

650V, 95A, $V_{CE(on)}$ = 1.9V Typical

Ultra Fast NPT - IGBT®

The Ultra Fast 650V NPT-IGBT® family of products is the newest generation of IGBTs optimized for outstanding ruggedness and best trade-off between conduction and switching losses.

Features

- · Low Saturation Voltage
- Low Tail Current
- RoHS Compliant

- Short Circuit Withstand Rated
- High Frequency Switching
- Ultra Low Leakage Current

All Ratings: T_c = 25°C unless otherwise specified.

Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is recommended for applications such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

MAXIMUM RATINGS

Symbol	Parameter	Ratings	Unit
V _{CES}	Collector Emitter Voltage	650	V
V_{GE}	Gate-Emitter Voltage	±30	V
I _{C1}	Continuous Collector Current @ T _C = 25°C	208	
I _{C2}	Continuous Collector Current @ T _C = 110°C	100	Α
I _{CM}	Pulsed Collector Current ①	400	
SCWT	Short Circuit Withstand Time: V _{CE} = 325V, V _{GE} = 15V, T _C =125°C	10	μs
P _D	Total Power Dissipation @ T _C = 25°C	892	W
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T _L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	°C

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage (V _{GE} = 0V, I _C = 250uA)	650			
V _{GE(TH)}	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 2.5 \text{mA}, T_{j} = 25 ^{\circ}\text{C})$	3.5	5.0	6.5	Volts
V _{CE(ON)}	Collector-Emitter On Voltage ($V_{GE} = 15V$, $I_C = 95A$, $T_j = 25^{\circ}C$)	ĺ	1.9	2.4	
	Collector-Emitter On Voltage $(V_{GE} = 15V, I_C = 95A, T_j = 125^{\circ}C)$		2.4		
	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 190A, T _j = 25°C)		2.6		
I _{CES}	Collector Cut-off Current (V _{CE} = 650V, V _{GE} = 0V, T _j = 25°C) ②		10	250	μA
	Collector Cut-off Current (V _{CE} = 650V, V _{GE} = 0V, T _j = 125°C) (2)		100		ĺ
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			±250	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ies}	Input Capacitance	Capacitance		5910		
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		1150		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		565	ĺ	
V_{GEP}	Gate to Emitter Plateau Voltage	Gate Charge		7.5		V
Q [®]	Total Gate Charge	V _{GE} = 15V		312	420	
Q _{ge}	Gate-Emitter Charge	V _{CE} = 325V		42	55	nC
Q_{gc}	Gate- Collector Charge	I _C = 95A		154	210	
t _{d(on)}	Turn-On Delay Time	Inductive Switching (25°C)		29		
t _r	Current Rise Time	V _{cc} = 433V		76		ns
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		226		
t,	Current Fall Time	I _C = 95A		84		
E _{on2} ⑤	Turn-On Switching Energy	$R_{G} = 4.3\Omega^{4}$		3120	4680	1
E _{off}	Turn-Off Switching Energy	T _J = +25°C		2550	3830	μJ
t _{d(on)}	Turn-On Delay Time	Inductive Switching (125°C)		29		
t _r	Current Rise Time	V _{cc} = 433V		76		ns
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		246		
t _f	Current Fall Time	I _C = 95A		90		
E _{on2}	Turn-On Switching Energy	$R_{G} = 4.3\Omega^{(4)}$		3155	4730	1
E _{off}	Turn-Off Switching Energy	T _J = +125°C		2745	4120	μJ

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Max	Unit
$R_{\theta JC}$	Junction to Case Thermal Resistance			.14	°C/W
$R_{\theta JA}$	Junction to Ambient Thermal Resistance			40	
W _T	Package Weight		.22		oz
			6.2		g

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Pulse test: Pulse Width < $380\mu s$, duty cycle < 2%.
- 3 See Mil-Std-750 Method 3471.
- $4~R_{_{
 m G}}$ is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
- 5 E_{on2} is the energy loss at turn-on and includes the charge stored in the freewheeling diode.
- 6 E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

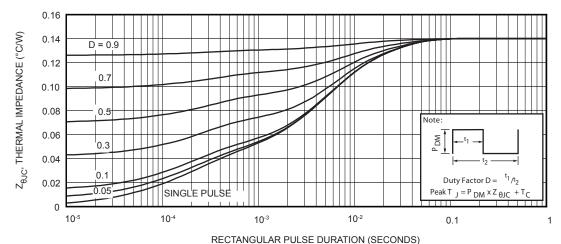
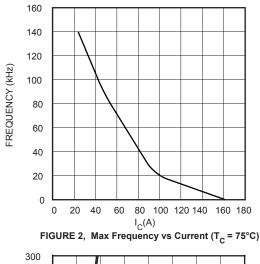
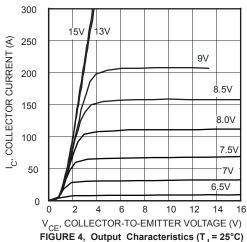
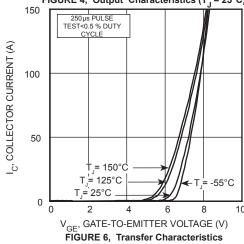





Figure 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

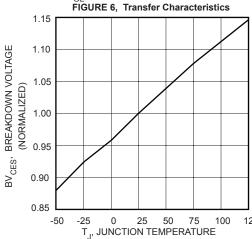
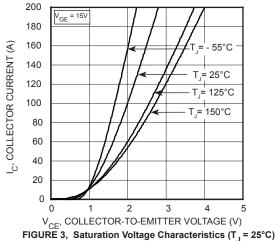



FIGURE 8, Breakdown Voltage vs Junction Temperature

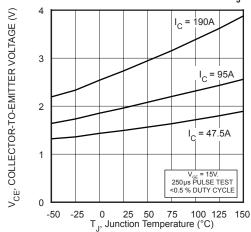
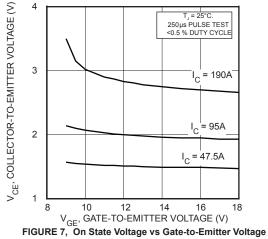



FIGURE 5, On State Voltage vs Junction Temperature

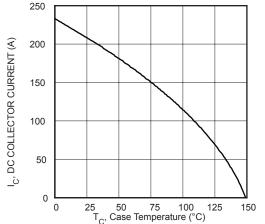
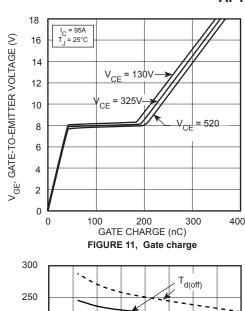
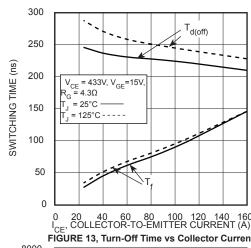
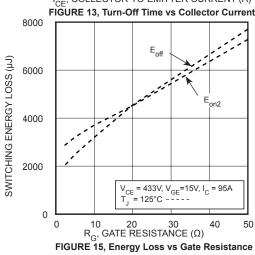





FIGURE 9, DC Collector Current vs Case Temperature

FIGURE 16, Swiitching Energy vs Junction Temperature

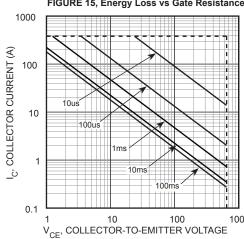
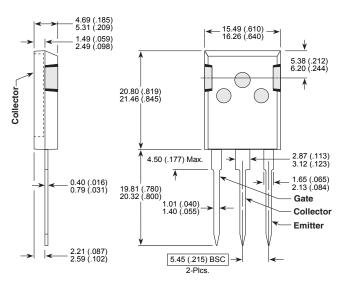



FIGURE 17, Minimum Switching Safe Operating Area

T-MAX™ (B2) Package Outline

These dimensions are equal to the TO-247 without the mounting hole.

Dimensions in Millimeters and (Inches)

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IGW40N120H3FKSA1
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG

 RJH60F3DPQ-A0#T0
 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG

 IXA30RG1200DHGLB
 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 QP12W05S-37A
 IHFW40N65R5SXKSA1
 APT70GR120J

 APT35GP120JDQ2
 IKZA40N65RH5XKSA1
 IKFW75N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IMBG120R090M1HXTMA1
 XD15H120CX1

 XD25H120CX0
 XP15PJS120CL1B1
 IGW30N60H3FKSA1
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1
 RJH60D2DPP-M0#T2

 M0#T2
 IKP20N60TXKSA1
 IKP20N60TXKSA1
 RJH60D2DPP