Features

- 3.0V to 5.5V Operating Range
- Lowest Power in Its Class
- Advanced Low-voltage, Zero-power, Electrically Erasable Programmable Logic Device
- "Zero" Standby Power ($25 \mu \mathrm{~A}$ Maximum) (Input Transition Detection)
- Low-voltage Equivalent of Atmel ATF22V10CZ
- Ideal for Battery Powered Systems
- CMOS- and TTL-compatible Inputs and Outputs
- Inputs are 5V Tolerant
- Latch Feature Hold Inputs to Previous Logic States
- EE Technology
- Reprogrammable
- 100\% Tested
- High-reliability CMOS Process
- 20-year Data Retention
- 10,000 Erase/Write Cycles
- 2,000V ESD Protection
- 200mA Latch-up Immunity
- Commercial and Industrial Temperature Ranges
- Dual Inline and Surface Mount Standard Pinouts
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available

1. Description

The Atmel ${ }^{\circledR}$ ATF22LV10CZ/CQZ is a high-performance CMOS (electrically erasable) programmable logic device (PLD) that utilizes The Atmel proven electrically erasable Flash memory technology and provides 25 ns speed with standby current of $25 \mu \mathrm{~A}$ maximum. All speed ranges are specified over the 3.0 V to 5.5 V range for industrial and commercial temperature ranges.

The ATF22LV10CZ/CQZ provides a low-voltage and edge-sensing "zero" power CMOS PLD solution with "zero" standby power ($5 \mu \mathrm{~A}$ typical). The ATF22LV10CZ/CQZ powers down automatically to the zero power mode through The Atmel patented Input Transition Detection (ITD) circuitry when the device is idle. The ATF22LV10CZ/CQZ is capable of operating at supply voltages down to 3.0 V . Pin "keeper" circuits on input and output pins hold pins to their previous logic levels when idle, which eliminate static power consumed by pull-up resistors. The "CQZ" combines this low high-frequency ICC of the " Q " design with the " Z " feature.
The ATF22LV10CZ/CQZ macrocell incorporates a variable product term architecture. Each output is allocated from 8 to 16 product terms which allows highly complex logic functions to be realized. Two additional product terms are included to provide synchronous reset and asynchronous reset. These additional product terms are common to all ten registers and are automatically cleared upon power-up. Register Preload simplifies testing. A security fuse prevents unauthorized copying of programmed fuse patterns.

High-performance
Electrically
Erasable
Programmable Logic Device

Atmel ATF22LV10CZ Atmel ATF22LV10CQZ

ATF22LV10CZ is
Not Recommended for New
Design. Replaced by ATF22LV10CQZ.

Figure 1-1. Block Diagram

2. Pin Configurations

Table 2-1. \quad Pin Configurations (All Pinouts Top View)

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
GND	Ground
VCC	$(3$ to 5.5 V$)$ Supply

Figure 2-1. TSSOP

Note: TSSOP is the smallest package of SPLD offering

Figure 2-3. PLCC

Note: For PLCC, pins 1, 8, 15, and 22 can be left unconnected. For superior performance, connect VCC to pin 1 and GND to pins 8,15 , and 22

Figure 2-2. DIP/SOIC

Atmel ATF22LV10C(Q)Z

3. Absolute Maximum Ratings*

Temperature under Bias $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature.................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground......................-2.0V to $+7.0 \mathrm{~V}^{(1)}$
Voltage on Input Pins
with Respect to Ground
during Programming-2.0V to $+14.0 \mathrm{~V}^{(1)}$
Programming Voltage with
Respect to Ground.....................-2.0V to $+14.0 \mathrm{~V}^{(1)}$
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note: 1. Minimum voltage is -0.6 V DC, which may undershoot to 2.0 V for pulses of less than 20 ns . Maximum output pin voltage is $\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$ DC, which may overshoot to 7.0 V for pulses of less than 20ns.

4. DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient)	$0 \cdot \mathrm{C}-70 \cdot \mathrm{C}$	$-40 \cdot \mathrm{C}-85 \cdot \mathrm{C}$
V_{CC} Power Supply	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$

4.1 DC Characteristics

Symbol	Parameter	Condition ${ }^{(2)}$			Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Input or I/O Low Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (Max)					-10.0	$\mu \mathrm{A}$
I_{H}	Input or I/O High Leakage Current	$\left(\mathrm{V}_{\mathrm{CC}}-0.2\right) \mathrm{V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$					10.0	$\mu \mathrm{A}$
I_{CC}	Clocked Power Supply Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { Outputs Open, } \\ & f=15 \mathrm{MHz} \end{aligned}$	CZ-25 ${ }^{(3)}$	Com.		50.0	85.0	mA
			CZ-25 ${ }^{(3)}$	Ind.		55.0	90.0	mA
			CQZ-30	Com.		18.0	50.0	mA
			CQZ-30	Ind.		19.0	60.0	mA
I_{SB}	Power Supply Current, Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{Max} \\ & \text { Outputs Open } \end{aligned}$	CZ-25 ${ }^{(3)}$	Com.		3.0	25.0	$\mu \mathrm{A}$
			CZ-25 ${ }^{(3)}$	Ind.		4.0	50.0	$\mu \mathrm{A}$
			CQZ-30	Com.		3.0	25.0	$\mu \mathrm{A}$
			CQZ-30	Ind.		4.0	50.0	$\mu \mathrm{A}$
$\mathrm{IOS}^{(1)}$	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					-130.0	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				-0.5		0.8	V
V_{IH}	Input High Voltage				2.0		$\mathrm{V}_{\mathrm{CC}}+0.75$	V
V_{OL}	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \hline \end{aligned}$					0.5	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CCIO}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \hline \end{aligned}$			2.4			V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$			V

Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec
2. For DC characterization, the test condition of $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ corresponds to 3.6 V
3. Shaded devices are becoming obsolete and replaced with CQZ-30 part in green package offering

4.2 AC Waveforms

INPUTS, I/O

4.3 AC Characteristics ${ }^{(1)}$

Symbol	Parameter	$-25^{(2)}$		-30		Units
		Min	Max	Min	Max	
t_{PD}	Input or Feedback to Non-registered Output	3.0	25.0	10.0	30.0	ns
t_{CF}	Clock to Feedback		13.0	10.0	15.0	ns
t_{CO}	Clock to Output	2.0	15.0	4.0	20.0	ns
$\mathrm{t}_{\text {s }}$	Input or Feedback Setup Time	15.0		18.0		ns
t_{H}	Input Hold Time	0		0		ns
t_{p}	Clock Period	25.0		30.0		ns
$t_{\text {w }}$	Clock Width	12.5		15.0		ns
$\mathrm{f}_{\text {MAX }}$	External Feedback $1 /\left(t_{s}+t_{\mathrm{CO}}\right)$ Internal Feedback $1 /\left(t_{s}+t_{\mathrm{CF}}\right)$ No Feedback 1/(tp)	$\begin{aligned} & 33.3 \\ & 35.7 \\ & 40.0 \end{aligned}$			$\begin{aligned} & 25.0 \\ & 30.0 \\ & 33.3 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
t_{EA}	Input to Output Enable	3.0	25.0	10.0	30.0	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable	3.0	25.0	10.0	30.0	ns
$\mathrm{t}_{\text {AP }}$	Input or I/O to Asynchronous Reset of Register	3.0	25.0	10.0	3.0	ns
$\mathrm{t}_{\text {SP }}$	Setup Time, Synchronous Preset	15.0		20.0		ns
$t_{\text {AW }}$	Asynchronous Reset Width	25.0		30.0		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	25.0		30.0		ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset to Clock Recovery Time	15.0		20.0		ns

Note: 1. See ordering information for valid part numbers
2. Shaded products are becoming obsolete

4.4 Input Test Waveforms

4.4.1 Input Test Waveforms and Measurement Levels

4.4.2 Output Test Loads

Note: \quad Similar competitors devices are specified with slightly different loads. These load differences may affect output signals' delay and slew rate. Atmel devices are tested with sufficient margins to meet compatible device specification conditions

4.5 Pin Capacitance

Table 4-1. \quad Pin Capacitance ($\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}=25 \cdot \mathrm{C}^{(1)}$)

	Typ	Max	Units	Conditions
C_{IN}	5	8	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	6	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested

4.6 Power-up Reset

The registers in the Atmel ${ }^{\circledR}$ ATF22LV10CZ/CQZ are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing $\mathrm{V}_{\mathrm{RST}}$, all registers will be reset to the low state. The output state will depend on the polarity of the buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

1. The V_{CC} rise must be monotonic and start below 0.7 V
2. The clock must remain stable during $T_{P R}$
3. After $T_{P R}$, all input and feedback setup times must be met before driving the clock pin high

4.7 Preload of Register Outputs

The ATF22LV10CZ/CQZ's registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

Atmel ATF22LV10C(Q)Z

5. Electronic Signature Word

There are 64-bits of programmable memory that are always available to the user, even if the device is secured. These bits can be used for user-specific data.

6. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the Atmel ${ }^{\circledR}$ ATF22LV10CZ/CQZ fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

The security fuse should be programmed last, as its effect is immediate.

7. Programming/Erasing

Programming/erasing is performed using standard PLD programmers. See CMOS PLD Programming Hardware and Software Support for information on software/ programming.

Table 7-1. Programming/Erasing

Parameter	Description	Typ	Max	Units
T_{PR}	Power-up Reset Time	600	1000	ns
$\mathrm{~V}_{\mathrm{RST}}$	Power-up Reset Voltage	2.3	2.7	V

8. Input and I/O Pin Keepers

All ATF22LV10CZ/CQZ family members have internal input and I/O pin-keeper circuits. Therefore, whenever inputs or I/Os are not being driven externally, they will maintain their last driven state. This ensures that all logic array inputs and device outputs are at known states. These are relatively weak active circuits that can be easily overridden by TTL-compatible drivers (see input and I/O diagrams below).

Figure 8-1. Input Diagram

Figure 8-2. I/O Diagram

9. Functional Logic Diagram Description

The Functional Logic Diagram describes the Atmel ${ }^{\circledR}$ ATF22LV10CZ/CQZ architecture.
The ATF22LV10CZ/CQZ has 12 inputs and 10 I/O macrocells. Each macrocell can be configured into one of four output configurations: active high/low or registered/combinatorial. The universal architecture of the ATF22LV10CZ/CQZ can be programmed to emulate most 24-pin PAL devices.
Unused product terms are automatically disabled by the compiler to decrease power consumption. A security fuse, when programmed, protects the contents of the ATF22LV10CZ/CQZ. Eight bytes (64-fuses) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse.

Atmel ATF22LV10C(Q)Z

Figure 9-1. Functional Logic Diagram Atmel ATF22LV10CZ/CQZ

ATMEL ATF22LV10CZ/CQZ STANDBY CURRENT VS. SUPPLY VOLTAGE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

ATMEL ATF22LV10CZ SUPPLY CURRENT VS. INPUT FREQUENCY ($\mathrm{V}_{\mathrm{CC}}=\mathbf{3 . 3 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

ATMEL ATF22LV10CZ/CQZ SOURCE CURRENTVS. SUPPLY VOLTAGE ($\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$)

ATMEL ATF22LV10CZ/CQZ OUTPUT SINK CURRENTVS. SUPPLY VOLTAGE ($\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$)

NORMALIZED I ${ }_{c c}$ VS. TEMP

ATMEL ATF22LV10C/CZ OUTPUT SOURCE CURRENTVS. OUTPUTVOLTAGE ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

ATMEL ATF22LV10CZ/CQZ OUTPUT SINK CURRENTVS. OUTPUTVOLTAGE ($\mathrm{V}_{\mathrm{CC}}=\mathbf{3 . 3 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Atmel ATF22LV10C(Q)Z

ATMEL ATF22LV10CZ/CQZ INPUT CURRENT VS. INPUTVOLTAGE ($\left.\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

NORMALIZED Co $_{\text {Co }}$ VS.TEMP

NORMALIZED T ${ }_{\text {Su }}$ VS.TEMP

ATMEL AT22LV10CZ/CQZ
DELTA $_{\text {PD }}$ VS. OUTPUT LOADING

DELTA TPD ${ }_{\text {PS }}$ \# OF OUTPUT SWITCHING

ATMEL AT22LV10CZ/CQZ
DELTA $T_{c o}$ VS.OUTPUT LOADING

DELTA ${ }_{\text {co }}$ VS.\# OF OUTPUT SWITCHING

Atmel ATF22LV10C(Q)Z

10. Ordering Information

10.1 Standard Package Options ${ }^{(1)}$

t_{PD} (ns)	$\mathrm{t}_{\mathrm{S}}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{co}}(\mathrm{ns})$	Ordering Code	Package	Operation Range
25	15	15	ATF22LV10CZ-25JC ATF22LV10CZ-25PC ATF22LV10CZ-25SC ATF22LV10CZ-25XC	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	Commercial (0.C to 70.C)
			ATF22LV10CZ-25JI ATF22LV10CZ-25PI ATF22LV10CZ-25SI ATF22LV10CZ-25XI	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ (-40 \cdot C \text { to }+85 \cdot C) \end{gathered}$
			ATF22LV10CQZ-30JC ATF22LV10CQZ-30PC ATF22LV10CQZ-30SC ATF22LV10CQZ-30XC	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	Commercial (0.C to 70.C)
			ATF22LV10CQZ-30JI ATF22LV10CQZ-30PI ATF22LV10CQZ-30SI ATF22LV10CQZ-30XI	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ (-40 \cdot C \text { to }+85 \cdot C) \end{gathered}$

Notes: 1. Shaded devices are becoming obsolete and replaced with CQZ-30 parts in green product/package options listed below.

10.2 Atmel ATF22LV10CQZ Green Package Options (Pb/Halide-free/RoHS Compliant)

t_{PD} (ns)	$\mathrm{t}_{\mathrm{S}}(\mathrm{ns})$	t_{co} (ns)	Ordering Code	Package	Operating Range
30	15	15	ATF22LV10CQZ-30JU ATF22LV10CQZ-30PU ATF22LV10CQZ-30SU ATF22LV10CQZ-30XU	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ (-40 \cdot C \text { to }+85 \cdot C) \end{gathered}$

10.3 Using "C" Product for Industrial

To use commercial product for industrial temperature ranges, simply de-rate I_{Cc} by 15% on the " C " device. No speed de-rating is necessary.

Package Type	
$\mathbf{2 8 J}$	28-lead, Plastic J-leaded Chip Carrier (PLCC)
$\mathbf{2 4 P 3}$	24-pin, 0.300" Wide, Plastic Dual Inline Package (PDIP)
$\mathbf{2 4 S}$	24-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
$\mathbf{2 4 X}$	24-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)

11. Packaging Information

11.1 28J - PLCC

Notes: 1. This package conforms to JEDEC reference MS-018, Variation AB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
3. Lead coplanarity is $0.004^{\prime \prime}(0.102 \mathrm{~mm})$ maximum.

28J, 28-lead, Plastic J-leaded Chip Carrier (PLCC)

DRAWING NO. REV.
28J
B

11.2 24P3 - PDIP

Notes: 1. This package conforms to JEDEC reference MS-001, Variation AF.
2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25mm (0.010").

COMMON DIMENSIONS (Unit of Measure $=\mathrm{mm}$)					
SYMBOL MIN NOM MAX NOTE A - - 5.334 A1 0.381 - - D 31.623 - 32.131 Note 2 E 7.620 - 8.255 E1 6.096 - 7.112 Note 2 B 0.356 - 0.559 B1 1.270 - 1.651 L 2.921 - 3.810 C 0.203 - 0.356 eB - - 10.922 eC 0.000 - 1.524 e 2.540 TYP					
(de) Plastic Dual					

11.3 24S - SOIC

11.4 24X - TSSOP

Dimensions in Millimeter and (Inches)*
JEDEC STANDARD MO-153 AD
Controlling dimension: millimeters

Package Drawing Contact: packagedrawings@atmel.com	TITLE 24X, 24-lead (4.4 mm body width) Plastic Thin Shrink Small Outline Package (TSSOP)	DRAWING NO. 24X	$\begin{gathered} \text { REV. } \\ \text { A } \end{gathered}$

12. Revision History

Doc. Rev.	Date	Comments
M	$07 / 2010$	Atmel ATF22LV10CZ-25JC/JI, PC/PI, SC/SI, XC/XJ leaded parts will become obsolete. $06 / 2014 ~ T h e ~ A T F 22 L V 10 C Z ~ i s ~ o b s o l e t e . ~ R e p l a c e d ~ b y ~ A T F 22 L V 10 C Z . ~$
L	$11 / 2005$	Added Green Package options

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

International

Atmel Asia Limited	Atmel Munich GmbH	Atmel Japan
Unit 01-5 \& 16, 19/F	Business Campus	9F, Tonetsu Shinkawa Bldg.
BEA Tower, Millennium City 5	Parkring 4	$1-24-8$ Shinkawa
418 Kwun Tong Road	D-85748 Garching b. Munich	Chuo-ku, Tokyo 104-0033
Kwun Tong, Kowloon	GERMANY	JAPAN
HONG KONG	Tel: $(+49) 89-31970-0$	Tel: (+81) 3-3523-3551
Tel: $(+852) 2245-6100$	Fax: $(+49) 89-3194621$	Fax: $(+81) 3-3523-7581$

Product Contacts

Technical Support	Sales Contact	Literature Requests
pld@atmel.com	www.atmel.com/contacts	www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2010 Atmel Corporation. All rights reserved.
Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SPLD - Simple Programmable Logic Devices category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
GAL22LV10C-7LJ 5962-8984102LA 5962-8871310RA 5962-89839022A 5962-89839032A PALCE16V8-15JC GAL16V8D-10LJ GAL16V8D-10LP GAL22V10D-4LJN GAL16V8D-10LJNI GAL16V8D-10LPN GAL20V8C-10LJ GAL20V8C-10LJN GAL20V8C10LJNI 5962-89841023A GAL20V8C-10LJI GAL16V8D-7LJNI GAL22V10D-25QJ ATF16LV8C-10JU ATF16V8C-5JX ATF16V8C-7PU ATF16V8CZ-15PU ATF16V8CZ-15SU ATF16V8CZ-15XU ATF22LV10C-10PU ATF22LV10C-10XU ATF22LV10CQZ-30SU ATF22V10B-15GM/883 403506G 403557G GAL20RA10B-15LP PALCE22V10-5PC GAL16V8D-10QP GAL16V8D-10QPN 515061D 403803X 403501F TIBPAL20L8-15CNL ATF22LV10CZ-25PC GAL16V8D-10LPI GAL16V8D-15LJN GAL18V10B-20LJ ATF22LV10CZ-25SC 530030A GAL20V8B-15LJ PALCE16V8H-7PC PALCE16V8Q-15JC PSD833F2-90M 403506GB

