330.5253.1 25.334.3253.1