Features

- Industry Standard Architecture
- Low-cost Easy-to-use Software Tools
- High-speed, Electrically Erasable Programmable Logic Devices
- CMOS and TTL Compatible Inputs and Outputs
- Input and I/O Pull-up Resistors
- Advanced Flash Technology
- Reprogrammable
- 100\% Tested
- High-reliability CMOS Process
- 20 year Data Retention
- 100 Erase/Write Cycles
- 2,000V ESD Protection
- 200mA Latchup Immunity
- Full Military Temperature Ranges
- Dual-in-line and Surface Mount Packages in Standard Pinouts
- PCI Compliant

Figure 0-1. Logic Diagram

Figure 0-2. Pin Configurations
All Pinouts Top View

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bidirectional Buffers
*	No Internal Connection
$\mathrm{V}_{\text {CC }}$	+5V Supply

High-performance
Electrically
Erasable
Programmable Logic Device

1. Description

The Atmel ${ }^{\circledR}$ ATF22V10B is a high-performance CMOS (electrically erasable) programmable logic device (PLD) which utilizes the Atmel proven electrically erasable Flash memory technology. Speeds down to 7.5 ns and power dissipation as low as 10 mA are offered. All speed ranges are specified over the full $5 \mathrm{~V} \pm 10 \%$ range for military and industrial temperature ranges, and $5 \mathrm{~V} \pm 5 \%$ for commercial temperature ranges.

Several low-power options allow selection of the best solution for various types of power-limited applications. Each of these options significantly reduces total system power and enhances system reliability.

2. Absolute Maximum Ratings*

Temperature Under Bias $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Voltage on Any Pin with	
Respect to Ground	-2.0V to $+7.0 \mathrm{~V}^{(1)}$
Voltage on Input Pins with Respect to Ground	
During Programming	2.0 V to $+14.0 \mathrm{~V}^{(1)}$
Programming Voltage with	
Respect to Ground	2.0 V to $+14.0 \mathrm{~V}^{(1)}$

> *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: 1. Minimum voltage is -0.6 V DC, which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is $\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V} \mathrm{DC}$, which may overshoot to 7.0 V for pulses of less than $20 n s$.

3. DC and AC Operating Conditions

	Commercial	Industrial	Military
Operating Temperature	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (Ambient)	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$ (Ambient)	$-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$ (Case)
V_{CC} Power Supply	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$

[^0]
3.1 DC Characteristics

Symbol	Parameter	Condition			Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Input or I/O Low Leakage Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IN}} \leq \\ & \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$				-35	-100	$\mu \mathrm{A}$
I_{H}	Input or I/O High Leakage Current	$3.5 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$					10	$\mu \mathrm{A}$
I_{CC}	Power Supply Current, Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{Max}, \\ & \text { Outputs Open } \end{aligned}$	B-7	Com.		85	120	mA
				Ind., Mil.		85	140	mA
I_{CC}	Power Supply Current, Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IN}}=\text { Max, } \\ & \text { Outputs Open } \end{aligned}$	B-10	Com./Ind.		85/85	120/140	mA
				Mil.		85	140	mA
			B-15	Com./Ind.		65/65	90/115	mA
				Mil.		65	115	mA
			B-25	Com.		65	90	mA
				Ind., Mil.		65	115	mA
			BQ-15	Com.		35	55	mA
			BQL-20, -25	Com.		5	10	mA
				Ind., Mil.		5	15	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Clocked Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \text { Outputs Open, } \\ & \mathrm{f}=15 \mathrm{MHz} \end{aligned}$	B-7	Com.		90	120	mA
				Mil., Ind.		90	145	mA
			B-10	Com./Ind.		90/90	120/145	mA
				Mil.		90	150	mA
			B-15	Com./Ind.		65/65	90/120	mA
				Mil.		65	150	mA
			B-25	Com.		65	90	mA
				Ind., Mil.		65	120	mA
			BQ-15	Com.		40	60	mA
			BQL-20, -25	Com.		20	50	mA
				Ind., Mil.		20	70	mA
$\mathrm{IOS}^{(1)}$	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					-130	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				-0.5		0.8	V
V_{IH}	Input High Voltage				2.0		$\mathrm{V}_{\mathrm{CC}}+0.75$	V
V_{OL}	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	Com., Ind.			0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Mil.			0.5	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4			V

Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec
2. The shaded devices are obsolete

4. AC Waveforms ${ }^{(1)}$

Note: 1. Timing measurement reference is 1.5 V . Input AC driving levels are 0.0 V and 3.0 V , unless otherwise specified

5. AC Characteristics ${ }^{(1)}$

Symbol	Parameter	-10		-15		Units
		Min	Max	Min	Max	
$t_{\text {PD }}$	Input or Feedback to Combinatorial Output	3	10	3	15	ns
t_{CO}	Clock to Output	2	6.5	2	8	ns
t_{CF}	Clock to Feedback		2.5		2.5	ns
t_{s}	Input or Feedback Setup Time	4.5		10		ns
t_{H}	Hold Time	0		0		ns
$\mathrm{f}_{\text {MAX }}$	External Feedback $1 /\left(\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{co}}\right)$	90		55.5		MHz
	Internal Feedback 1/($\left.\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CF}}\right)$	142		69		MHz
	No Feedback 1/($\mathrm{w}_{\text {WH }}+\mathrm{t}_{\text {wL }}$)	142		83.3		MHz
t_{w}	Clock Width (t_{WL} and t_{WH})	3.5		6		ns
t_{EA}	Input or I/O to Output Enable	3	10	3	15	ns
t_{ER}	Input or I/O to Output Disable	3	9	3	15	ns
$\mathrm{t}_{\text {AP }}$	Input or I/O to Asynchronous Reset of Register	3	12	3	20	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	8		15		ns
t_{AR}	Asynchronous Reset Recovery Time	6		10		ns
$\mathrm{t}_{\text {SP }}$	Setup Time, Synchronous Preset	6		10		ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset to Clock Recovery Time	8		10		ns

Notes: 1. See ordering information for valid part numbers

6. Input Test Waveforms and Measurement Levels

$t_{R}, t_{F}<3 n s$

7. Output Test Loads

* All except -7 which is $\mathrm{R} 2=300 \Omega$

8. Pin Capacitance

$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}^{(1)}$

	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	5	8	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	6	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested

9. Power-up Reset

The registers in the Atmel ${ }^{\circledR}$ ATF22V10B are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing $\mathrm{V}_{\mathrm{RST}}$, all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.
This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

1. The V_{CC} rise must be monotonic
2. After reset occurs, all input and feedback setup times must be met before driving the clock pin high
3. The clock must remain stable during t_{PR}

10. Preload of Registered Outputs

The Atmel ${ }^{\circledR}$ ATF22V10B registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

Figure 10-1.

Table 10-1.

Parameter	Description	Typ	Max	Units
t_{PR}	Power-up Reset Time	600	1,000	ns
$\mathrm{~V}_{\text {RST }}$	Power-up Reset Voltage	3.8	4.5	V

11. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF22V10B fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.
The security fuse should be programmed last, as its effect is immediate.

12. Electronic Signature Word

There are 64-bits of programmable memory that are always available to the user, even if the device is secured. These bits can be used for user-specific data.

13. Programming/Erasing

Programming/erasing is performed using standard PLD programmers. See CMOS PLD Programming Hardware and Software Support for information on software/programming.
14. Input and I/O Pull-ups

All Atmel ${ }^{\circledR}$ ATF22V10B family members have internal input and I/O pull-up resistors. Therefore, whenever inputs or I / Os are not being driven externally, they will float to V_{CC}. This ensures that all logic array inputs are at known states. These are relatively weak active pull-ups that can easily be overdriven by TTL-compatible drivers (see input and I/O diagrams below).

Figure 14-1. Input Diagram

Figure 14-2. I/O Diagram

Figure 14-3. Functional Logic Diagram Atmel ATF22V10B

SUPPLY CURRENT vs. INPUT FREQUENCY

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT

SUPPLY CURRENT vs. INPUT FREQUENCY

OUTPUT SINK CURRENT vs. SUPPLY VOLTAGE (VOL $=0.5 \mathrm{~V}$)

OUTPUT SOURCE CURRENT

OUTPUT SOURCE CURRENT

NORMALIZED $t_{\text {PD }}$

NORMALIZED t_{co} vs. SUPPLY VOLTAGE (TA $=25^{\circ} \mathrm{C}$)

OUTPUT SINK CURRENT

OUTPUT SINK CURRENT

NORMALIZED $t_{\text {PD }}$

NORMALIZED t_{co}

NORMALIZED t_{s}

DELTA $t_{p D}$ vs. OUTPUT LOADING

DELTA $\mathrm{t}_{\text {PD }}$ vs. \# OUTPUT SWITCHING

INPUT CURRENT vs. INPUT VOLTAGE

NORMALIZED t_{s}

DELTA $t_{c o}$ vs. OUTPUT LOADING
$(\mathrm{VCC}=4.5 \mathrm{~V}$, OUTPUT LOAD $=$ COMMERCIAL)

DELTA $t_{\text {co }}$ vs. \# OUTPUT SWITCHING

INPUT CLAMP CURRENT

15. Ordering Information

15.1 Atmel ATF22V10B ${ }^{(2)}$ Ordering Detail

t_{PD} (ns)	$\mathrm{t}_{\text {S }}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{co}}(\mathrm{ns})$	Ordering Code	Package	Operation Range
10	4.5	6.5	ATF22V10B-10GM/883 ATF22V10B-10NM/883	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $/ 883 \mathrm{C}$ $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant
			$\begin{aligned} & 5962-89841 \text { 06LA } \\ & 5962-89841 \text { 063X } \end{aligned}$	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant
15	10	8	ATF22V10B-15GM/883 ATF22V10B-15NM/883	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $/ 883 \mathrm{C}$ $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant
			$\begin{aligned} & 5962-89841 \text { 03LA } \\ & 5962-89841 \text { 033X } \end{aligned}$	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant

15.2 Atmel ATF22V10BQ(L) ${ }^{(1,2)}$ Ordering Detail

t_{PD} (ns)	$\mathrm{t}_{\text {S }}$ (ns)	$\mathrm{t}_{\mathrm{co}}(\mathrm{ns})$	Ordering Code	Package	Operation Range
20	14	12	ATF22V10BQL-20GM/883 ATF22V10BQL-20NM/883	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $/ 883 \mathrm{C}$ $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant
			$\begin{aligned} & \text { 5962-89841 } 14 \text { LA } \\ & 5962-89841143 X \end{aligned}$	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant
25	15	15	ATF22V10BQL-25GM/883 ATF22V10BQL-25NM/883	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	$\begin{gathered} \text { Military } / 883 \mathrm{C} \\ \left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right) \end{gathered}$ Class B, Fully Compliant
			$\begin{aligned} & 5962-8984113 \text { LA } \\ & 5962-89841133 X \end{aligned}$	$\begin{gathered} \text { 24D3 } \\ \text { 28L } \end{gathered}$	Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B, Fully Compliant

Notes: 1. The shaded devices are obsolete
2. Please see DSCC DWG for military parts

16. Packaging Information

24D3

24D3, 24-lead, 0.300"Wide. Non-windowed,
Ceramic Dual Inline Parkage (Cerdip)
Dimensions in Millimeters and (Inches)*
MIL-STD-1835 D-9 CONFIG A (Glass Sealed)

*Controlling dimension: Inches
REV. A 04/11/2001

28L
28L, 28-pad, Non-windowed, Ceramic lid, Leadless Chip Carrier (LCC)
Dimensions in Millimeters and (Inches)*
MIL-STD-1835 C-4

*Controlling dimension: Inches

17. Revision History

Doc. Rev.	Date	Comments
0250 M	$07 / 2010$	Removed all commerical and industrial grade leaded part offerings

Headquarters

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

International
Atmel Asia Limited
Unit 01-5 \& 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: $(+49) 89-31970-0$
Fax: $(+49) 89-3194621$

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3-3523-3551
Fax: (+81) 3-3523-7581

Product Contact

Technical Support	Sales Contact	Literature Requests
pld@atmel.com	www.atmel.com/contacts	www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved.

Atmel ${ }^{\circledR}$, Atmel logo and combinations thereof and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SPLD - Simple Programmable Logic Devices category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
GAL22LV10C-7LJ 5962-8984102LA 5962-8871310RA 5962-89839022A 5962-89839032A PALCE16V8-15JC GAL16V8D-10LJ GAL16V8D-10LP GAL22V10D-4LJN GAL16V8D-10LJNI GAL16V8D-10LPN GAL20V8C-10LJ GAL20V8C-10LJN GAL20V8C10LJNI 5962-89841023A GAL20V8C-10LJI GAL16V8D-7LJNI GAL22V10D-25QJ ATF16LV8C-10JU ATF16V8C-5JX ATF16V8C-7PU ATF16V8CZ-15PU ATF16V8CZ-15XU ATF22LV10C-10PU ATF22LV10CQZ-30SU ATF22LV10CQZ-30XU ATF22V10B-15GM/883 403506G 403557G GAL20RA10B-15LP PALCE22V10-5PC GAL16V8D-10QP GAL16V8D-10QPN 515061D 403803X 403501F TIBPAL20L8-15CNL ATF22LV10CZ-25PC GAL16V8D-10LPI GAL16V8D-15LJN GAL18V10B-20LJ 530030A GAL20V8B-15LJ PALCE16V8H-7PC PALCE16V8Q-15JC PSD833F2-90M 403506GB

[^0]: Note: 1. The shaded devices are obsolete

