

- 1 Cathode
- 2 Anode Back of Case - Cathode

APT60S20BG 200V 75A APT60S20SG 200V 75A

HIGH VOLTAGE SCHOTTKY DIODE

PRODUCT APPLICATIONS	PRODUCT FEATURES	PRODUCT BENEFITS
Parallel Diode	 Ultrafast Recovery Times 	• Low Losses
-Switchmode Power Supply -Inverters	Soft Recovery Characteristics	• Low Noise Switching
 Free Wheeling Diode -Motor Controllers 	Popular TO-247 Package or Surface Mount D³PAK Package	Cooler Operation
-Converters • Snubber Diode	Low Forward Voltage	 Higher Reliability Systems
Uninterruptible Power Supply (UPS)48 Volt Output Rectifiers	High Blocking Voltage	Increased System Power Density
High Speed Rectifiers	 Low Leakage Current 	Donony

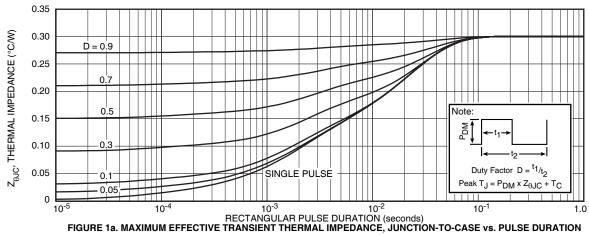
MAXIMUM RATINGS

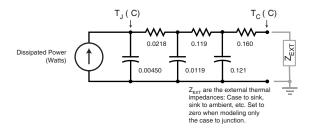
All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

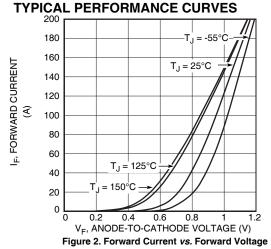
Symbol	Characteristic / Test Conditions	APT60S20(B/S)G	UNIT	
V_R	Maximum D.C. Reverse Voltage			
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	200	Volts	
V _{RWM}	Maximum Working Peak Reverse Voltage			
I _F (AV)	Maximum Average Forward Current (T _C = 123°C, Duty Cycle = 0.5)	75		
I _F (RMS)	RMS Forward Current (Square wave, 50% duty)	208	Amps	
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)	600		
T_J, T_STG	Operating and StorageTemperature Range	-55 to 150	°C	
T _L	Lead Temperature for 10 Sec.	300		
E _{VAL}	Avalanche Energy (2A, 30mH)	60	mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol			MIN	TYP	MAX	UNIT
V _F	Forward Voltage	I _F = 60A		.83	.90	Volts
		I _F = 120A		.98		
		I _F = 60A, T _J = 125°C		.72		
I _{RM}	Maximum Reverse Leakage Current	V _R = 200V			1	mA
		V _R = 200V, T _J = 125°C			25	""A
C _T	Junction Capacitance, V _R = 200V			300		pF


DYNAMIC CHARACTERISTICS


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time	I _F = 60A, di _F /dt = -200A/μs V _R = 133V, T _C = 25°C	-	55		ns
Q _{rr}	Reverse Recovery Charge		-	160		nC
I _{RRM}	Maximum Reverse Recovery Current		-	5	-	Amps
t _{rr}	Reverse Recovery Time	I _F = 60A, di _F /dt = -200A/μs V _R = 133V, T _C = 125°C	-	100		ns
Q _{rr}	Reverse Recovery Charge		-	490		nC
I _{RRM}	Maximum Reverse Recovery Current		-	10	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 60A$, $di_F/dt = -700A/\mu s$ $V_R = 133V$, $T_C = 125$ °C	-	80		ns
Q _{rr}	Reverse Recovery Charge		-	1100		nC
I _{RRM}	Maximum Reverse Recovery Current		-	27		Amps


THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction-to-Case Thermal Resistance			.30	°C/W
$R_{ hetaJA}$	Junction-to-Ambient Thermal Resistance			40	
W _T F	Package Weight		0.22		oz
			5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

 ${\bf Microsemi\, reserves\, the\, right\, to\, change, without\, notice, the\, specifications\, and\, information\, contained\, herein.}$

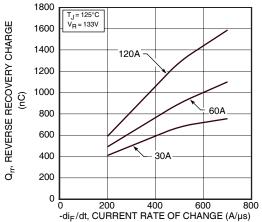


Figure 4. Reverse Recovery Charge vs. Current Rate of Change

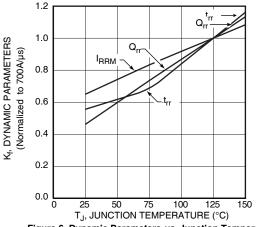


Figure 6. Dynamic Parameters vs. Junction Temperature

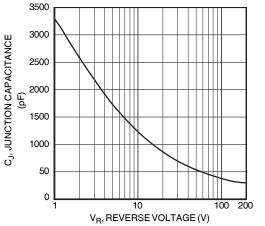


Figure 8. Junction Capacitance vs. Reverse Voltage

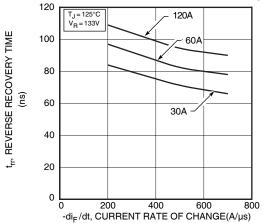


Figure 3. Reverse Recovery Time vs. Current Rate of Change

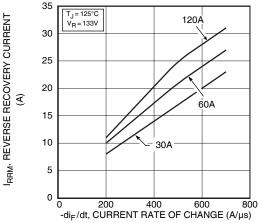


Figure 5. Reverse Recovery Current vs. Current Rate of Change

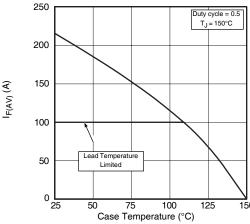


Figure 7. Maximum Average Forward Current vs. CaseTemperature

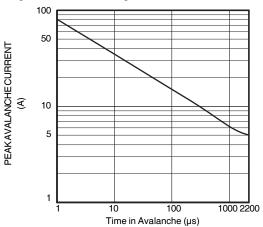
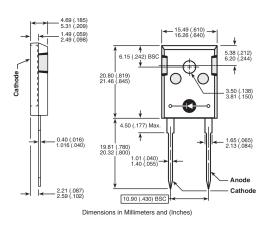


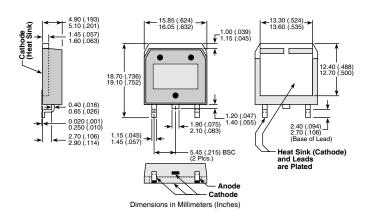
Figure 9. Single Pulse UIS SOA

0.25 I_{RRM}


Figure 9. Diode Test Circuit

Zero

- 1 I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I_{RRM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25•I_{RRM} passes through zero.
- $\mathbf{5}$ Q_{rr} Area Under the Curve Defined by I_{RRM} and t_{rr} .


Figure 10, Diode Reverse Recovery Waveform and Definitions

TO-247 Package Outline

D³PAK Package Outline

5

Microsemi Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2019 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided as is, where is' and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdag: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FR6As, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60
70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850 SKN300/16