ISOTOP ${ }^{\circledR}$ Buck chopper Trench + Field Stop IGBT3

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{CES}}=\mathbf{1 2 0 0 V} \\
& \mathbf{I}_{\mathrm{C}}=\mathbf{7 5} \mathrm{A} @ \mathbf{T c}=\mathbf{8 0}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Application

- AC and DC motor control
- Switched Mode Power Supplies

Features

- Trench + Field Stop IGBT3 Technology
- Low voltage drop
- Low tail current
- Switching frequency up to 20 kHz
- Soft recovery parallel diodes
- Low diode VF
- Low leakage current
- RBSOA and SCSOA rated
- ISOTOP ${ }^{\circledR}$ Package (SOT-227)
- Very low stray inductance
- High level of integration

Benefits

- Low conduction losses
- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive T_{C} of $\mathrm{V}_{\mathrm{CEsat}}$
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter			Max ratings	Unit
$\mathrm{V}_{\text {CES }}$	Collector - Emitter Breakdown Voltage			1200	V
$\mathrm{I}_{\mathrm{C} 1}$	Continuous Collector Current		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	A
$\mathrm{I}_{\mathrm{C} 2}$			$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	75	
$\mathrm{I}_{\text {CM }}$	Pulsed Collector Current		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	175	
V_{GE}	Gate - Emitter Voltage			± 20	V
P_{D}	Maximum Power Dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	416	W
$\mathrm{IF}_{\text {AV }}$	Maximum Average Forward Current	Duty cycle $=0.5$	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	27	A
$\mathrm{IF}_{\text {RMS }}$	RMS Forward Current (Square wave, 50\% duty)			34	

A CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT75GT120JU3

All ratings @ $\mathbf{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit

$\mathrm{I}_{\text {CES }}$	Zero Gate Voltage Collector Current	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$,	1200 V			5	mA
$\mathrm{V}_{\text {CE(on) }}$	Collector Emitter on Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1.4	1.7	2.1	V
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		2.0		
$\mathrm{V}_{\text {GE(th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$		5.0		6.5	V
$\mathrm{I}_{\text {GES }}$	Gate - Emitter Leakage Current	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$				500	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit
$\mathrm{C}_{\text {ies }}$	Input Capacitance	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=25 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		5340		pF
$\mathrm{C}_{\text {oes }}$	Output Capacitance			280		
$\mathrm{C}_{\text {res }}$	Reverse Transfer Capacitance			240		
$\mathrm{T}_{\mathrm{d}(\text { (on) }}$	Turn-on Delay Time	$\begin{aligned} & \text { Resistive Switching }\left(25^{\circ} \mathrm{C}\right) \\ & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\text {Bus }}=600 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \\ & \hline \end{aligned}$		260		ns
T_{r}	Rise Time			30		
$\mathrm{T}_{\mathrm{d}(\mathrm{fff})}$	Turn-off Delay Time			420		
T_{f}	Fall Time			70		
$\mathrm{T}_{\mathrm{d}(\text { on) }}$	Turn-on Delay Time	$\begin{aligned} & \text { Inductive Switching }\left(125^{\circ} \mathrm{C}\right) \\ & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Bus}}=600 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=75 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \end{aligned}$		290		ns
T_{r}	Rise Time			45		
$\mathrm{T}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			520		
T_{f}	Fall Time			90		
$\mathrm{E}_{\text {on }}$	Turn-on Switching Energy			7		mJ
$\mathrm{E}_{\text {off }}$	Turn-off Switching Energy			9.5		

Chopper diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{F}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}$			2.0	2.5	V
		$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~A}$			2.3		
		$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}$	$\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$		1.8		
I_{RM}	Maximum Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}$	$\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$			500	
$\mathrm{C}_{\text {T }}$	Junction Capacitance	$\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$			32		pF
t_{rr}	Reverse Recovery Time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		31		ns
	Reverse Recovery Time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		370		
			$\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$		500		
$\mathrm{I}_{\text {RRM }}$	Maximum Reverse Recovery Current		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5		A
			$\mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$		12		
Q_{rr}	Reverse Recovery Charge		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		660		nC
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		3450		
t_{rr}	Reverse Recovery Time	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=1000 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		220		ns
Q_{rr}	Reverse Recovery Charge				4650		nC
$\mathrm{I}_{\text {RRM }}$	Maximum Reverse Recovery Current				37		A

Thermal and package characteristics

Symbol	Characteristic		Min	Typ	Max	Unit
$\mathrm{R}_{\text {thJC }}$	Junction to Case Thermal Resistance	IGBT			0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Diode			1.1	
$\mathrm{R}_{\text {thJA }}$	Junction to Ambient (IGBT \& Diode)				20	
$\mathrm{V}_{\text {ISOL }}$	RMS Isolation Voltage, any terminal to case $\mathrm{t}=1 \mathrm{~min}, 50 / 60 \mathrm{~Hz}$		2500			V
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Storage Temperature Range		-55		150	${ }^{\circ} \mathrm{C}$
T_{L}	Max Lead Temp for Soldering:0.063" from case for 10 sec				300	
Torque	Mounting torque (Mounting $=8-32$ or 4 mm Machine and terminals $=4 \mathrm{~mm}$ Machine)				1.5	N.m
Wt	Package Weight			29.2		g

Typical IGBT Performance Curve

Output Characteristics ($\mathrm{V}_{\mathrm{GE}}=\mathbf{1 5 V}$)

Energy losses vs Collector Current

APT75GT120JU3

Figure 15, Switching Loss Test Circuit and Waveforms

Figure 16, Resistive Switching Time Test Circuit and Waveforms

Typical Diode Performance Curve

FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

Figure 4. Reverse Recovery Charge vs. Current Rate of Change

Figure 6. Dynamic Parameters vs. Junction Temperature

Figure 8. Junction Capacitance vs. Reverse Voltage

Figure 3. Reverse Recovery Time vs. Current Rate of Change

Figure 5. Reverse Recovery Current vs. Current Rate of Change

Figure 7. Maximum Average Forward Current vs. CaseTemperature

(1) I_{F}-Forward Conduction Current
(2) $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$ - Rate of Diode Current Change Through Zero Crossing.
(3) $I_{R R M}$-Maximum Reverse Recovery Current.
(4) $t_{r T}$-Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through $I_{\text {RRM }}$ and $0.25 \bullet I_{\text {RRM }}$ passes through zero.

(5) $Q_{r T}$-Area Under the Curve Defined by $I_{R R M}$ and $t_{r r}$.

Figure 10, Diode Reverse Recovery Waveform and Definitions

SOT-227 (ISOTOP ${ }^{\circledR}$) Package Outline

ISOTOP ${ }^{\circledR}$ is a registered trademark of ST Microelectronics NV

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with lifesupport or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").
Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
F3L400R07ME4_B22 FB20R06W1E3_B11 FD300R12KS4_B5 FD400R33KF2C-K FF200R06YE3 FF600R12IP4V FF900R12IE4V FP06R12W1T4_B3 FP10R06W1E3_B11 FP15R12W2T4 FP20R06W1E3 FP40R12KT3G FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS15R12VT3 FS200R12KT4R FS20R06W1E3_B11 FS50R07N2E4_B11 FZ1600R17HP4_B2 DD250S65K3

DF1000R17IE4 APTGT100A60T1G APTGT75DA60T1G BSM300GB120DLC F3L200R07PE4 F3L200R12W2H3_B11 F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11 F475R07W1H3B11ABOMA1 FD1400R12IP4D FD400R12KE3_B5 FD800R33KF2C-K FF1200R17KP4_B2 FF150R12ME3G FF150R17ME3G FF225R12MS4 FF300R17KE3_S4 FF300R17ME4_B11 FF600R12IE4 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV FP10R12W1T4_B3 FP30R06W1E3_B11 FP50R07N2E4_B11 FP50R12KT4G_B15 FS100R12KE3

