

APT45M100J

1000V, 45A, 0.18 Ω Max

N-Channel MOSFET

Power MOS 8TM is a high speed, high voltage N-channel switch-mode power MOSFET. A proprietary planar stripe design yields excellent reliability and manufacturability. Low switching loss is achieved with low input capacitance and ultra low C_{rss} "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control slew rates during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency. Reliability in flyback, boost, forward, and other circuits is enhanced by the high avalanche energy capability.

FEATURES

- Fast switching with low EMI/RFI
- Low R_{DS(on)}
- + Ultra low $\mathbf{C}_{\mathrm{rss}}$ for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- PFC and other boost converter
- Buck converter
- Two switch forward (asymmetrical bridge)
- Single switch forward
- Flyback
- Inverters

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _C = 25°C	45	
'D	Continuous Drain Current @ T _C = 100°C	28	A
I _{DM}	Pulsed Drain Current ^①	260	
V_{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy	4075	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	33	A

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit	
P _D	Total Power Dissipation @ $T_{C} = 25^{\circ}C$			960	W	
R _{θJC}	Junction to Case Thermal Resistance			0.13		
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		°C/W	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		oz	
			29.2		g	
Torque	Terminals and Mounting Screws.			10	in∙lbf	
				1.1	N∙m	

Static Characteristics

T_{.I} = 25°C unless otherwise specified

APT45M100J

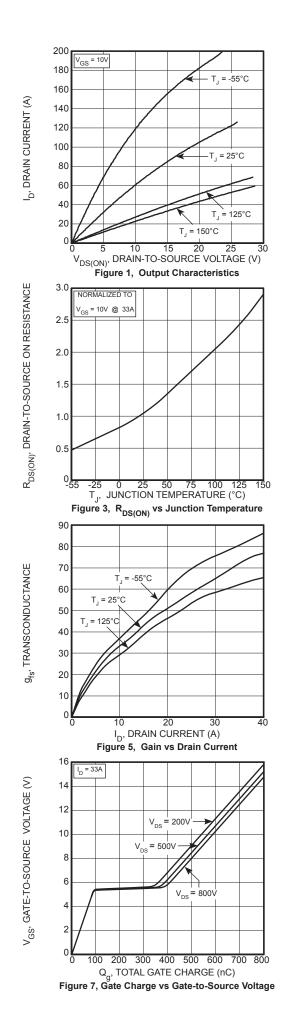
Symbol	Parameter	Test Conditions		Min	Тур	Мах	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA		1000			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250 \mu A$			1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 33A			0.16	0.18	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 2.5 \text{mA}$		3	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 1000V	T _J = 25°C			100	μA
DSS		$V_{GS} = 0V$	T _J = 125°C			500] μ Λ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$				±100	nA

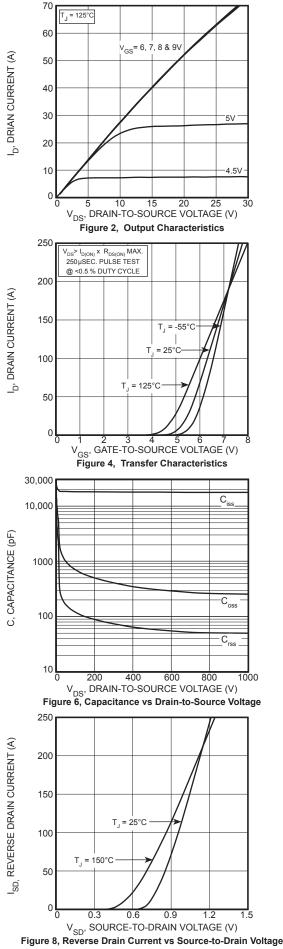
Dynamic Characteristics

T_J = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit	
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 33A		75		S	
C _{iss}	Input Capacitance			18500			
C _{rss}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 25V f = 1MHz		245			
C _{oss}	Output Capacitance	1 - 11vii 12		1555			
C _{o(cr)} ④	Effective Output Capacitance, Charge Related			635		pF	
C _{o(er)} (5)	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 667V$		325			
Q _g	Total Gate Charge			570			
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 33A,$ $V_{DS} = 500V$		100		nC	
Q _{gd}	Gate-Drain Charge	$v_{\rm DS} = 500v$		270			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		85			
t _r	Current Rise Time	V _{DD} = 667V, I _D = 33A		75			
t _{d(off)}	Turn-Off Delay Time	R _G = 2.2Ω [®] , V _{GG} = 15V		285		ns	
t _f	Current Fall Time			70			

Source-Drain Diode Characteristics

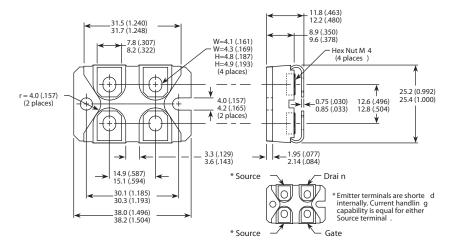

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			45	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)			260	
V _{SD}	Diode Forward Voltage	$I_{SD} = 33A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.0	V
t _{rr}	Reverse Recovery Time	I _{SD} = 33А ^③		1300		ns
Q _{rr}	Reverse Recovery Charge	di _{SD} /dt = 100A/µs, T _J = 25°C		47		μC
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 33A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 667V$, $T_J = 125^{\circ}C$			10	V/ns


(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.

(2) Starting at $T_J = 25^{\circ}C$, L = 7.48mH, $R_G = 2.2\Omega$, $I_{AS} = 33A$.

- (3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.
- (4) C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 (5) C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -5.37E-7/V_{DS}² + 9.48E-8/V_{DS} + 1.83E-10.
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.



050-8089 Rev C 8-2011

APT45M100J

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

748152A APT100GT60B2RG APT13GP120BG APT15GN120BDQ1G APT20GN60BG APT20GT60BRDQ1G APT25GN120B2DQ2G APT35GA90BD15 APT36GA60BD15 APT40GP60B2DQ2G APT40GP90B2DQ2G APT50GN120B2G APT50GT60BRG APT64GA90B2D30 APT70GR120J NGTB10N60FG NGTB30N60L2WG NGTG25N120FL2WG IGP30N60H3XKSA1 STGB15H60DF STGFW20V60DF STGFW30V60DF STGFW40V60F STGWA25H120DF2 FGB3236_F085 APT25GN120BG APT25GR120S APT30GN60BDQ2G APT30GN60BG APT30GP60BG APT30GS60BRDQ2G APT30N60BC6 APT35GP120JDQ2 APT36GA60B APT45GR65B2DU30 APT50GP60B2DQ2G APT68GA60B APT70GR65B APT70GR65B2SCD30 GT50JR22(STA1ES) TIG058E8-TL-H IDW40E65D2 SGB15N120ATMA1 NGTB50N60L2WG STGB10H60DF STGB20V60F STGB40V60F STGFW80V60F IGW40N120H3FKSA1 RJH60D7BDPQ-E0#T2