
Features
• High Performance, Low Power AVR® 8-bit Microcontroller

• Advanced RISC Architecture

– 124 Powerful Instructions - Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 1 MIPS Throughput at 1 MHz

• Nonvolatile Program and Data Memories

– 40K Bytes of In-System Self-Programmable Flash, Endurance: 10,000 Write/Erase

Cycles

– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program

True Read-While-Write Operation

– 512 bytes EEPROM, Endurance: 100,000 Write/Erase Cycles

– 2K Bytes Internal SRAM

– Programming Lock for Software Security

• On-chip Debugging

– Extensive On-chip Debug Support

– Available through JTAG interface

• Battery Management Features

– Two, Three, or Four Cells in Series

– Deep Under-voltage Protection

– Over-current Protection (Charge and Discharge)

– Short-circuit Protection (Discharge)

– Integrated Cell Balancing FETs

– High Voltage Outputs to Drive Charge/Precharge/Discharge FETs

• Peripheral Features

– One 8-bit Timer/Counter with Separate Prescaler, Compare Mode, and PWM

– One 16-bit Timer/Counter with Separate Prescaler and Compare Mode

– 12-bit Voltage ADC, Eight External and Two Internal ADC Inputs

– High Resolution Coulomb Counter ADC for Current Measurements

– TWI Serial Interface for SM-Bus

– Programmable Wake-up Timer

– Programmable Watchdog Timer

• Special Microcontroller Features

– Power-on Reset

– On-chip Voltage Regulator

– External and Internal Interrupt Sources

– Four Sleep Modes: Idle, Power-save, Power-down, and Power-off

• Packages

– 48-pin LQFP

• Operating Voltage: 4.0 - 25V

• Maximum Withstand Voltage (High-voltage pins): 28V

• Temperature Range: -30°C to 85°C

– Speed Grade: 1 MHz

8-bit
Microcontroller
with 40K Bytes
In-System
Programmable
Flash

ATmega406

Preliminary

2548F–AVR–03/2013

2
2548F–AVR–03/2013

ATmega406

1. Pin Configurations

Figure 1-1. Pinout ATmega406.

1.1 Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

1
2
3
4
5
6
7
8
9
10
11
12

36
35
34
33
32
31
30
29
28
27
26
25

SGND
(ADC0/PCINT0) PA0
(ADC1/PCINT1) PA1
(ADC2/PCINT2) PA2
(ADC3/PCINT3) PA3

VREG
VCC
GND

(ADC4/INT0/PCINT4) PA4
(INT1/PCINT5) PA5
(INT2/PCINT6) PA6
(INT3/PCINT7) PA7

PVT
OD
VFET
OC
OPC
BATT
PC0
GND
PD1
PD0 (T0)
PB7 (OC0B/PCINT15)
PB6 (OC0A/PCINT14)

48

47

46

45

44

43

42

41

40

39

38

37

13

14

15

16

17

18

19

20

21

22

23

24

R
E

S
E

T
X

T
A

L1
X

T
A

L2
G

N
D

(T
D

O
/P

C
IN

T
8)

 P
B

0
(T

D
I/P

C
IN

T
9)

 P
B

1
(T

M
S

/P
C

IN
T

10
)

P
B

2
(T

C
K

/P
C

IN
T

11
)

P
B

3
 (

P
C

IN
T

12
)

P
B

4
(P

C
IN

T
13

)
P

B
5

S
C

L
S

D
A

N
N

I
N

I
P

I
P

P
I

V
R

E
F

G
N

D
V

R
E

F
N

V
P

V
1

P
V

2
P

V
3

P
V

4
G

N
D

Top View

3
2548F–AVR–03/2013

ATmega406

2. Overview
The ATmega406 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega406
achieves throughputs approaching 1 MIPS at 1 MHz.

2.1 Block Diagram

Figure 2-1. Block Diagram

The ATmega406 provides the following features: a Voltage Regulator, dedicated Battery Protec-
tion Circuitry, integrated cell balancing FETs, high-voltage analog front-end, and an MCU with
two ADCs with On-chip voltage reference for battery fuel gauging.

The voltage regulator operates at a wide range of voltages, 4.0 - 25 volts. This voltage is regu-
lated to a constant supply voltage of nominally 3.3 volts for the integrated logic and analog
functions.

The battery protection monitors the battery voltage and charge/discharge current to detect illegal
conditions and protect the battery from these when required. The illegal conditions are deep
under-voltage during discharging, short-circuit during discharging and over-current during charg-
ing and discharging.

PORTA (8)TWI

SRAMFlash

CPU EEPROM

PV2

NV

OPC
OC
OD

FET
Control

Battery
Protection

Voltage
ADC

Voltage
Reference

Coulumb
Counter ADC

GND

VCC

RESET

Power
Supervision

POR &
RESET

Watchdog
Oscillator

Watchdog
Timer

Oscillator
Circuits /

Clock
Generation

PPI
NNI
PVT

SGND

VREF

VREFGND

PI
NI

PA7..0

PA3..0

16 bit T/C1

8 bit T/C0

PORTB (8)

PB7..0

JTAG
Wake-Up

Timer

Voltage
Regulator

Charger
Detect

VFET
VREG

BATT

PV1

DATA BUS

PORTC (1)

PC0SCASCL

Cell
Balancing

PV3
PV4

PORTD (2)

PD1..0

XTAL1

XTAL2

4
2548F–AVR–03/2013

ATmega406

The integrated cell balancing FETs allow cell balancing algorithms to be implemented in
software.

The MCU provides the following features: 40K bytes of In-System Programmable Flash with
Read-While-Write capabilities, 512 bytes EEPROM, 2K byte SRAM, 32 general purpose working
registers, 18 general purpose I/O lines, 11 high-voltage I/O lines, a JTAG Interface for On-chip
Debugging support and programming, two flexible Timer/Counters with PWM and compare
modes, one Wake-up Timer, an SM-Bus compliant TWI module, internal and external interrupts,
a 12-bit Sigma Delta ADC for voltage and temperature measurements, a high resolution Sigma
Delta ADC for Coulomb Counting and instantaneous current measurements, a programmable
Watchdog Timer with internal Oscillator, and four software selectable power saving modes.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The Idle mode stops the CPU while allowing the other chip function to continue functioning. The
Power-down mode allows the voltage regulator, battery protection, regulator current detection,
Watchdog Timer, and Wake-up Timer to operate, while disabling all other chip functions until the
next Interrupt or Hardware Reset. In Power-save mode, the Wake-up Timer and Coulomb Coun-
ter ADC continues to run.

The device is manufactured using Atmel’s high voltage high density non-volatile memory tech-
nology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System, by
a conventional non-volatile memory programmer or by an On-chip Boot program running on the
AVR core. The Boot program can use any interface to download the application program in the
Application Flash memory. Software in the Boot Flash section will continue to run while the
Application Flash section is updated, providing true Read-While-Write operation. By combining
an 8-bit RISC CPU with In-System Self-Programmable Flash, fuel gauging ADCs, dedicated bat-
tery protection circuitry, Cell Balancing FETs, and a voltage regulator on a monolithic chip, the
Atmel ATmega406 is a powerful microcontroller that provides a highly flexible and cost effective
solution for Li-ion Smart Battery applications.

The ATmega406 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and On-chip
Debugger.

5
2548F–AVR–03/2013

ATmega406

2.2 Pin Descriptions

2.2.1 VFET

High voltage supply pin. This pin is used as supply for the internal voltage regulator, described in
”Voltage Regulator” on page 114. In addition the voltage level on this pin is monitored by the bat-
tery protection circuit, for deep-under-voltage protection. For details, see ”Battery Protection” on
page 125.

2.2.2 VCC

Digital supply voltage. Normally connected to VREG.

2.2.3 VREG

Output from the internal Voltage Regulator. Used for external decoupling to ensure stable regu-
lator operation. For details, see ”Voltage Regulator” on page 114.

2.2.4 VREF

Internal Voltage Reference for external decoupling. For details, see ”Voltage Reference and
Temperature Sensor” on page 121.

2.2.5 VREFGND

Ground for decoupling of Internal Voltage Reference. For details, see ”Voltage Reference and
Temperature Sensor” on page 121.

2.2.6 GND

Ground

2.2.7 SGND

Signal ground pin, used as reference for Voltage-ADC conversions. For details, see ”Voltage
ADC – 10-channel General Purpose 12-bit Sigma-Delta ADC” on page 116.

2.2.8 Port A (PA7:PA0)

PA3:PA0 serves as the analog inputs to the Voltage A/D Converter.

Port A also serves as a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). As inputs, Port A pins that are externally pulled low will source current if
the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega406 as listed in ”Alter-
nate Functions of Port A” on page 68.

2.2.9 Port B (PB7:PB0)

Port B is a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors (selected for
each bit). As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATmega406 as listed in ”Alter-
nate Functions of Port B” on page 70.

6
2548F–AVR–03/2013

ATmega406

2.2.10 Port C (PC0)

Port C is a high voltage Open Drain output port.

2.2.11 Port D (PD1:PD0)

Port D is a low-voltage 2-bit bi-directional I/O port with internal pull-up resistors (selected for
each bit). As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega406 as listed in ”Alter-
nate Functions of Port D” on page 72.

2.2.12 SCL

SMBUS clock, Open Drain bidirectional pin.

2.2.13 SDA

SMBUS data, Open Drain bidirectional pin.

2.2.14 OC/OD/OPC

High voltage output to drive external Charge/Discharge/Pre-charge FETs. For details, see ”FET
Control” on page 133.

2.2.15 PPI/NNI

Unfiltered positive/negative input from external current sense resistor, used by the battery pro-
tection circuit, for over-current and short-circuit detection. For details, see ”Battery Protection” on
page 125.

2.2.16 PI/NI

Filtered positive/negative input from external current sense resistor, used to by the Coulomb
Counter ADC to measure charge/discharge currents flowing in the battery pack. For details, see
”Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC” on page 106.

2.2.17 NV/PV1/PV2/PV3/PV4

NV, PV1, PV2, PV3, and PV4 are the inputs for battery cells 1, 2, 3 and 4, used by the Voltage
ADC to measure each cell voltage. For details, see ”Voltage ADC – 10-channel General Pur-
pose 12-bit Sigma-Delta ADC” on page 116.

2.2.18 PVT

PVT defines the pull-up level for the OD output.

2.2.19 BATT

Input for detecting when a charger is connected. This pin also defines the pull-up level for OC
and OPC outputs.

2.2.20 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 11 on page
38. Shorter pulses are not guaranteed to generate a reset.

7
2548F–AVR–03/2013

ATmega406

2.2.21 XTAL1

Input to the inverting Oscillator amplifier.

2.2.22 XTAL2

Output from the inverting Oscillator amplifier.

3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

4. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

8
2548F–AVR–03/2013

ATmega406

5. AVR CPU Core

5.1 Introduction
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

5.2 Architectural Overview

Figure 5-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

Interrupt
Unit

Watchdog
Timer

I/O Module 2

I/O Module1

I/O Module n

9
2548F–AVR–03/2013

ATmega406

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega406
has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5.3 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

10
2548F–AVR–03/2013

ATmega406

5.4 Status Register
The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the ”AVR Instruction Set” description. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

5.4.1 SREG – AVR Status Register

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the ”AVR Instruction Set”
description.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the ”AVR Instruction Set” for detailed information.

• Bit 4 – S: Sign Bit, S = N V

The S-bit is always an exclusive or between the negative flag N and the Two’s Complement
Overflow Flag V. See the ”AVR Instruction Set” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the ”AVR
Instruction Set” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the ”AVR
Instruction Set” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

11
2548F–AVR–03/2013

ATmega406

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the ”AVR Instruc-
tion Set” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the ”AVR Instruction
Set” for detailed information.

5.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 5-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 5-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 5-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

12
2548F–AVR–03/2013

ATmega406

5.5.1 The X-register, Y-register, and Z-register

The registers R26:R31 have some added functions to their general purpose usage. These regis-
ters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5-3.

Figure 5-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the ”AVR Instruction Set” description for
details).

5.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x100. The Stack Pointer is decremented by one when data is pushed onto the
Stack with the PUSH instruction, and it is decremented by two when the return address is
pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one
when data is popped from the Stack with the POP instruction, and it is incremented by two when
data is popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

13
2548F–AVR–03/2013

ATmega406

5.6.1 SPH and SPL – Stack Pointer Register

5.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 5-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 5-4. The Parallel Instruction Fetches and Instruction Executions

Figure 5-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 5-5. Single Cycle ALU Operation

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU

14
2548F–AVR–03/2013

ATmega406

5.8 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section ”Memory Program-
ming” on page 195 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in ”Interrupts” on page 51. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to
”Interrupts” on page 51 for more information. The Reset Vector can also be moved to the start of
the Boot Flash section by programming the BOOTRST Fuse, see ”Boot Loader Support – Read-
While-Write Self-Programming” on page 178.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

15
2548F–AVR–03/2013

ATmega406

CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

5.8.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

16
2548F–AVR–03/2013

ATmega406

6. AVR Memories
This section describes the different memories in the ATmega406. The AVR architecture has two
main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega406 features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

6.1 In-System Reprogrammable Flash Program Memory
The ATmega406 contains 40K bytes On-chip In-System Reprogrammable Flash memory for
program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as
20K x 16. For software security, the Flash Program memory space is divided into two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega406
Program Counter (PC) is 15 bits wide, thus addressing the 20K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in ”Boot Loader Support – Read-While-Write Self-Programming” on page
178. ”Memory Programming” on page 195 contains a detailed description on Flash data serial
downloading.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in ”Instruction Execution Tim-
ing” on page 13.

Figure 6-1. Program Memory Map

0x0000

0x4FFF

Program Memory

Application Flash Section

Boot Flash Section

17
2548F–AVR–03/2013

ATmega406

6.2 SRAM Data Memory
Figure 6-2 shows how the ATmega406 SRAM Memory is organized.

The ATmega406 is a complex microcontroller with more peripheral units than can be supported
within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

The lower 2,304 data memory locations address both the Register File, the I/O memory,
Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register
File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory,
and the next 2,048 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and
the 2,048 bytes of internal data SRAM in the ATmega406 are all accessible through all these
addressing modes. The Register File is described in ”General Purpose Register File” on page
11.

Figure 6-2. Data Memory Map

32 Registers
64 I/O Registers

Internal SRAM
(2048 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x08FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.
0x0100

18
2548F–AVR–03/2013

ATmega406

6.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 6-3.

Figure 6-3. On-chip Data SRAM Access Cycles

6.3 EEPROM Data Memory
The ATmega406 contains 512 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

For a detailed description of Serial and Parallel data downloading to the EEPROM, see page
211 and page 199 respectively.

6.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 6-1. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction

19
2548F–AVR–03/2013

ATmega406

6.3.2 EEARH and EEARL – The EEPROM Address Register

• Bits 15:9 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bits 8:0 – EEAR8:0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

6.3.3 EEDR – The EEPROM Data Register

• Bits 7:0 – EEDR7:0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

6.3.4 EECR – The EEPROM Control Register

• Bits 7:6 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bits 5:4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 6-1. While EEPE
is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00
unless the EEPROM is busy programming.

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0

20
2548F–AVR–03/2013

ATmega406

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEPE is cleared.

• Bit 2 – EEMPE: EEPROM Master Programming Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ”Boot Loader
Support – Read-While-Write Self-Programming” on page 178 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

Table 6-1. EEPROM Mode Bits

EEPM1 EEPM0
Programming

Time Operation

0 0 3.4 ms Erase and Write in one operation (Atomic Operation)

0 1 1.8 ms Erase Only

1 0 1.8 ms Write Only

1 1 – Reserved for future use

21
2548F–AVR–03/2013

ATmega406

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 6-2 lists the typical pro-
gramming time for EEPROM access from the CPU.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-
ally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Table 6-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write
(from CPU)

26,368 3.3 ms

22
2548F–AVR–03/2013

ATmega406

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE

sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}

23
2548F–AVR–03/2013

ATmega406

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

24
2548F–AVR–03/2013

ATmega406

6.4 I/O Memory
The I/O space definition of the ATmega406 is shown in ”Register Summary” on page 236.

All ATmega406 I/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega406 is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved
in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in
SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other
AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be
used on registers containing such status flags. The CBI and SBI instructions work with registers
0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

6.4.1 General Purpose I/O Registers

The ATmega406 contains three General Purpose I/O Registers. These registers can be used for
storing any information, and they are particularly useful for storing global variables and Status
Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly bit-
accessible using the SBI, CBI, SBIS, and SBIC instructions.

6.4.2 GPIOR2 – General Purpose I/O Register 2

6.4.3 GPIOR1 – General Purpose I/O Register 1

6.4.4 GPIOR0 – General Purpose I/O Register 0

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

25
2548F–AVR–03/2013

ATmega406

7. System Clock and Clock Options

7.1 Clock Systems and their Distribution
Figure 7-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in ”Power Manage-
ment and Sleep Modes” on page 31. The clock systems are detailed below.

Figure 7-1. Clock Distribution

7.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

7.1.2 TWI Clock - clkTWI

The TWI module is provided with a dedicated clock domain. This is because the TWI module
requires a 4 MHz clock to achieve the specified Data Transfer Speed. It also allows power
reduction by halting the clkTWI clock when TWI communication is not used. Note that address
match detection in the TWI module is carried out asynchronously when clkTWI is halted, enabling
TWI address watch detection in all sleep modes except Power-off.

7.1.3 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules. The I/O clock is also used by the Exter-
nal Interrupt module, but note that some external interrupts are detected by asynchronous logic,
allowing such interrupts to be detected even if the I/O clock is halted.

7.1.4 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

Ultra Low Power
RC Oscillator

Watchdog Timer Battery Protection
& FET Control

Reset Logic

CPU
CORE

RAM
FLASH and

EEPROM
Voltage

ADC
Other I/O
Modules

Coulomb Counter
ADC

Wake-up
Timer

1/4

AVR
Clock Control

AVR
Clock Control

Slow RC
Oscillator

Fast RC
Oscillator

clk
CPU

clk
FLASH

clk
VADC

clk
I/O

clk
CCADC clk

WUT

AVR
Clock Control

TWI

1/4
Sync
Delay

clk
TWI

32 kHz Crystal
Oscillator

Run-Time
Selection

Clock
Multiplexer 10

TWI Disconnect
Delay

26
2548F–AVR–03/2013

ATmega406

7.1.5 Voltage ADC Clock – clkVADC

The Voltage ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accurate ADC
conversion results.

7.1.6 Coulomb Counter ADC Clock - clkCCADC

The Coulomb Counter ADC is provided with a dedicated clock domain. This allows operating the
Coulomb Counter ADC in low power modes like Power-save for continuous current
measurements.

7.1.7 Watchdog Timer and Battery Protection Clock

The Watchdog Timer and Battery Protection are provided with a dedicated clock domain. This
allows operation in all modes except Power-off. It also allows very low power operation by utiliz-
ing an Ultra Low Power RC Oscillator dedicated to this purpose.

7.2 Clock Sources
The device has the following clock sources. The clocks are input to the AVR clock generator,
and routed to the appropriate modules.

7.3 Calibrated Fast RC Oscillator
The calibrated Fast RC Oscillator by default provides a 4.0 MHz clock, which is divided down to
1.0 MHz to all modules except the TWI. The frequency is nominal value at 25C. This clock will
operate with no external components. During reset, hardware loads the calibration byte into the
FOSCCAL Register and thereby automatically calibrates the Fast RC Oscillator. At 25C, this
calibration gives a frequency of 4 MHz ± 3%. The oscillator can be calibrated to any frequency in
the range 3.7 - 4.0 MHz within ±1% accuracy, by changing the FOSCCAL register. For more
information on the pre-programmed calibration value, see the section ”Calibration Bytes” on
page 198.

The start-up times for the Fast RC Oscillator are determined by the SUT Fuses as shown in
Table 7-1 on page 26.

Note: 1. The device is shipped with this option selected.

Table 7-1. Start-up times for the internal calibrated RC Oscillator clock selection

SUT1:0
Start-up Time from Power-down

and Power-save Additional Delay from Reset

00 6 CK 14CK

01 6 CK 14CK + 4.1 ms

10 6 CK 14CK + 65 ms(1)

11 Reserved

27
2548F–AVR–03/2013

ATmega406

7.4 32 kHz Crystal Oscillator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 7-2. This Oscillator is optimized for
use with a 32.768 kHz watch crystal.

C1 and C2 should always be equal. The optimal value of the capacitors depends on the crystal
or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the envi-
ronment. For information on how to choose capacitors and other details on Oscillator operation,
refer to the 32 kHz Crystal Oscillator application note.

Figure 7-2. 32 kHz Crystal Oscillator Connections

7.5 Slow RC Oscillator
The Slow RC Oscillator provides a fixed 131 kHz clock. This clock source can be used as a
backup clock source in case of 32 kHz Crystal Oscillator failure. It can also be used as the only
Run-Time clock source in systems where the resulting clock accuracy is acceptable. To provide
good accuracy when used as a Run-Time clock source, the slow RC Oscillator has a calibration
byte stored in the signature address space. See the section ”Calibration Bytes” on page 198. In
order to get the actual timeout periods, the application software must use this calibration byte to
scale the WUT time-outs found in Table 10-1 on page 50.

7.6 Ultra Low Power RC Oscillator
The Ultra Low Power RC Oscillator (ULP Oscillator) provides a clock of 128 kHz. It operates at
very low power consumption, at the expense of frequency accuracy.

7.7 CPU, I/O, Flash, and Voltage ADC Clock
The clock source for the CPU, I/O, Flash, and Voltage ADC is the calibrated Fast RC Oscillator.
Note that the Calibrated Fast RC Oscillator will provide a 4 MHz clock to the TWI module and a
1 MHz clock to all other modules.

When the CPU wakes up from Power-down or Power-save, the CPU clock source is used to
time the start-up, ensuring a stable clock before instruction execution starts. When the CPU
starts from reset, there is an additional delay allowing the voltage regulator to reach a stable
level before commencing normal operation. The Ultra Low Power RC Oscillator is used for tim-
ing this real-time part of the start-up time. Start-up times are determined by the SUT Fuses as

XTAL2

XTAL1

GND

C2

C1

28
2548F–AVR–03/2013

ATmega406

shown in Table 7-2. The number of Ultra Low Power RC Oscillator cycles used for each time-out
is shown in Table 7-3.

7.8 Coulomb Counter ADC and Wake-up Timer Clock
The Coulomb Counter ADC and Wake-up Timer clock operates asynchronously with the CPU
clock, to allow low power operation in sleep modes. The clock source is either the 32 kHz Crystal
Oscillator, or the Slow RC Oscillator (divided by 4). The selected clock is input to the AVR Clock
Control Unit, and is routed to the appropriate modules.

The clock source for the Coulomb Counter ADC and Wake-up Timer is selected by an I/O bit in
the Clock Control and Status Register, see ”Run-Time Clock Source Select” on page 28 for
details.

7.9 Watchdog Timer and Battery Protection Clock
The clock source for the Watchdog Timer and Battery Protection is the Ultra Low Power RC
Oscillator. The Oscillator is automatically enabled in all operational modes where either the
Watchdog Timer, the Battery Protection, or both, are enabled. It is also enabled during reset.

7.10 Run-Time Clock Source Select
The clock source for the Coulomb Counter ADC and Wake-up Timer is run-time selectable as
either the 32 kHz Crystal Oscillator, or the Slow RC oscillator (divided by 4). The clock source is
selected by an I/O bit in the Clock Control and Status Register.

The 32 kHz Crystal Oscillator is the recommended clock source in order to achieve the highest
clock accuracy. The Slow RC Oscillator is provided as a clock source for low cost systems, or as
an alternate clock source in case of crystal clock failure. If the CPU detects that the crystal clock
is not operating correctly, it can switch to the Slow RC Oscillator as a less accurate, but still func-
tional, backup solution.

Table 7-2. Start-up Times for the Calibrated Fast RC Oscillator

SUT1:0
Start-up Time from Power-down

and Power-save Additional Delay from Reset

00 6 CK 14CK

01 6 CK 14CK + 3.9 ms

10 6 CK 14CK + 62.5 ms

11 Reserved

Table 7-3. Number of Ultra Low Power RC Oscillator Cycles

Typ Time-out Number of Cycles

3.9 ms 500

62.5 ms 8000

29
2548F–AVR–03/2013

ATmega406

7.11 Register Description

7.11.1 FOSCCAL – Fast RC Oscillator Calibration Register

• Bits 7:0 – FCAL7:0: Fast RC Oscillator Calibration Value

The Fast RC Oscillator Calibration Register is used to trim the Fast RC Oscillator to remove pro-
cess variations from the oscillator frequency. The factory-calibrated value is automatically
written to this register during chip reset, giving an oscillator frequency of 4.0 MHz at 25°C. The
application software can write this register to change the oscillator frequency. The oscillator can
be calibrated to any frequency in the range 3.7 - 4.0 MHz within ±1% accuracy. Calibration out-
side that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 4.4 MHz. Otherwise, the EEPROM or Flash write may fail.

The FCAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of FOSCCAL = 0x7F gives a higher
frequency than FOSCCAL = 0x80.

The FCAL6:0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range. Incrementing FCAL6:0 by 1 will give a frequency increment of less than 2% in the fre-
quency range 3.7 - 4.0 MHz.

7.11.2 CCSR – Clock Control and Status Register

• Bits 7:2 - Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 1 - XOE: 32 kHz Crystal Oscillator Enable

The XOE bit is used to enable the 32 kHz Crystal Oscillator before it is selected as clock source.
This allows the Oscillator clock to stabilize prior to use. The 32 kHz Crystal Oscillator requires
approximately two seconds to stabilize, this must be timed by the user software. If the software
tries to write a one to ACS and a zero to XOE at the same time, both XOE and ACS will be
cleared by the hardware. Thus, while the 32 kHz Crystal Oscillator is disabled it is not possible to
select it as a clock source .

Bit 7 6 5 4 3 2 1 0

(0x66) FCAL7 FCAL6 FCAL5 FCAL4 FCAL3 FCAL2 FCAL1 FCAL0 FOSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0xC0) – – – – – – XOE ACS CCSR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

30
2548F–AVR–03/2013

ATmega406

• Bit 0 - ACS: Asynchronous Clock Select

The ACS bit is used to selected the source of the asynchronous clock for the Coulomb Counter
ADC and Wake-up Timer. The Slow RC Oscillator is selected when this bit is cleared (zero). The
32 kHz Crystal Oscillator is selected when this bit is set (one).

The selected clock source and oscillator enable conditions are illustrated in Table 7-4.

Recommended algorithm for switching from the RC Oscillator to the Crystal Oscillator as the
asynchronous clock for the Coulomb Counter ADC and Wake-up Timer:

1. Enable the Crystal Oscillator by setting the XOE bit (one).

2. Enable the Wake-up Timer, select a two second timeout, and reset the Wake-up Timer
(”Wake-up Timer” on page 49 for details).

3. Wait for the Wake-up Timer time-out.

4. Switch to the Crystal Oscillator by setting the ACS bit (one) while keeping the XOE bit set
(one).

5. Optional: Wait for another Wake-up Timer time-out, to ensure the Crystal Oscillator is
operating correctly. This can be done by enabling another timer interrupt with significantly
longer time-out, and checking that the Wake-up Timer time-out occurs first.

Recommended algorithm for switching from the Crystal Oscillator to the RC Oscillator as the
asynchronous clock for the Coulomb Counter ADC and Wake-up Timer:

1. Switch to the RC Oscillator by clearing the ACS bit (zero) while keeping the XOE bit set
(one).

2. Disable the Crystal Oscillator by clearing the XOE bit (zero) while keeping the ACS bit
cleared (zero).

Table 7-4. Asynchronous Clock Source and Oscillator Enable Conditions

Sleep Mode
32 kHz Crystal
Oscillator Enable

Slow RC
Oscillator Enable

Power-off or Power-down 0 0

Other Sleep Modes XOE ACS & (CADEN | WUTEN)

Active Mode XOE 1

31
2548F–AVR–03/2013

ATmega406

8. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2:0 bits in the SMCR Register select which sleep
mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Power-off) will be activated by
the SLEEP instruction. See Table 8-1 for a summary. If an enabled interrupt occurs while the
MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition
to the start-up time, executes the interrupt routine, and resumes execution from the instruction
following SLEEP. The contents of the register file and SRAM are unaltered when the device
wakes up from any sleep mode except Power-off. If a reset occurs during sleep mode, the MCU
wakes up and executes from the Reset Vector. The MCU will reset when returning from Power-
off mode.

Figure 7-1 on page 25 presents the different clock systems in the ATmega406, and their distri-
bution. The figure is helpful in selecting an appropriate sleep mode.

8.0.1 SMCR – Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

• Bits 7:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega406, and will always read as zero.

• Bits 3:1 – SM2:0: Sleep Mode Select Bits 2, 1 and 0

These bits select between the five available sleep modes as shown in Table 8-1.

Note: 1. SMCR is auto-cleared after 4 cycles when this value is set and the SE bit is written to logic
one. To enter this mode, execute SLEEP instruction within 4 cycles after writing SE to logic
one.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 8-1. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Power-off(1)

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

32
2548F–AVR–03/2013

ATmega406

• Bit 0 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

8.1 Idle Mode
When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode,
stopping the CPU but allowing all peripheral functions to continue operating. This sleep mode
basically halts clkCPU and clkFLASH, while allowing the other clocks to run. Idle mode enables the
MCU to wake up from external triggered interrupts as well as internal ones like the Timer Over-
flow interrupt.

8.2 ADC Noise Reduction Mode
When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the Voltage ADC (V-ADC), Wake-up
Timer (WUT), Watchdog Timer (WDT), Coulomb Counter (CC), Current Battery Protection
(CBP), Voltage Battery Protection (VBP), Wake-up on Regular Current (WURC), 32 kHz crystal
Oscillator (XOSC_32K) or Slow RC Oscillator (RCOSC_SLOW), the ULTRA Low Power RC
Oscillator (RCOSC_ULP), and the Fast RC Oscillator (RCOSC_FAST) to continue operating.
This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the Voltage ADC, enabling higher resolution
measurements.

8.3 Power-save Mode
When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. In this mode, the internal Fast RC Oscillator (RCOSC_FAST) is stopped, while
Wake-up Timer (WUT), Watchdog Timer (WDT), Coulomb Counter (CC), Current Battery Pro-
tection (CBP), Voltage Battery Protection (VBP), Wake-up on Regular Current (WURC), 32 kHz
crystal Oscillator (XOSC_32K) or Slow RC Oscillator (RCOSC_SLOW) and the Ultra Low Power
RC Oscillator (RCOSC_ULP) continue operating.

This mode will be the default mode when application software does not require operation of
CPU, Flash or any of the periphery units running at the Fast internal Oscillator (RCOSC_FAST).

If the current through the sense resistor is so small that the Coulomb Counter cannot measure it
accurately, Regular Current detection should be enabled to reduce power consumption. The
WUT keeps accurately track of the time so that battery self discharge can be calculated.

Note that if a level triggered interrupt is used for wake-up from Power-save mode, the changed
level must be held for some time to wake up the MCU. Refer to ”External Interrupts” on page 56
for details.

When waking up from Power-save mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined in ”Clock Sources” on page 26.

33
2548F–AVR–03/2013

ATmega406

8.4 Power-down Mode
When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the Fast RC Oscillator (RCOSC_FAST), 32 kHz Crystal Oscillator
(XOSC_32K), and Slow RC Oscillator (RCOSC_SLOW) are stopped, while the the Ultra Low
Power RC Oscillator (RCOSC_ULP), External Interrupts, the Battery Protection and the Watch-
dog continue to operate (if enabled).

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. For more details, see ”External Interrupts”
on page 56.

When waking up from Power-down mode, a delay from the wake-up condition occurs until the
wake-up becomes effective. This allows the clock to restart and become stable after having
been stopped. The wake-up period is defined in ”Clock Sources” on page 26.

8.5 Power-off Mode
When the SM2:0 bits are written to 100, the SLEEP instruction makes the CPU ask the voltage
regulator to shut off power to the CPU, leaving only the Regulator and the Charger Detect Cir-
cuitry to be operational. To ensure that the MCU enters Power-off mode only when intended, the
SLEEP instruction must be executed within 4 clock cycles after the SM2..0 bits are written.

Note that before entering Power-off sleep mode, interrupts should be disabled by software. Oth-
erwise interrupts may prevent the SLEEP instruction from being executed within the time limit.

Table 8-2. Active modules in different Sleep Modes

Module

Mode

Active Idle
ADC
NRM

Power-
save

Power-
down

Power-
off

RCOSC_FAST X X X

RCOSC_ULP X X X X X

XOSC_32K/
RCOSC_SLOW

X X X X

CPU X

Flash X

8-bit Timer/16-bit Timer X X

SMBus X X X(1) X(1) X(1)

V-ADC X X X

CC-ADC X X X X

External Interrupts X X X X X

CBP(2) X X X X X

VBP X X X X X

WDT X X X X X

34
2548F–AVR–03/2013

ATmega406

Note: 1. Address Match and Bus Connect/Disconnect Wake-up only.

2. When Discharge-FET is switched off, Short-circuit Protection is automatically disabled to
reduce current consumption.

The sleep mode state diagram is shown in Figure 8-1.

WUT X X X X

VREG X X X X X X

CHARGER_DETECT X

Table 8-3. Wake-up Sources for Sleep Modes

Mode

Wake-up sources

W
a

ke
-u

p
 o

n
R

eg
u

la
r

C
u

rr
en

t

B
at

te
ry

 P
ro

te
ct

io
n

In

te
rr

u
p

ts

E
xt

e
rn

al
 I

n
te

rr
u

p
ts

S
M

B
u

s
A

d
d

re
s

s
M

at
ch

 a
n

d
 B

u
s

C
o

n
n

ec
t/

D
is

c
o

n
n

ec
t

W
D

T

W
U

T

S
P

M
/E

E
P

R
O

M

R
ea

d
y

C
C

-A
D

C

V
-A

D
C

O
th

e
r

I/O

C
h

ar
g

er
 C

o
n

n
ec

t

Idle X X X X X X X X X X

ADC NRM X X X X X X X X X

Power-save X X X X X X X

Power-down X X X X

Power-off X

Table 8-2. Active modules in different Sleep Modes (Continued)

Module

Mode

Active Idle
ADC
NRM

Power-
save

Power-
down

Power-
off

35
2548F–AVR–03/2013

ATmega406

Figure 8-1. Sleep Mode State Diagram

RESET

Active

Power-off

Regulator-on

Power-downPower-save

Interrupt

Sleep

Interrupt

Sleep

Deep
Under-voltage

Deep
Under-voltage

Reset From all States

Reset Time-out

Sleep or
Deep Under-voltage

Charger Connected

Idle

Interrupt

Sleep

Deep
Under-voltage

ADC NRM

Interrupt

Sleep

Deep
Under-voltage

36
2548F–AVR–03/2013

ATmega406

8.6 Power Reduction Register
The Power Reduction Register, PRR, provides a method to stop the clock to individual peripher-
als to reduce power consumption. The current state of the peripheral is frozen and the I/O
registers can not be written. Resources used by the peripheral when stopping the clock will
remain occupied, hence the peripheral should in most cases be disabled before stopping the
clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the
same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped.

8.6.1 PRR0 – Power Reduction Register 0

• Bit 7:4 - Res: Reserved bits

These bits are reserved in ATmega406 and will always read as zero.

• Bit 3 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bit 2 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

• Bit 1 - PRTIM0: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0
is enabled, operation will continue like before the shutdown.

• Bit 0 - PRVADC: Power Reduction V-ADC

Writing a logic one to this bit shuts down the V-ADC. The V-ADC must be disabled before shut
down.

Bit 7 6 5 4 3 2 1 0

(0x64) – – – – PRTWI PRTIM1 PRTIM0 PRVADC PRR0

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

37
2548F–AVR–03/2013

ATmega406

8.7 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

8.7.1 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes except Power-off. The Watch-
dog Timer current consumption is significant only in Power-down mode. See ”Watchdog Timer”
on page 43 for details on how to configure the Watchdog Timer.

8.7.2 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. See ”Digital Input Enable and Sleep Modes” on page 64 for details on which pins are
enabled. If the input buffer is enabled and the input signal is left floating or have an analog signal
level close to VREG/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VREG/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Register. Refer to ”DIDR0 –
Digital Input Disable Register 0” on page 120 for details.

8.7.3 On-chip Debug System

If the On-chip debug system is enabled by OCDEN Fuse and the chip enters sleep mode, the
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.

8.7.4 Battery Protection

If one of the Battery Protection features is not needed by the application, this feature should be
disabled, see ”BPCR – Battery Protection Control Register” on page 128. When the Discharge
FET is switched off, the Short-Circuit Circuitry will automatically be stopped in order to minimize
power consumption. The current consumption in the Battery Protection circuitry is only signifi-
cant in Power-down mode.

8.7.5 Voltage ADC

If enabled, the V-ADC will consume power independent of sleep mode. To save power, the V-
ADC should be disabled when not used, and before entering Power-save or Power-down sleep
modes. See ”Voltage ADC – 10-channel General Purpose 12-bit Sigma-Delta ADC” on page
116 for details on V-ADC operation.

38
2548F–AVR–03/2013

ATmega406

8.7.6 Coloumb Counter

If enabled, the CC-ADC will consume power independent of sleep mode. To save power, the
CC-ADC should be disabled when not used, and before entering Power-down sleep mode. See
”Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC” on page 106 for details on CC-
ADC operation.

39
2548F–AVR–03/2013

ATmega406

9. System Control and Reset

9.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute
Jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 9-1 shows the reset
logic.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the voltage regulator to reach a stable level before normal operation starts.
The time-out period of the delay counter is defined by the user through the SUT Fuses. The dif-
ferent selections for the delay period are presented in ”Clock Sources” on page 26.

9.2 Reset Sources
The ATmega406 has several reset sources:

• Power-on Reset. If the chip is in Power-off mode, the Charger Detect module generates a
reset pulse when a charger is connected.See ”Power-on Reset and Charger Connect” on page
40 for details.

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length. See ”External Reset” on page 41 for details.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled. See ”Watchdog Reset” on page 42 for details.

• Brown-out Reset. The MCU is reset when VREG is below the Brown-out Reset Threshold,
VBOT. See ”Brown-out Detection” on page 42 for details.

• JTAG AVR Reset. The MCU is Reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. See ”JTAG Interface and On-chip Debug System” on
page 171 for details.

40
2548F–AVR–03/2013

ATmega406

Figure 9-1. Reset Logic

9.2.1 Power-on Reset and Charger Connect

To be able to start from power-off, a charger must be detected. In order to detect a charger, the
voltage at the BATT pin must rise above the Charger-on Threshold Voltage level,VCOT. This will
issue a Power- on Reset (POR), and the chip enters RESET mode. When the Delay Counter
times out, the chip will enter Active mode. Table 30-3 on page 230 shows the Power-on Reset
characteristics.

MCU Status
Register (MCUSR)

Reset Circuit

Delay Counters

CK

TIMEOUT

W
D

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

JT
R

F
B

O
D

R
F

JTAG Reset
Register

Ultra Low Power
RC Oscillator

SUT[1:0]

Power-on
Reset
Circuit/
Charger
Detect

Watchdog
Timer

RESET

BATT
POR

VREG

COUNTER RESET

Brown-out
Detection

VREG

41
2548F–AVR–03/2013

ATmega406

Figure 9-2. Power-on Reset in Operation.

9.2.2 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 30-3 on page 230) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal
reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the
MCU after the Time-out period – tTOUT – has expired.

Figure 9-3. External Reset During Operation

VBATT

VCOT

SLEEP_MODE

POR

INTERNAL_RESET

Power-off Reset Active

TIMEOUT

tTOUT

FET

42
2548F–AVR–03/2013

ATmega406

9.2.3 Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 43 for details on operation of the Watchdog Timer.

Figure 9-4. Watchdog Reset During Operation

9.2.4 Brown-out Detection

ATmega406 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VREG level
during operation by comparing it to a fixed trigger level VBOT = 2.7V. The trigger level has a hys-
teresis to ensure spike free Brown-out Detection. The hysteresis on the detection level should
be interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

The BOD is automatically enabled in all modes of operation, except in Power-off mode.

When the BOD is enabled, and VREG decreases to a value below the trigger level (VBOT- in Fig-
ure 9-5), the Brown-out Reset is immediately activated. When VCC increases above the trigger
level (VBOT+ in Figure 9-5), the delay counter starts the MCU after the Time-out period tTOUT has
expired.

Figure 9-5. Brown-out Reset During Operation

CK

FET

VREG

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

43
2548F–AVR–03/2013

ATmega406

9.3 Watchdog Timer
ATmega406 has an Enhanced Watchdog Timer (WDT). The main features are:

• Clocked from separate On-chip Oscillator

• 3 Operating modes

– Interrupt

– System Reset

– Interrupt and System Reset

• Selectable Time-out period from 16ms to 8s

• Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

Figure 9-6. Watchdog Timer

The Watchdog Timer (WDT) is a timer counting cycles of the Ultra Low Power RC Oscillator that
runs at 128 kHz. The WDT gives an interrupt or a system reset when the counter reaches a
given time-out value. In normal operation mode, it is required that the system uses the WDR -
Watchdog Timer Reset - instruction to restart the counter before the time-out value is reached. If
the system doesn't restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

Ultra Low Power RC
OSCILLATOR

16
m

s
32

m
s

64
m

s
12

5m
s

25
0m

s
0.

5s

1.
0s

2.
0s

4.

0s

8.
0s

WDP0
WDP1
WDP2
WDP3

WATCHDOG
RESET

WDE

WDIF

WDIE

MCU RESET

INTERRUPT

44
2548F–AVR–03/2013

ATmega406

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.

Note: 1. See ”About Code Examples” on page 7.

Assembly Code Example(1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, (0xff & (0<<WDRF))

out MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

in r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

out WDTCSR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCSR, r16

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt();

}

45
2548F–AVR–03/2013

ATmega406

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialisation routine, even if the Watchdog is not in use.

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Note: 1. ”About Code Examples” on page 7.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change
in the WDP bits can result in a time-out when switching to a shorter time-out period.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

in r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

out WDTCSR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

out WDTCSR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed equence */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

46
2548F–AVR–03/2013

ATmega406

9.4 Register Description

9.4.1 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bits 7:5 – Res: Reserved Bits

These bits are reserved bits in the ATmega406, and will always read as zero.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 2 – BODRF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the reset flags.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – JTRF WDRF BODRF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

47
2548F–AVR–03/2013

ATmega406

9.4.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

• Bit 5, 2:0 - WDP3:0 : Watchdog Timer Prescaler 3, 2, 1 and 0

The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is
enabled. The different prescaling values and their corresponding Timeout Periods are shown in
Table 9-2.

• Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 9-1. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out

0 0 0 Stopped None

0 0 1 Interrupt Mode Interrupt

0 1 0 System Reset Mode Reset

0 1 1
Interrupt and System Reset
Mode

Interrupt, then go to System
Reset Mode

1 x x System Reset Mode Reset

48
2548F–AVR–03/2013

ATmega406

• Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

• Bits 5, 2:0 – WDP3:0: Watchdog Timer Prescaler 3, 2, 1, and 0

The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is
enabled. The different prescaling values and their corresponding Timeout Periods are shown in
Table 9-2..

Table 9-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0
Number of WDT Oscillator

Cycles
Typical Time-out at

VCC = 3.3V

0 0 0 0 2K cycles 16 ms

0 0 0 1 4K cycles 32 ms

0 0 1 0 8K cycles 64 ms

0 0 1 1 16K cycles 0.125 s

0 1 0 0 32K cycles 0.25 s

0 1 0 1 64K cycles 0.5 s

0 1 1 0 128K cycles 1.0 s

0 1 1 1 256K cycles 2.0 s

1 0 0 0 512K cycles 4.0 s

1 0 0 1 1024K cycles 8.0 s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

49
2548F–AVR–03/2013

ATmega406

10. Wake-up Timer
The following section describes the Wake-up Timer in the ATmega406.

• One Wake-up Timer Interrupt

• 8 Selectable Time-out Periods

• Separate Wake-up Timer Calibration Flag

• Separate Clock Source

10.1 Overview
The Wake-up Timer is clocked either from the Slow RC Oscillator or from the external 32 kHz
crystal oscillator. See ”Run-Time Clock Source Select” on page 28 for details. By controlling the
Wake-up Timer prescaler, the Wake-up interval can be adjusted from 31.25 ms to 4 s. Eight dif-
ferent clock cycle periods can be selected to determine the Time-out period.

Figure 10-1. Wake-up Timer

10.2 Register Description

10.2.1 WUTCSR – Wake-up Timer Control and Status Register

• Bit 7 – WUTIF: Wake-up Timer Interrupt Flag

The WUTIF bit is set (one) when an overflow occurs in the Wake-up Timer. WUTIF is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively, WUTIF is
cleared by writing a logic one to the flag. When the SREG I-bit, WUTIE (Wake-up Timer Interrupt
Enable), and WUTIF are set (one), the Wake-up Timer interrupt is executed.

SLOW RC
OSCILLATOR

cl
k W

U
T
/1

K

cl
k W

U
T
/2

K

cl
k W

U
T
/4

K

cl
k W

U
T
/8

K

cl
k W

U
T
/1

6K

cl
k W

U
T
/3

2K

cl
k W

U
T
/6

4K

cl
k W

U
T
/1

28
K

cl
k W

U
T
/6

4

WAKE-UP

WUTR
WUTP0
WUTP1
WUTP2
WUTE

WUTIF
WUTCF

32 kHz
OSCILLATOR

1/4

PRESCALER

clkWUT

Bit 7 6 5 4 3 2 1 0

(0x62) WUTIF WUTIE WUTCF WUTR WUTE WUTP2 WUTP1 WUTP0 WUTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

50
2548F–AVR–03/2013

ATmega406

• Bit 6 – WUTIE: Wake-up Timer Interrupt Enable

When the WUTIE bit and the I-bit in the Status Register are set (one), the Wake-up Timer inter-
rupt is enabled. The corresponding interrupt is executed if a Wake-up Timer overflow occurs,
i.e., when the WUTIF bit is set.

• Bit 5 – WUTCF: Wake-up Timer Calibration Flag

The WUTCF bit is set every 1.95 ms (256 Slow RC OScillator clocks or 64 32 kHz Crystal Oscil-
lator clocks). WUTCF is cleared by writing a logic one to the flag. WUTCF can be used to
calibrate the Fast RC Oscillator to the 32 kHz oscillator or the Slow RC Oscillator.

• Bit 4 – WUTR: Wake-up Timer Reset

When WUTR bit is written to one, the Wake-up Timer is reset, and starts counting from zero.
The WUTR bit is always read as zero.

• Bit 3 – WUTE: Wake-up Timer Enable

When the WUTE bit is set (one) the Wake-up Timer is enabled, and if the WUTE is cleared
(zero) the Wake-up Timer function is disabled. It is recommended to reset the Wake-up Timer
when enabling it, by simultaneously setting the WUTR and WUTE bits.

• Bits 2:0 – WUTP2, WUTP1, WUTP0: Wake-up Timer Prescaler 2, 1, and 0

The WUTP2, WUTP1 and WUTP0 bits determine the Wake-up Timer prescaling when the
Wake-up Timer is enabled. The different prescaling values and their corresponding time-out
periods are shown in Table 10-1. The Wake-up Timer should always be reset when changing
these bits.

Table 10-1. Wake-up Timer Prescale Select

WUTP2 WUTP1 WUTP0
Number of Slow RC

Oscillator Cycles
Number of 32kHz Crystal

Oscillator Cycles Typical Time-out

0 0 0 4K(4096) 1K(1024) 31.25 ms

0 0 1 8K(8192) 2K(2048) 62.5 ms

0 1 0 16K(16384) 4K(4096) 125 ms

0 1 1 32K(32768) 8K(8192) 250 ms

1 0 0 64K(65536) 16K(16384) 0.5 s

1 0 1 128K(131072) 32K(32768) 1 s

1 1 0 256K(262144) 64K(65536) 2 s

1 1 1 512K(524288) 128K(131072) 4 s

51
2548F–AVR–03/2013

ATmega406

11. Interrupts
This section describes the specifics of the interrupt handling as performed in ATmega406. For a
general explanation of the AVR interrupt handling, refer to ”Reset and Interrupt Handling” on
page 14.

11.1 Interrupt Vectors in ATmega406

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see ”Boot Loader Support – Read-While-Write Self-Programming” on page 178.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 11-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt

Table 11-1. Reset and Interrupt Vectors

Vector
No.

Program
Address(2) Source Interrupt Definition

1 0x0000(1) RESET
External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset

2 0x0002 BPINT Battery Protection Interrupt

3 0x0004 INT0 External Interrupt Request 0

4 0x0006 INT1 External Interrupt Request 1

5 0x0008 INT2 External Interrupt Request 2

6 0x000A INT3 External Interrupt Request 3

7 0x000C PCINT0 Pin Change Interrupt 0

8 0x000E PCINT1 Pin Change Interrupt 1

9 0x0010 WDT Watchdog Time-out Interrupt

10 0x0012 WAKE_UP Wake-up Timer Overflow

11 0x0014 TIMER1 COMP Timer 1 Compare Match

12 0x0016 TIMER1 OVF Timer 1 Overflow

13 0x0018 TIMER0 COMPA Timer 0 Compare Match A

14 0x001A TIMER0 COMPB Timer 0 Compare Match B

15 0x001C TIMER0 OVF Timer 0 Overflow

16 0x001E TWI BUS C/D Two-wire Bus Connect/Disconnect

17 0x0020 TWI Two-wire Serial Interface

18 0x0022 VADC Voltage ADC Conversion Complete

19 0x0024 CCADC CONV
CC-ADC Instantaneous Current Conversion
Complete

20 0x0026 CCADC REG CUR CC-ADC Regular Current

21 0x0028 CCADC ACC CC-ADC Accumulate Current Conversion Complete

22 0x002A EE READY EEPROM Ready

23 0x002C SPM READY Store Program Memory Ready

52
2548F–AVR–03/2013

ATmega406

Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 27-7 on page 193. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega406 is:

Table 11-2. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp BPINT ; Battery Protection Interrupt Handler

0x0004 jmp EXT_INT0 ; External Interrupt Request 0 Handler

0x0006 jmp EXT_INT1 ; External Interrupt Request 1 Handler

0x0008 jmp EXT_INT2 ; External Interrupt Request 2 Handler

0x000A jmp EXT_INT3 ; External Interrupt Request 3 Handler

0x000C jmp PCINT0 ; Pin Change Interrupt 0 Handler

0x000E jmp PCINT1 ; Pin Change Interrupt 1 Handler

0x0010 jmp WDT ; Watchdog Time-out Interrupt

0x0012 jmp WAKE_UP ; Wake-up Timer Overflow

0x0014 jmp TIM1_COMP ; Timer1 Compare Handler

0x0016 jmp TIM1_OVF ; Timer1 Overflow Handler

0X0018 jmp TIM0_COMPA ; Timer0 CompareA Handler

0x001A jmp TIM0_COMPB ; Timer0 CompareB Handler

0x001C jmp TIM0_OVF ; Timer0 Overflow Handler

0x001E jmp TWI_BUS_CD ; Two-wire Bus Connect/Disconnect Handler

0x0020 jmp TWI ; Two-wire Serial Interface Handler

0x0022 jmp VADC ; Voltage ADC Conversion Complete Handler

0x0024 jmp CCADC_CONV ; CC-ADC Instantaneous Current Conversion Complete Handler

0x0026 jmp CCADC_REC_CUR ; CC-ADC Regular Current Handler

0x0028 jmp CCADC_ACC ; CC-ADC Accumulate Current Conversion Complete Handler

0x002A jmp EE_RDY ; EEPROM Ready Handler

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x002E RESET: ldi r16, high(RAMEND) ; Main program start

0x002F out SPH,r16 ; Set Stack Pointer to top of RAM

0x0030 ldi r16, low(RAMEND)

0x0031 out SPL,r16

0x0032 sei ; Enable interrupts

0x0033 <instr> xxx

0x0034

;

53
2548F–AVR–03/2013

ATmega406

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the IVSEL bit in the MCUCR Reg-
ister is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector
Addresses is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x4C02

0x4C02 jmp BPINT ; Battery Protection Interrupt Handler

0x4C04 jmp EXT_INT0 ; External Interrupt Request 0 Handler

... ;

0x4C2C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most typical and general program
setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp BPINT ; Battery Protection Interrupt Handler

0x0004 jmp EXT_INT0 ; External Interrupt Request 0 Handler

... ;

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x4C00
0x4C00 RESET: ldi r16,high(RAMEND); Main program start

0x4C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x4C02 ldi r16,low(RAMEND)

0x4C03 out SPL,r16
0x4C04 sei ; Enable interrupts

0x4C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL bit in the MCUCR Register
is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector
Addresses is:

Address Labels Code Comments

;

.org 0x4C00
0x4C00 jmp RESET ; Reset handler
0x4C02 jmp BPINT ; Battery Protection Interrupt Handler

0x4C04 jmp EXT_INT0 ; External Interrupt Request 0 Handler

... ;

0x4C2C jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x4C2E RESET: ldi r16,high(RAMEND); Main program start

54
2548F–AVR–03/2013

ATmega406

0x4C2F out SPH,r16 ; Set Stack Pointer to top of RAM

0x4C30 ldi r16,low(RAMEND)

0x4C31 out SPL,r16
0x4C32 sei ; Enable interrupts

0x4C33 <instr> xxx

11.2 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

Assembly Code Example

Move_interrupts:

; Enable change of Interrupt Vectors

ldi r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ldi r16, (1<<IVSEL)

out MCUCR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

MCUCR = (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = (1<<IVSEL);

}

55
2548F–AVR–03/2013

ATmega406

11.3 Register Description

11.3.1 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section ”Boot Loader Support – Read-While-Write
Self-Programming” on page 178 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-
grammed, interrupts are disabled while executing from the Application section. If Interrupt Vectors
are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are dis-
abled while executing from the Boot Loader section. Refer to the section ”Boot Loader Support –
Read-While-Write Self-Programming” on page 178 for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See Code Example below.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

56
2548F–AVR–03/2013

ATmega406

12. External Interrupts

12.1 Overview
The External Interrupts are triggered by the INT3:0 pins. Observe that, if enabled, the interrupts
will trigger even if the INT3:0 pins are configured as outputs. This feature provides a way of gen-
erating a software interrupt. The External Interrupts can be triggered by a falling or rising edge or
a low level. This is set up as indicated in the specification for the External Interrupt Control Reg-
ister – EICRA. When the external interrupt is enabled and is configured as level triggered, the
interrupt will trigger as long as the pin is held low. Interrupts are detected asynchronously. This
implies that these interrupts can be used for waking the part also from sleep modes other than
Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to
noise. The changed level is sampled twice by the Slow RC Oscillator clock. The period of the
Slow RC Oscillator is 7.8 µs (nominal) at 25C. The MCU will wake up if the input has the
required level during this sampling or if it is held until the end of the start-up time. The start-up
time is defined by the SUT fuses as described in ”System Clock and Clock Options” on page 25.
If the level is sampled twice by the Slow RC Oscillator clock but disappears before the end of the
start-up time, the MCU will still wake up, but no interrupt will be generated. The required level
must be held long enough for the MCU to complete the wake up to trigger the level interrupt.

12.2 Register Description

12.2.1 EICRA – External Interrupt Control Register A

• Bits 7:0 – ISC31, ISC30 - ISC01, ISC00: External Interrupt 3 - 0 Sense Control Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 12-1 on page 57. Edges on INT3:INT0 are registered
asynchronously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 12-2
on page 57 will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-
rupt. If low level interrupt is selected, the low level must be held until the completion of the
currently executing instruction to generate an interrupt. If enabled, a level triggered interrupt will
generate an interrupt request as long as the pin is held low. When changing the ISCn bit, an
interrupt can occur. Therefore, it is recommended to first disable INTn by clearing its Interrupt
Enable bit in the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt
flag should be cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Regis-
ter before the interrupt is re-enabled.

Bit 7 6 5 4 3 2 1 0

(0x69) ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

57
2548F–AVR–03/2013

ATmega406

Note: 1. n = 3, 2, 1, or 0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

12.2.2 EIMSK – External Interrupt Mask Register

• Bits 7:4 – RES: Reserved Bits

These bits are reserved bits ins the ATmega406, and will always read as zero.

• Bits 3:0 – INT3 - INT0: External Interrupt Request 3 - 0 Enable

When an INT3 – INT0 bit is written to one and the I-bit in the Status Register (SREG) is set
(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the
External Interrupt Control Register – EICRA – defines whether the external interrupt is activated
on rising or falling edge or level sensed. Activity on any of these pins will trigger an interrupt
request even if the pin is enabled as an output. This provides a way of generating a software
interrupt.

12.2.3 EIFR – External Interrupt Flag Register

• Bits 7:4 – RES: Reserved Bits

These bits are reserved bits ins the ATmega406, and will always read as zero.

• Bits 3:0 – INTF3 - INTF0: External Interrupt Flags 3 - 0

When an edge or logic change on the INT3:0 pin triggers an interrupt request, INTF3:0 becomes
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT3:0 in EIMSK, are

Table 12-1. Interrupt Sense Control

ISCn1 ISCn0 Description(1)

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request.

1 0 The falling edge of INTn generates an interrupt request.

1 1 The rising edge of INTn generates an interrupt request.

Table 12-2. Asynchronous External Interrupt Characteristics

Symbol Parameter Condition Min Typ Max Units

tINT
Minimum pulse width for asynchronous
external interrupt

50 ns

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – INT3 INT2 INT1 INT0 EIMSK

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – INTF3 INTF2 INTF1 INTF0 EIFR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

58
2548F–AVR–03/2013

ATmega406

set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are
always cleared when INT3:0 are configured as level interrupt. Note that when entering sleep
mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF3:0 flags. See ”Digital Input
Enable and Sleep Modes” on page 64 for more information.

12.2.4 PCICR– Pin Change Interrupt Control Register

• Bit 7:2 - Res: Reserved Bits

These bits are reserved bits in the ATmega406, and will always read as zero.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15:8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT15:8 pins are enabled individually by the PCMSK1 Register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7:0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Inter-
rupt Vector. PCINT7:0 pins are enabled individually by the PCMSK0 Register.

12.2.5 PCIFR – Pin Change Interrupt Flag Register

• Bit 7:2 - Res: Reserved Bits

These bits are reserved bits in the ATmega406, and will always read as zero.

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15:8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7:0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – – – PCIE1 PCIE0 PCICR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – – – PCIF1 PCIF0 PCIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

59
2548F–AVR–03/2013

ATmega406

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

12.2.6 PCMSK1 – Pin Change Mask Register 1

• Bit 7:0 – PCINT15:8: Pin Change Enable Mask 15:8

Each PCINT15:8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT15:8 is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT15:8 is cleared, pin change interrupt on the corresponding I/O
pin is disabled.

12.2.7 PCMSK0 – Pin Change Mask Register 0

• Bit 7:0 – PCINT7:0: Pin Change Enable Mask 7:0

Each PCINT7:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin.
If PCINT7:0 is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the cor-
responding I/O pin. If PCINT7:0 is cleared, pin change interrupt on the corresponding I/O pin is
disabled.

Bit 7 6 5 4 3 2 1 0

(0x6C) PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

60
2548F–AVR–03/2013

ATmega406

13. Low Voltage I/O-Ports

13.1 Introduction
All low voltage AVR ports have true Read-Modify-Write functionality when used as general digi-
tal I/O ports. This means that the direction of one port pin can be changed without unintentionally
changing the direction of any other pin with the SBI and CBI instructions. The same applies
when changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if
configured as input). All low voltage port pins have individually selectable pull-up resistors with a
supply-voltage invariant resistance. All I/O pins have protection diodes to both VREG and Ground
as indicated in Figure 13-1 on page 60. Refer to ”Electrical Characteristics” on page 225 for a
complete list of parameters.

Figure 13-1. Low Voltage I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in ”Register Description” on page 73.

Three I/O memory address locations are allocated for each low voltage port, one each for the
Data Register – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction Register
are read/write. However, writing a logic one to a bit in the PINx Register, will result in a toggle in
the corresponding bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR
disables the pull-up function for all low voltage pins in all ports when set.

Using the I/O port as General Digital I/O is described in ”Low Voltage Ports as General Digital
I/O” on page 61. Many low voltage port pins are multiplexed with alternate functions for the
peripheral features on the device. How each alternate function interferes with the port pin is
described in ”Alternate Port Functions” on page 66. Refer to the individual module sections for a
full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn

61
2548F–AVR–03/2013

ATmega406

13.2 Low Voltage Ports as General Digital I/O
The low voltage ports are bi-directional I/O ports with optional internal pull-ups. Figure 13-2
shows a functional description of one I/O-port pin, here generically called Pxn.

Figure 13-2. General Low Voltage Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

13.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in ”Register
Description” on page 73, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER

62
2548F–AVR–03/2013

ATmega406

13.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

13.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

13.2.4 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 13-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 13-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Table 13-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

63
2548F–AVR–03/2013

ATmega406

Figure 13-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 13-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd

64
2548F–AVR–03/2013

ATmega406

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

13.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 13-2, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode and Power-save mode to avoid high power consumption if some input sig-
nals are left floating, or have an analog signal level close to VREG/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in ”Alternate Port Functions” on page 66.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...

65
2548F–AVR–03/2013

ATmega406

13.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

66
2548F–AVR–03/2013

ATmega406

13.3 Alternate Port Functions
Many low voltage port pins have alternate functions in addition to being general digital I/Os. Fig-
ure 13-5 shows how the port pin control signals from the simplified Figure 13-2 can be
overridden by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 13-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

WPx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

67
2548F–AVR–03/2013

ATmega406

Table 13-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 13-5 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 13-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE
Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.

DDOE
Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV
Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE
Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV
Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE
Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO
Analog
Input/Output

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

68
2548F–AVR–03/2013

ATmega406

13.3.1 Alternate Functions of Port A

The Port A has an alternate function as input pins to the Voltage ADC.

The alternate pin configuration is as follows:

• ADC4/INT3:0/PCINT7:4 – Port A, Bit 7:4

Analog to Digital Converter, Channel 4.

INT3 - INT0, External Interrupt Sources 3:0. The PA7:4 pins can serve as external interrupt
sources to the MCU.

PCINT7 - PCINT4, Pin Change Interrupt Sources 7:4. The PA7:4 pins can serve as external
interrupt sources to the MCU.

• ADC3:0/PCINT3:0 – Port A, Bit 3:0

Analog to Digital Converter, Channels 3:0.

PCINT3 - PCINT0, Pin Change Interrupt Sources 3:0. The PA3:0 pins can serve as external
interrupt sources to the MCU.

Table 13-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7
INT3 (External Interrupt 3)
PCINT7 (Pin Change Interrupt 7)

PA6
INT2 (External Interrupt 2)
PCINT6 (Pin Change Interrupt 6)

PA5
INT1 (External Interrupt 1)
PCINT5 (Pin Change Interrupt 5)

PA4
ADC4 (ADC Input Channel 4)
INT0 (External Interrupt 0)
PCINT4 (Pin Change Interrupt 4)

PA3
ADC3 (ADC Input Channel 3)
PCINT3 (Pin Change Interrupt 3)

PA2
ADC2 (ADC Input Channel 2)
PCINT2 (Pin Change Interrupt 2)

PA1
ADC1 (ADC Input Channel 1)
PCINT1 (Pin Change Interrupt 1)

PA0
ADC0 (ADC Input Channel 0)
PCINT0 (Pin Change Interrupt 0)

69
2548F–AVR–03/2013

ATmega406

Table 13-4 and Table 13-5 relates the alternate functions of Port A to the overriding signals
shown in Figure 13-5 on page 66.

Table 13-4. Overriding Signals for Alternate Functions in PA7:PA4

Signal Name
PA7/INT3/
PCINT7

PA6/INT2/
PCINT6

PA5/INT1/
PCINT5

PA4/ADC4
INT0/PCINT4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DIEOV INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DI
INT3 INPUT/
PCINT7 INPUT

INT2 INPUT/
PCINT6 INPUT

INT1 INPUT/
PCINT5 INPUT

INT0 INPUT/
PCINT4 INPUT

AIO – – – ADC4 INPUT

Table 13-5. Overriding Signals for Alternate Functions in PA3:PA0

Signal Name
PA3/ADC3/
PCINT3

PA2/ADC2/
PCINT2

PA1/ADC1/
PCINT1

PA0/ADC0/
PCINT0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI PCINT3 INPUT PCINT2 INPUT PCINT1 INPUT PCINT0 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

70
2548F–AVR–03/2013

ATmega406

13.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 13-6.

The alternate pin configuration is as follows:

• OC0B/PCINT15 – Port B, Bit 7

OC0B, Output Compare Match B output: The PB7 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB7 set (one)) to
serve this function. The OC0B pin is also the output pin for the PWM mode timer function.

PCINT15, Pin Change Interrupt Source 15. The PB7 pin can serve as external interrupt source
to the MCU.

• OC0A/PCINT14 – Port B, Bit 6

OC0A, Output Compare Match A output: The PB6 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB6 set (one)) to
serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

PCINT14, Pin Change Interrupt Source 14. The PB6 pin can serve as external interrupt source
to the MCU.

• PCINT13:12 – Port B, Bit 5:4

PCINT13 - PCINT12, Pin Change Interrupt Source 13:12. The PB5:4 pinS can serve as external
interrupt sources to the MCU.

• TCK/PCINT11 – Port B, Bit 3

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG Interface is
enabled, this pin can not be used as an I/O pin.

PCINT11, Pin Change Interrupt Source 11. The PB3 pin can serve as external interrupt source
to the MCU.

Table 13-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
OC0B (Output Compare and PWM Output B for Timer/Counter0)
PCINT15 (Pin Change Interrupt 15)

PB6
OC0A (Output Compare and PWM Output A for Timer/Counter0)
PCINT14 (Pin Change Interrupt 14)

PB5 PCINT13 (Pin Change Interrupt 13)

PB4 PCINT12 (Pin Change Interrupt 12)

PB3
TCK (JTAG Test Clock)
PCINT11 (Pin Change Interrupt 11)

PB2
TMS (JTAG Test Mode Select)
PCINT10 (Pin Change Interrupt 10)

PB1
TDI (JTAG Test Data Input/)
PCINT9 (Pin Change Interrupt 9)

PB0
TDO (JTAG Test Data Output)
PCINT8 (Pin Change Interrupt 8)

71
2548F–AVR–03/2013

ATmega406

• TMS/PCINT10 – Port B, Bit 2

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

PCINT10, Pin Change Interrupt Source 10. The PB2 pin can serve as external interrupt source
to the MCU.

• TDI/PCINT9 – Port B, Bit 1

TDI, JTAG Test Data Input: Serial input data to be shifted in the Instruction Register or Data
Register (scan chains). When the JTAG Interface is enabled, this pin can not be used as I/O pin.

PCINT9, Pin Change Interrupt Source 9. The PB1 pin can serve as external interrupt source to
the MCU.

• TDO/PCINT8 – Port B, Bit 0

TDO, JTAG Test Data Output: Serial output data from Instruction Register or Data Register.
When the JTAG Interface is enabled, this pin can not be used as an I/O pin.

PCINT8, Pin Change Interrupt Source 8. The PB0 pin can serve as external interrupt source to
the MCU.

Table 13-7 and Table 13-8 relate the alternate functions of Port B to the overriding signals
shown in Figure 13-5 on page 66.

Table 13-7. Overriding Signals for Alternate Functions in PB7:PB4

Signal Name
PB7/OCOB/
PCINT15

PB6/OCOA/
PCINT14

PB5/
PCINT13

PB4/
PCINT12

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC0B Enable OC0A Enable 0

PVOV OC0B OC0A 0

PTOE – – – –

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO – – – –

72
2548F–AVR–03/2013

ATmega406

.

13.3.3 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-9.

The alternate pin configuration is as follows:

• T0 – Port B, Bit 0

T0, Timer/Counter0 Counter Source.

Table 13-10 on page 73 relates the alternate functions of Port D to the overriding signals shown
in Figure 13-5 on page 66.

Table 13-8. Overriding Signals for Alternate Functions in PB3:PB0

Signal Name
PB3/TCK/
PCINT11

PB2/TMS/
PCINT10

PB1/TDI/
PCINT9

PB0/TDO/
PCINT8

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 1 1 0

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 0 0 SHIFT_IR + SHIFT_DR

PVOE 0 0 0 JTAGEN

PVOV 0 0 0 TDO

PTOE – – – –

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEOV 0 0 0 0

DI
TCK/PCINT11
INPUT

TMS/PCINT10
INPUT

TDI/PCINT9
INPUT

PCINT8
INPUT

AIO – – – –

Table 13-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD0 T0 (Timer/Counter0 Clock Input)

73
2548F–AVR–03/2013

ATmega406

13.4 Register Description

13.4.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See ”Con-
figuring the Pin” on page 61 for more details about this feature.

13.4.2 PORTA – Port A Data Register

13.4.3 DDRA – Port A Data Direction Register

13.4.4 PINA – Port A Input Pins Address

Table 13-10. Overriding Signals for Alternate Functions in PD1:PD0

Signal Name PD1 PD0/T0

PUOE 0 0

PUOV 0 0

DDOE 0 0

DDOV 0 0

PVOE 0

PVOV 0

PTOE – –

DIEOE 0 0

DIEOV 0 0

DI – T0 Input

AIO – –

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x01 (0x21) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

74
2548F–AVR–03/2013

ATmega406

13.4.5 PORTB – Port B Data Register

13.4.6 DDRB – Port B Data Direction Register

13.4.7 PINB – Port B Input Pins Address

13.4.8 PORTD – Port D Data Register

13.4.9 DDRD – Port D Data Direction Register

13.4.10 PIND – Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) – – – – – – PORTD1 PORTD0 PORTD

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) – – – – – – DDD1 DDD0 DDRD

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) – – – – – – PIND1 PIND0 PIND

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 N/A N/A

75
2548F–AVR–03/2013

ATmega406

14. High Voltage I/O Ports
All high voltage AVR ports have true Read-Modify-Write functionality when used as general dig-
ital I/O ports. This means that the state of one port pin can be changed without unintentionally
changing the state of any other pin with the SBI and CBI instructions. All high voltage I/O pins
have protection Zener diodes to Ground as indicated in Figure 14-1. See ”Electrical Characteris-
tics” on page 225 for a complete list of parameters.

Figure 14-1. High Voltage I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTC3 for bit number three in Port C, here documented generally as PORTxn. The physical
I/O Registers and bit locations are listed in ”Register Description for High Voltage Output Ports”
on page 76.

One I/O Memory address location is allocated for each high voltage port, the Data Register –
PORTx. The Data Register is read/write.

Using the I/O port as General Digital Output is described in ”High Voltage Ports as General Dig-
ital Outputs” on page 75.

14.1 High Voltage Ports as General Digital Outputs
The high voltage ports are high voltage tolerant open collector output ports. Figure 14-2 shows a
functional description of one output port pin, here generically called Pxn.

Cpin

Logic

See Figure
"General High Voltage
Digital I/O" for Details

Pxn

76
2548F–AVR–03/2013

ATmega406

Figure 14-2. General High Voltage Digital I/O(1)

Note: 1. WRx and RRx are common to all pins within the same port.

14.2 Configuring the Pin
Each port pin has one register bit: PORTxn. As shown in ”Register Description for High Voltage
Output Ports” on page 76, the PORTxn bits are accessed at the PORTx I/O address. If PORTxn
is written logic one, the port pin is driven low (zero). If PORTxn is written logic zero, the port pin
is tri-stated. The port pins are tri-stated when a reset condition becomes active, even if no clocks
are running.

14.3 Register Description for High Voltage Output Ports

14.3.1 PORTC – Port C Data Register

RRx

WRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RESET

Q

Q D

CLR

PORTxn

D
AT

A
 B

U
S

Pxn

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) – PORTC0 PORTC

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

77
2548F–AVR–03/2013

ATmega406

15. 8-bit Timer/Counter0 with PWM
Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event man-
agement) and wave generation. The main features are:

• Two Independent Output Compare Units

• Double Buffered Output Compare Registers

• Clear Timer on Compare Match (Auto Reload)

• Glitch Free, Phase Correct Pulse Width Modulator (PWM)

• Variable PWM Period

• Frequency Generator

• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

15.1 Overview
A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual
placement of I/O pins, refer to ”Pinout ATmega406.” on page 2. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the ”8-bit Timer/Counter Register Description” on page 88.

The PRTIM0 bit in ”PRR0 – Power Reduction Register 0” on page 36 must be written to zero to
enable Timer/Counter0 module.

Figure 15-1. 8-bit Timer/Counter Block Diagram

15.1.1 Definitions

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or
bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

clkTn

Prescaler

T/C
Oscillator

clkI/O

TOSC1

TOSC2

78
2548F–AVR–03/2013

ATmega406

The definitions in Table 15-1 are also used extensively throughout the document.

15.1.2 Registers

The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and
OC0B). See Section “15.4.3” on page 80. for details. The compare match event will also set the
Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare interrupt
request.

15.2 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and pres-
caler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 103.

15.3 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):

Table 15-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR0A Register. The assignment is depen-
dent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clkTn

bottom

direction

clear

79
2548F–AVR–03/2013

ATmega406

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter
Control Register B (TCCR0B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OC0A and OC0B.
For more details about advanced counting sequences and waveform generation, see ”Modes of
Operation” on page 82.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt.

15.4 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers
(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a
match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the
extreme values in some modes of operation (”Modes of Operation” on page 82).

Figure 15-3 shows a block diagram of the Output Compare unit.

80
2548F–AVR–03/2013

ATmega406

Figure 15-3. Output Compare Unit, Block Diagram

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare
Registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR0x directly.

15.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC0x) bit. Forcing compare match will not set the
OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real compare
match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or
toggled).

15.4.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initial-
ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

15.4.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the Output Compare Unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0x value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC0x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnx1:0

bottom

81
2548F–AVR–03/2013

ATmega406

pare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.
Changing the COM0x1:0 bits will take effect immediately.

15.5 Compare Match Output Unit
The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses
the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next compare match.
Also, the COM0x1:0 bits control the OC0x pin output source. Figure 15-4 shows a simplified
schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the OC0x
state, the reference is for the internal OC0x Register, not the OC0x pin. If a system reset occur,
the OC0x Register is reset to “0”.

Figure 15-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform
Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the out-
put is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of
operation. See Section “15.8” on page 88.

15.5.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the
OC0x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 15-2 on page 88. For fast PWM mode, refer to Table 15-3 on
page 88, and for phase correct PWM refer to Table 15-4 on page 89.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O

82
2548F–AVR–03/2013

ATmega406

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0x strobe bits.

15.6 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM02:0) and Compare Output
mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM0x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM0x1:0 bits control whether the output should be set, cleared, or toggled at a compare
match (See Section “15.5” on page 81.).

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 86.

15.6.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same
timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV0 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

15.6.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.

83
2548F–AVR–03/2013

ATmega406

Figure 15-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR0A is lower than the current
value of TCNT0, the counter will miss the compare match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

15.6.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match
between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+
--=

84
2548F–AVR–03/2013

ATmega406

PWM mode is shown in Figure 15-6. The TCNT0 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0x and TCNT0.

Figure 15-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.
Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows
the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available
for the OC0B pin (see Table 15-6 on page 89). The actual OC0x value will only be visible on the
port pin if the data direction for the port pin is set as output. The PWM waveform is generated by
setting (or clearing) the OC0x Register at the compare match between OCR0x and TCNT0, and
clearing (or setting) the OC0x Register at the timer clock cycle the counter is cleared (changes
from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0x to toggle its logical level on each compare match (COM0x1:0 = 1). The waveform
generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM

fclk_I/O

N 256
------------------=

85
2548F–AVR–03/2013

ATmega406

feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

15.6.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match
between TCNT0 and OCR0x while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 15-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0x
and TCNT0.

Figure 15-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

86
2548F–AVR–03/2013

ATmega406

one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is
not available for the OC0B pin (see Table 15-7 on page 90). The actual OC0x value will only be
visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is
generated by clearing (or setting) the OC0x Register at the compare match between OCR0x and
TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at compare
match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 15-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.

• OCRnx changes its value from MAX, like in Figure 15-7. When the OCR0A value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCnx value at MAX must correspond to the result of an up-
counting Compare Match.

• The timer starts counting from a value higher than the one in OCRnx, and for that reason
misses the Compare Match and hence the OCnx change that would have happened on the
way up.

15.7 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 15-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling

Figure 15-9 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM

fclk_I/O

N 510
------------------=

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

87
2548F–AVR–03/2013

ATmega406

Figure 15-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 15-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC
mode and PWM mode, where OCR0A is TOP.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 15-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast
PWM mode where OCR0A is TOP.

Figure 15-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

88
2548F–AVR–03/2013

ATmega406

15.8 8-bit Timer/Counter Register Description

15.8.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin
must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM02:0 bit setting. Table 15-2 shows the COM0A1:0 bit functionality when the WGM02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Fast PWM Mode” on page 83
for more details.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match

1 1 Set OC0A on Compare Match

Table 15-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0 Clear OC0A on Compare Match, set OC0A at TOP

1 1 Set OC0A on Compare Match, clear OC0A at TOP

89
2548F–AVR–03/2013

ATmega406

Table 15-4 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 85 for more details.

• Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0
bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin
must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the
WGM02:0 bit setting. Table 15-5 shows the COM0B1:0 bit functionality when the WGM02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 15-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Fast PWM Mode” on page 83
for more details.

Table 15-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match when up-counting. Set OC0A on
Compare Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting. Clear OC0A on
Compare Match when down-counting.

Table 15-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 15-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on Compare Match, set OC0B at TOP

1 1 Set OC0B on Compare Match, clear OC0B at TOP

90
2548F–AVR–03/2013

ATmega406

Table 15-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 85 for more details.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 15-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page 82).

Notes: 1. MAX = 0xFF
2. BOTTOM = 0x00

Table 15-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on
Compare Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on
Compare Match when down-counting.

Table 15-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00
Timer/Counter
Mode of Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, Phase Correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP

91
2548F–AVR–03/2013

ATmega406

15.8.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is
changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a
strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the
forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B

The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is
changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is implemented as a
strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the
forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 3 – WGM02: Waveform Generation Mode

See the description in the ”TCCR0A – Timer/Counter Control Register A” on page 88.

• Bits 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

92
2548F–AVR–03/2013

ATmega406

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

15.8.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

15.8.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

15.8.5 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0B pin.

Table 15-9. Clock Select Bit Description

CS02 CS01 CS00

Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

93
2548F–AVR–03/2013

ATmega406

15.8.6 TIMSK0 – Timer/Counter Interrupt Mask Register 0

• Bits 7:3 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, i.e., when the OCF0B bit is set in the Timer/Counter
Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the
Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR0.

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

94
2548F–AVR–03/2013

ATmega406

15.8.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7:3 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag

The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),
and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag

The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data
in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),
and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 15-8, ”Waveform
Generation Mode Bit Description” on page 90.

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

95
2548F–AVR–03/2013

ATmega406

16. 16-bit Timer/Counter1
The 16-bit Timer/Counter unit allows accurate program execution timing (event management).
The main features are:

• One Output Compare Unit

• Clear Timer on Compare Match (Auto Reload)

• Two Independent Interrupt Sources (TOV1 and OCF1A)

16.1 Overview
Most register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the output compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on. The physical I/O reg-
ister and bit locations for ATmega406 are listed in the ”16-bit Timer/Counter Register
Description” on page 100.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 16-1. CPU accessible
I/O registers, including I/O bits and I/O pins, are shown in bold.

The PRTIM1 bit in ”PRR0 – Power Reduction Register 0” on page 36 must be written to zero to
enable TImer/Counter1 module.

Figure 16-1. 16-bit Timer/Counter Block Diagram

16.1.1 Registers

The Timer/Counter (TCNT1) and the Output Compare Register (OCR1A) are both 16-bit regis-
ters. Special procedures must be followed when accessing the 16-bit registers. These
procedures are described in the section ”Accessing 16-bit Registers” on page 96.The
Timer/Counter Control Register (TCCR1B) is an 8-bit register an has no CPU access restric-
tions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are visible in the Timer
Interrupt Flag Register (TIFR). Both interrupts are individually masked with the Timer Interrupt
Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure.

The Timer/Counter is clocked internally via the prescaler. The Clock Select logic block controls
which clock source the Timer/Counter uses to increment its value. The Timer/Counter is inactive
when no clock source is selected. The output from the clock select logic is referred to as the
timer clock (clkT1).

Timer/Counter

D
AT

A
 B

U
S

OCRnA

=

TCNTn

=0xFFFF

Control Logic

Count

Clear

TOVn
(Int.Req.)

TCCRnB

clkTn

OCFnA
(Int.Req.)

96
2548F–AVR–03/2013

ATmega406

The Output Compare Register (OCR1A) is compared with the Timer/Counter value at all time.
The compare match event will set the Compare Match Flag (OCF1A) which can be used to gen-
erate an output compare interrupt request.

16.2 Accessing 16-bit Registers
The TCNT1 and OCR1A are 16-bit registers that can be accessed by the AVR CPU via the 8-bit
data bus. The 16-bit register must be byte accessed using two read or write operations. Each
16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit access.
The same temporary register is shared between all 16-bit registers within each 16-bit timer.
Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit
register is written by the CPU, the high byte stored in the temporary register, and the low byte
written are both copied into the 16-bit register in the same clock cycle. When the low byte of a
16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the temporary
register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A 16-bit
register does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A Register. Note that when using “C”, the compiler handles the 16-bit access.

Note: 1. See ”About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17

out TCNT1L,r16

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;

/* Read TCNT1 into i */

i = TCNT1;

...

97
2548F–AVR–03/2013

ATmega406

updates the temporary register by accessing the same or any other of the 16-bit timer registers,
then the result of the access outside the interrupt will be corrupted. Therefore, when both the
main code and the interrupt code update the temporary register, the main code must disable the
interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading the OCR1A Register can be done using the same principle.

Note: 1. See ”About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */

i = TCNT1;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

98
2548F–AVR–03/2013

ATmega406

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing to the OCR1A Register can be done using the same principle.

Note: 1. See ”About Code Examples” on page 7.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNT1.

16.2.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

16.3 Timer/Counter Clock Sources
The Timer/Counter is clocked by an internal clock source. The clock source is selected by the
Clock Select logic which is controlled by the Clock Select (CS1[2:0]) bits located in the
Timer/Counter Control Register B (TCCR1B). For details on clock sources and prescaler, see
”Timer/Counter0 and Timer/Counter1 Prescalers” on page 103.

Assembly Code Example(1)

TIM16_WriteTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16

out TCNT1H,r17

out TCNT1L,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */

TCNT1 = i;

/* Restore global interrupt flag */

SREG = sreg;

}

99
2548F–AVR–03/2013

ATmega406

16.4 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 16-2 shows a block diagram of the counter and its surroundings.

Figure 16-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment TCNT1 by 1.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNT1H value when the TCNT1L is read, and
TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared or incremented at each Timer
Clock (clkT1). The clkT1 is generated from an internal clock source, selected by the Clock Select
bits (CS1[2:0]). When no clock source is selected (CS1[2:0] = 0) the timer is stopped. However,
the TCNT1 value can be accessed by the CPU, independent of whether clkT1 is present or not. A
CPU write overrides (has priority over) all counter clear or count operations.

16.5 Output Compare Unit
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1A). If TCNT equals OCR1A the comparator signals a match. A match will set the Output
Compare Flag (OCF1A) at the next timer clock cycle. If enabled (OCIE1A = 1), the output com-
pare flag generates an output compare interrupt. The OCF1A flag is automatically cleared when
the interrupt is executed. Alternatively the OCF1A flag can be cleared by software by writing a
logical one to its I/O bit location.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

TOVn
(Int.Req.)

clkTn

100
2548F–AVR–03/2013

ATmega406

Figure 16-3 shows a block diagram of the output compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter1), and the “x” indicates output
compare unit (A). The elements of the block diagram that are not directly a part of the output
compare unit are gray shaded.

Figure 16-3. Output Compare Unit, Block Diagram

16.5.1 Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

16.5.2 Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the output compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the compare match will be missed.

16.6 16-bit Timer/Counter Register Description

16.6.1 TCCR1B – Timer/Counter1 Control Register B

• Bit 7:4 – Res: Reserved Bits

These bits is a reserved bit in the ATmega406 and always reads as zero.

• Bit 3 – CTC1: Clear Timer/Counter1 on Compare Match

When the CTC1 control bit is set (one), Timer/Counter1 is reset to 0x00 in the CPU clock cycle
after a compare match.

OCFnx (Int.Req.)

= (16-bit Comparator)

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Bit 7 6 5 4 3 2 1 0

(0x81) – – – – CTC1 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

101
2548F–AVR–03/2013

ATmega406

• Bit 2:0 – CS1[2:0]: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

16.6.2 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 96.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-
pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 register blocks (removes) the compare match on the following timer clock
for all compare units.

16.6.3 OCR1AH and OCR1AL – Output Compare Register 1 A

The Output Compare Register contains a 16-bit value that is continuously compared with the
counter value (TCNT1).

The Output Compare Register is 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See “Accessing 16-bit Registers” on page 96.

Table 16-1. CS1[2:0] - Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/32 (From prescaler)

1 0 0 clkI/O/64 (From prescaler)

1 0 1 clkI/O/128 (From prescaler)

1 1 0 clkI/O/256 (From prescaler)

1 1 1 clkI/O/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

102
2548F–AVR–03/2013

ATmega406

16.6.4 TIMSK1 – Timer/Counter Interrupt Mask Register 1

• Bit 7:2 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and always reads as zero.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Reset and Interrupt Handling” on page 14) is executed when the OCF1A
flag, located in TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 overflow interrupt is enabled. The corresponding Interrupt Vector
(see “Reset and Interrupt Handling” on page 14) is executed when the TOV1 flag, located in
TIFR1, is set.

16.6.5 TIFR1 – Timer/Counter Interrupt Flag Register

• Bit 7:2 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and always reads as zero.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

OCF1A is automatically cleared when the Output compare Match A Interrupt Vector is executed.
Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag

TOV1 Flag is set when the Timer overflows.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

(0x6F) – – – – – – OCIE1A TOIE1 TIMSK1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – – – – – OCF1A TOV1 TIFR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

103
2548F–AVR–03/2013

ATmega406

17. Timer/Counter0 and Timer/Counter1 Prescalers
Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters
can have different prescaler settings. The description below applies to both Timer/Counter1 and
Timer/Counter0.

17.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fCLK_I/O). Alternatively, one of the taps from the prescaler can be used as a
clock source by setting the CSn2:0. See Table 15-9 on page 92 for Timer/Counter0 settings and
Table 16-1 on page 101 for Timer/Counter1 settings. The prescaled clock has a frequency of
either fCLK_I/O/8, fCLK_I/O/32, fCLK_I/O/64, fCLK_I/O/128, fCLK_I/O/256, or fCLK_I/O/1024.

17.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system
clock cycles, where N equals the prescaler divisor.

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

17.3 External Clock Source
An external clock source applied to the T0 pin can be used as Timer/Counter0 clock (clkT0). The
T0 pin is sampled once every system clock cycle by the pin synchronization logic. The synchro-
nized (sampled) signal is then passed through the edge detector. Figure 17-1 shows a functional
equivalent block diagram of the T0 synchronization and edge detector logic. The registers are
clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the
high period of the internal system clock.

The edge detector generates one clkT0 pulse for each positive (CSn2:0 = 7) or negative (CSn2:0
= 6) edge it detects.

Figure 17-1. T1/T0 Pin Sampling

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O

104
2548F–AVR–03/2013

ATmega406

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T0 has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 17-2. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 17-1.

PSRSYNC

Clear

clkT1 clkT0

T0

clkI/O

Synchronization
CK

/3
2

CK
/8

CK
/6

4

CK
/2

56

CK
/1

28

CK
/1

02
4

105
2548F–AVR–03/2013

ATmega406

17.4 Register Description

17.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRSYNC bit is kept, hence keeping the corresponding prescaler
reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can
be configured to the same value without the risk of one of them advancing during configuration.
When the TSM bit is written to zero, the PSRSYNC bit is cleared by hardware, and the
Timer/Counters start counting simultaneously.

• Bit 0 – PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – – PSRSYNC GTCCR

Read/Write R/W R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

106
2548F–AVR–03/2013

ATmega406

18. Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC

18.1 Features
• Sampled System Coulomb Counter

• Low Power Sigma-Delta ADC Optimized for Coulomb Counting

• Instantaneous Current Output with 3.9 ms Conversion Time

• Accumulate Current Output with Programmable Conversion Time: 125/250/500/1000 ms

• Input voltage Range Larger than ± 0.15V, Allowing Measurement of more than ± 30A @ 5 m
• 13-bit Resolution (including sign) corresponding to 53.7 µV (10.7 mA @ 5 m) for Instantaneous

Current Output

• 18-bit Resolution (including sign) corresponding to 1.68 µV (0.335 µA @ 5 m) for Accumulate

Current Output

• Input Offset Less than 10 µV for the ADC

• Interrupt on Instantaneous Current Conversion Complete

• Interrupt on Accumulate Current Conversion Complete

• Interrupt on Regular Current with Programmable Compare Level and Programmable Sampling

Interval: 250/500/1000/2000 ms

ATmega406 features a dedicated Sigma-Delta ADC (CC-ADC) optimized for Coulomb Counting
to sample the charge or discharge current flowing through the external sense resistor RSENSE.
Two different output values are provided, Instantaneous Current and Accumulate Current. The
Instantaneous Current Output has a short conversion time at the cost of lower resolution. The
Accumulate Current Output provides a highly accurate current measurement for Coulomb
Counting.

The sampling Coulomb Counter provides a highly accurate and flexible solution. Accuracy can
easily be traded against conversion time. It also provides Regular Current detection. This allows
ultra-low power operation in Power-save mode when small charge or discharge currents are
flowing.

Figure 18-1. Coulomb Counter Block Diagram

Sigma Delta
modulator

Current
Comparator

Control &
Status

Register

IRQ

8-BIT DATABUS

RSENSE

PI

NI

Regular
Current IRQ

Level

Decimation

IN
S

T
A

N
T

AN
E

O
U

S
C

U
R

R
E

N
T

Decimation

IRQ

IRQ

A
C

C
U

M
U

LA
T

E
C

U
R

R
E

N
T

107
2548F–AVR–03/2013

ATmega406

18.2 Operation
When enabled, the CC-ADC continuously measures the voltage over the external sense resistor
RSENSE.

The Instantaneous Current conversion time is fixed to 3.9 ms (typical value) allowing the output
value to closely follow the input. After each Instantaneous Current conversion an interrupt is
generate if the interrupt is enabled. Data from conversion will be updated in the Instantaneous
Current registers - CADICL and CADICH simultaneously as the interrupt is given. To avoid los-
ing conversion data, both the low and high byte must be read within a 3,9 ms timing window after
the corresponding interrupt is given. When the low byte register is read, updating of the Instanta-
neous Current registers and interrupts will be stopped until the high byte is read. Figure 18-2
shows an Instantaneous Current conversion diagram, where DATA4 will be lost because DATA3
reading is not completed within the limited period.

Figure 18-2. Instantaneous Current Conversion

The Accumulate Current output is a high-resolution, high accuracy output with programmable
conversion time selected by the CADAS bits in CADCSRA. The converted value is an accurate
measurement of the average current flow during one conversion period. The CC-ADC generates
an interrupt each time a new Accumulate Current conversion has finished if the interrupt is
enabled. Data from conversion will be updated in the Accumulation Current registers - CADAC0,
CADAC1, CADAC2 and CADAC3 simultaneously as the interrupt is given. To avoid losing con-
version data, all bytes must be read within the selected conversion period. When the lower byte
registers are read, updating of the Accumulation Current registers and interrupts will be stopped
until the highest byte is read. Figure 18-3 on page 108 shows an Accumulation Current conver-
sion example, where DATA4 will be lost because DATA3 reading is not completed within the
limited period.

Enable

Instantaneous Interrupt

Instantaneous Data

Read low byte

Read high byte

DATA1 DATA2 DATA 3 DATA5Setting of Digital Filters

~12 ms settling 3.9 ms 3.9 ms 7.8 ms

108
2548F–AVR–03/2013

ATmega406

Figure 18-3. Accumulation Current Conversion

While the CC-ADC is converting, the CPU can enter sleep mode and wait for an interrupt from
the Accumulate Current conversion. After adding the new Accumulate Current value for Cou-
lomb Counting, the CPU can go back to sleep again. This reduces the CPU workload, and
allows more time spent in low power modes, reducing power consumption. The CC-ADC can
generate an interrupt if the result of an Instantaneous Current conversion is greater than a pro-
grammable threshold. This allows the detection of a Regular Current condition. This function is
available in Active mode and all sleep modes except Power-down and Power-off mode. This
allows an ultra-low power operation in Power-save, where the CC-ADC can be configured to
enter a Regular Current detection mode with a programmable current sampling interval. By set-
ting the CADSE bit in CADCSRA, the Coulomb Counter will repeatedly do one Instantaneous
Current conversion, before it is being turned off for a timing interval specified by the CADSI bits
in CADCSRA. This allows operating the Regular Current detection while keeping the Coulomb
Counter off most of the time.

The Coulomb Counter is halted in Power-down mode. In this mode, time measurements and the
battery self-discharge characteristics should be used to estimate the charge flow. When waking
up from Power-down mode, the CC-ADC will automatically resume continuous operation.

The CC-ADC is enabled by setting the CC-ADC Enable bit, CADEN, in CADCSRA. Note that the
bandgap voltage reference must be enabled separately, see ”BGCCR – Bandgap Calibration C
Register” on page 123.

The CC-ADC will not consume power when CADEN is cleared. It is therefore recommended to
switch off the CC-ADC whenever the Coulomb Counter or Regular Current Detection functions
are not used. The CC-ADC is automatically disabled in Power-down and Power-off mode.

After the CC-ADC is enabled, either by setting the CADEN bit or leaving Power-down with
CADEN already set, the first four conversions do not contain useful data and should be ignored.
This also applies after clearing the CADSE bit.

In-system offset voltage for the CC-ADC is typically in the range 0 - 100 µV. To compensate for
this offset error, a CC-ADC offset value should be stored in EEPROM and subtracted from each
Accumulate Current conversions before the resulting value is added for Coloumb Counting. The
CC-ADC offset value can be found by performing a CC-ADC conversion at typical temperature
with zero current flowing through RSENSE.

When the battery is not used or the current level stays very low for a long time, it is recom-
mended to estimate the charge flow instead of using the CC-ADC for Coloumb Counting. The

Enable

Accumulation Interrupt

Accumulation Data

Read byte 1

Read byte 2

Read byte 3

Read byte 4

DATA1 DATA2 DATA 3 DATA5Setting of Digital Filters

125, 250, 500,
or 1000 ms

250, 500, 1000,
or 2000 ms

125, 250, 500,
or 1000 ms

109
2548F–AVR–03/2013

ATmega406

charge flow estimation should be based on the self-discharge rate of the battery and the standby
current of the battery system.

18.2.1 CADCSRA – CC-ADC Control and Status Register A

• Bit 7 – CADEN: CC-ADC Enable

When the CADEN bit is cleared (zero), the CC-ADC is disabled, and any ongoing conversions
will be terminated. When the CADEN bit is set (one), the CC-ADC will continuously measure the
voltage drop over the external sense resistor RSENSE. In Power-off, the CC-ADC is always dis-
abled. Note that the bandgap voltage reference must be enabled separately, see ”BGCCR –
Bandgap Calibration C Register” on page 123.

• Bit 6 – Res: Reserved

This bit is reserved bit in the ATmega406 and will always read as zero.

• Bit 5 - CADUB: CC-ADC Update Busy

The CC-ADC operates in a different clock domain than the CPU. Whenever a new value is writ-
ten to CADCSRA, CADRCC or CADRDC, this value must be synchronized to the CC-ADC clock
domain. Subsequent writes to these registers will be blocked during this synchronization. Syn-
chronization of one of the registers, will block updating of all the others. The CADUB bit will be
read as one while any of these registers is being synchronized, and will be read as zero when
neither register is being synchronized.

• Bits 4:3 – CADAS1:0: CC-ADC Accumulate Current Select

The CADAS bits select the conversion time for the Accumulate Current output as shown in Table
18-1.

Bit 7 6 5 4 3 2 1 0

(0xE4) CADEN – CADUB CADAS1 CADAS0 CADSI1 CADSI0 CADSE CADCSRA

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-1. CC-ADC Accumulate Current Conversion Time

CADAS1:0 CC-ADC Accumulate Current Conversion Time

00 125 ms

01 250 ms

10 500 ms

11 1 s

110
2548F–AVR–03/2013

ATmega406

• Bits 2:1 – CADSI1:0: CC-ADC Current Sampling Interval

The CADSI bits determine the current sampling interval for the Regular Current detection as
shown in Table 18-2. The current sampling interval is only used if the CADSE bit is set.

Notes: 1. The actual value of depends on the actual frequency of the ”Slow RC Oscillator” on page 27.
See ”Electrical Characteristics” on page 225.

2. Sampling time ~ 12 ms.

• Bit 0 – CADSE: CC-ADC Current Sampling Enable

When the CADSE bit is written to one, the ongoing CC-ADC conversion is aborted, and the CC-
ADC enters Regular Current detection mode.

18.2.2 CADCSRB – CC-ADC Control and Status Register B

• Bits 7, 3 – Res: Reserved

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 6 – CADACIE: CC-ADC Accumulate Current Interrupt Enable

When the CADACIE bit is set (one), and the I-bit in the Status Register is set (one), the CC-ADC
Accumulate Current Interrupt is enabled.

• Bit 5 – CADRCIE: CC-ADC Regular Current Interrupt Enable

When the CADRCIE bit is set (one), and the I-bit in the Status Register is set (one), the CC-ADC
Regular Current Interrupt is enabled.

• Bit 4 – CADICIE: CC-ADC Instantaneous Current Interrupt Enable

When the CADICIE bit is set (one), and the I-bit in the Status Register is set (one), the CC-ADC
Instantaneous Current Interrupt is enabled.

• Bit 2 – CADACIF: CC-ADC Accumulate Current Interrupt Flag

The CADACIF bit is set (one) after the Accumulate Current conversion has completed. The CC-
ADC Accumulate Current Interrupt is executed if the CADACIE bit and the I-bit in SREG are set
(one). CADACIF is cleared by hardware when executing the corresponding Interrupt Handling
Vector. Alternatively, CADACIF is cleared by writing a logic one to the flag.

• Bit 1 – CADRCIF: CC-ADC Regular Current Interrupt Flag

Table 18-2. CC-ADC Regular Current Sampling Interval

CADSI1:0 CC-ADC Regular Current Sampling Interval(1)(2)

00 250 ms (+ sampling time)

01 500 ms (+ sampling time)

10 1 s (+ sampling time)

11 2 s (+ sampling time)

Bit 7 6 5 4 3 2 1 0

(0xE5) – CADACIE CADRCIE CADICIE – CADACIF CADRCIF CADICIF CADCSRB

Read/Write R R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

111
2548F–AVR–03/2013

ATmega406

The CADRCIF bit is set (one) when the absolute value of the result of the last CC-ADC conver-
sion is greater than, or equal to, the compare values set by the CC-ADC Regular
Charge/Discharge Current Level Registers. A positive value is compared to the Regular Charge
Current Level, and a negative value is compared to the Regular Discharge Current Level. The
CC-ADC Regular Current Interrupt is executed if the CADRCIE bit and the I-bit in SREG are set
(one). CADRCIF is cleared by hardware when executing the corresponding Interrupt Handling
vector. Alternatively, CADRCIF is cleared by writing a logic one to the flag.

• Bit 0 – CADICIF: CC-ADC Instantaneous Current Interrupt Flag

The CADICIF bit is set (one) when a CC-ADC Instantaneous Current conversion is completed.
The CC-ADC Instantaneous Current Interrupt is executed if the CADICIE bit and the I-bit in
SREG are set (one). CADICIF is cleared by hardware when executing the corresponding Inter-
rupt Handling vector. Alternatively, CADICIF is cleared by writing a logic one to the flag.

18.2.3 CADICH and CADICL – CC-ADC Instantaneous Current

When a CC-ADC Instantaneous Current conversion is complete, the result is found in these two
registers. CADIC15:0 represents the converted result in 2's complement format, sign extended
to 16 bits.

When CADICL is read, the CC-ADC Instantaneous Current register is not updated until CADCH
is read. Reading the registers in the sequence CADICL, CADICH will ensure that consistent val-
ues are read.

18.2.4 CADAC3, CADAC2, CADAC1 and CADAC0 – CC-ADC Accumulate Current

The CADAC3, CADAC2, CADAC1 and CADAC0 Registers contain the Accumulate Current
measurements in 2’s complement format, sign extended to 32 bits.

Bit 15 14 13 12 11 10 9 8

(0xE9) CADIC[15:8] CADICH

(0xE8) CADIC[7:0] CADICL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

(0xE3) CADAC[31:24] CADAC3

(0xE2) CADAC[23:16] CADAC2

(0xE1) CADAC[15:8] CADAC1

(0xE0) CADAC[7:0] CADAC0

Read/Write R R R R R R R R

R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

112
2548F–AVR–03/2013

ATmega406

When CADAC0 is read, the CC-ADC Accumulate Current register is not updated until CADAC3
is read. Reading the registers in the sequence CADAC0, CADAC1, CADAC2, CADAC3 will
ensure that consistent values are read.

18.2.5 CADRCC – CC-ADC Regular Charge Current

The CC-ADC Regular Charge Current Register determines the threshold level for the Regular
Charge Current detection. When the result of a CC-ADC Instantaneous Current conversion is
positive with a value greater than, or equal to, the Regular Charge Current level, the CC-ADC
Regular Current Interrupt Flag is set.

The value in this register is specified in 2's complement format, and it defines the eight least sig-
nificant bits of the Regular Charge Current level. The most significant bits of the Regular Charge
Current level are always zero. The programmable range for the Regular Charge Current level is
given in Table 18-3.

The CC-ADC Regular Charge Current Register does not affect the setting of the CC-ADC Con-
version Complete Interrupt Flag.

18.2.6 CADRDC – CC-ADC Regular Discharge Current

The CC-ADC Regular Discharge Current Register determines the threshold level for the Regular
Discharge Current detection. When the result of a CC-ADC Instantaneous Current conversion is
negative with an absolute value greater than, or equal to, the Regular Discharge Current level,
the CC-ADC Regular Current Interrupt Flag is set.

The value in this register is specified in 2's complement format, and it defines the eight least sig-
nificant bits of the Regular Discharge Current level. The most significant bits of the Regular

Bit 7 6 5 4 3 2 1 0

(0xE6) CADRCC[7:0] CADRCC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-3. Programmable Range for the Regular Charge Current Level

Minimum Maximum Step Size

Voltage (µV) 0 13700 53.7

Current (mA)
RSENSE = 5 m 0 2740 10.7

RSENSE = 7 m 0 1957 7.7

Bit 7 6 5 4 3 2 1 0

(0xE7) CADRDC[7:0] CADRDC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

113
2548F–AVR–03/2013

ATmega406

Charge Current level are always one. The programmable range for the Regular Discharge Cur-
rent level is given in Table 18-4.

The CC-ADC Regular Discharge Current Register does not affect the setting of the CC-ADC
Conversion Complete Interrupt Flag.

Table 18-4. Programmable Range for the Regular Discharge Current Level

Minimum Maximum Step Size

Voltage (µV) 0 13700 53.7

Current (mA)
RSENSE = 5 m 0 2740 10.7

RSENSE = 7 m 0 1957 7.7

114
2548F–AVR–03/2013

ATmega406

19. Voltage Regulator

19.1 Features
• Linear Regulation.

• Operating Voltage Range 4.0 - 25V.

• Fixed Output Voltage at 3.3V.

ATmega406 is supplied by the VFET terminal. Operating voltage range at the VFET terminal is
4.0 - 25V. The Internal Voltage Regulator regulates this voltage down to 3.3V, which is a suitable
supply voltage for the internal logic, I/O lines, and analog circuitry.

An external decoupling capacitor of 1 µF or larger is required for stable operation of the Voltage
Regulator. A larger capacitor will allow larger load currents and increase start-up time.

The block diagram of the Voltage Regulator is shown in Figure 19-1.

Figure 19-1. Voltage Regulator Block Diagram

19.2 Operation
The Regulator will operate in all sleep modes, including Power-off. In this mode the regulator will
automatically reduce the ATmega406's power consumption by turning off supply for all periph-
eral modules, allowing only the Charger Detect module and the Voltage Regulator itself to
operate.

The Regulator will automatically ensure that it has stable work conditions before allowing itself to
start regulating the VFET terminal. If the voltage at the VFET pin is below the Regulator-on
Threshold voltage, VROT, the LDO will be switched off.

Powering-up the regulator is either done from the battery side when the smart battery controller
is assembled with the battery pack and there is no charger present, or from the charger side
when a deep discharge has occurred (0V charging).

When powering- up with a charger present, the voltage between the VFET and the PVT pin must
be above a Charge-Threshold voltage, VCHT.

LDO
Regulator

Regulator
Control

Creg > 1 uF

VFET

Power
Distributor

PVT

LDO_ONPV1

Rsense

RP

RN

VREG

Voltage Regulator

Analog
Supply

Digital
Supply

POWER_OFF

115
2548F–AVR–03/2013

ATmega406

When powering-up without a charger present, the voltage on Cell1, VPV1, must be above the
Cell1-Threshold voltage, VPV1T.

After powering-up the regulator the chip will enter Power-off sleep mode (lowest power con-
sumption). Until a charger is detected, the chip will stay in this mode. For details on Charger
Detect, see ”Power-on Reset and Charger Connect” on page 40.

Table 30-2 on page 230 shows the characteristics for powering-up the LDO.

116
2548F–AVR–03/2013

ATmega406

20. Voltage ADC – 10-channel General Purpose 12-bit Sigma-Delta ADC

20.1 Features
• 12-bit Resolution

• ±1 LSB Accuracy

• 519µs Conversion Time

• Four Differential Input Channels for Cell Voltage Measurements

• Six Single Ended Input Channels

• 0 to 0.9 x VREF Input Voltage Range

• 0.2x Pre-scaling of Cell Voltages and VREG

• Interrupt on V-ADC Conversion Complete

The ATmega406 features a 12-bit Sigma-Delta ADC. Automatic offset cancellation technique
reduces the input offset voltage to less than 0.5 mV.

The Voltage ADC (V-ADC) is connected to ten different sources through the Input Multiplexer.
There are four differential channels for Cell Voltage measurements. These channels are scaled
0.2x to comply with the Full Scale range of the V-ADC. In addition there are six single ended
channels referenced to SGND. One channel is for measuring the internal temperature sensor
VPTAT and five channels for measuring the ADC input pins at Port A. ADC3:0 are not scaled,
meaning that full-scale reading corresponds to 1.1 V. ADC4 is scaled by 0.2x, meaning that full-
scale reading corresponds to 5.5 V. The ADC4 input can be used to measure the voltage at the
PA4 pin when this pin is used to supply an external thermistor, see Figure 29-1 on page 223.

To obtain a total absolute accuracy better than ± 0.25% for the cell voltage measurements, cali-
bration registers for the individual cell voltage gain in the analog front-end is provided. A factory
calibration value is stored in the signature row, see Section 27.7.10 ”Reading the Signature Row
from Software” on page 189. The V-ADC conversion of a cell voltage must be scaled with the
corresponding calibration value by software to correct for gain error in the analog front-end.

The PRVADC bit in ”PRR0 – Power Reduction Register 0” on page 36 must be written to zero to
enable V-ADC module.

117
2548F–AVR–03/2013

ATmega406

Figure 20-1. Voltage ADC Block Schematic

20.2 Operation
To enable V-ADC conversions, the V-ADC Enable bit, VADEN, in V-ADC Control and Status
Register – VADCSR must be set. If this bit is cleared, the V-ADC will be switched off, and any
ongoing conversions will be terminated. The V-ADC is automatically halted in Power-save,
Power-down and Power-off mode. Note that the bandgap voltage reference must be enabled
and disabled separately, see “BGCCR – Bandgap Calibration C Register” on page 123.

Figure 20-2. Voltage ADC Conversion Diagram

To perform a V-ADC conversion, the analog input channel must first be selected by writing to the
VADMUX bits in VADMUX. When a logical one is written to the V-ADC Start Conversion bit
VADSC, a conversion of the selected channel will start. The VADSC bit stays high as long as the
conversion is in progress and will be cleared by hardware when the conversion is completed. If a
different data channel is selected while a conversion is in progress, the ADC will finish the cur-
rent conversion before performing the channel change. When a conversion is finished the V-

V-ADC CONVERSION COMPLETE IRQ

8-BIT DATA BUS

V-ADC MULTIPLEXER
SEL. REG (VADMUX)

V-ADC CONTROL AND
STATUS REG (VADCSR)

V-ADC DATA REGISTER
(VADCL/ADCH)

V
A

D
C

C
IE

V
A

D
C

C
IF

12-BIT
SIGMA-DELTA ADC

INPUT
MUX

V-ADC CONTROL

ADC3

ADC2

ADC1

ADC0

VTEMP

ADC4

PV4

PV3

PV2

PV1

NV

Note:
The shaded signals are scaled by 0.2,
other signals are scaled by 1.0

VREF SGND

Start Conversion

Interrupt

Conversion Result INVALID DATAINVALID DATAOLD DATA VA L I D D ATA

519 us

118
2548F–AVR–03/2013

ATmega406

ADC Conversion Complete Interrupt Flag – VADCCIF is set. One 12-bit conversion takes 519 µs
to complete from the start bit is set to the interrupt flag is set. To ensure that correct data is read,
both high and low byte data registers should be read before starting a new conversion.

20.3 Register Description

20.3.1 VADMUX – V-ADC Multiplexer Selection Register

• Bit 7:4 – RES: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 3:0 – VADMUX3:0: V-ADC Channel Selection Bits

The VADMUX bits determine the V-ADC channel selection. See Table 20-1 on page 118.

20.3.2 VADCSR – V-ADC Control and Status Register

• Bit 7:4 – RES: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 3 – VADEN: V-ADC Enable

Writing this bit to one enables V-ADC conversion. By writing it to zero, the V-ADC is turned off.
Turning the V-ADC off while a conversion is in progress will terminate this conversion. Note that
the bandgap voltage reference must be enabled separately, see “BGCCR – Bandgap Calibra-
tion C Register” on page 123.

Bit 7 6 5 4 3 2 1 0

(0x7C) – – – – VADMUX3 VADMUX2 VADMUX1 VADMUX0 VADMUX

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 20-1. VADMUX channel selection

VADMUX3:0 Channel Selected Scale

0001 CELL 1 0.2

0010 CELL 2 0.2

0011 CELL 3 0.2

0100 CELL 4 0.2

0101 ADC4 0.2

0110 VTEMP 1.0

0111 ADC0 1.0

1000 ADC1 1.0

1001 ADC2 1.0

1010 ADC3 1.0

Bit 7 6 5 4 3 2 1 0

(0x7A) – – – – VADEN VADSC VADCCIF VADCCIE VADCSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

119
2548F–AVR–03/2013

ATmega406

• Bit 2 – VADSC: Voltage ADC Start Conversion

Write this bit to one to start a new conversion of the selected channel.

VADSC will read as one as long as the conversion is not finished. When the conversion is com-
plete, it returns to zero. Writing zero to this bit has no effect. VADSC will automatically be
cleared when the VADEN bit is written to zero.

• Bit 1 – VADCCIF: V-ADC Conversion Complete Interrupt Flag

This bit is set when a V-ADC conversion completes and the data registers are updated. The V-
ADC Conversion Complete Interrupt is executed if the VADCCIE bit and the I-bit in SREG are
set. VADCCIF is cleared by hardware when executing the corresponding interrupt handling vec-
tor. Alternatively, VADCCIF is cleared by writing a logical one to the flag. Beware that if doing a
Read-Modify-Write on VADCSR, a pending interrupt can be disabled.

• Bit 0 – VADCCIE: V-ADC Conversion Complete Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the V-ADC Conversion Complete
Interrupt is activated.

20.3.3 VADCL and VADCH – The V-ADC Data Register

When a V-ADC conversion is complete, the result is found in these two registers. To ensure that
correct data is read, the data registers must be read before starting a new conversion.

• VADC11:0: V-ADC Conversion Result

These bits represent the result from the conversion.

To obtain the best absolute accuracy for the cell voltage measurements, gain and offset com-
pensation is required. Factory calibration values are stored in the device signature row, refer to
section ”Reading the Signature Row from Software” on page 189 for details. The cell voltage in
mV is given by:

When performing a Vtemp conversion, the result must be adjusted by the factory calibration
value stored in the signature row, refer to section ”Reading the Signature Row from Software” on
page 189 for details. The absolute temperature in Kelvin is given by:

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – VADC[11:8] VADCH

(0x78) VADC[7:0] VADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Cellnvoltage mV
celln result cellngain calibration word

TBD
--- cellnoffset calibration word–=

T(K)
Vtempresult VPTAT calibration word

TBD
--=

120
2548F–AVR–03/2013

ATmega406

20.3.4 DIDR0 – Digital Input Disable Register 0

• Bits 7:4 – Res: Reserved Bits

These bits are reserved for future use. To ensure compatibility with future devices, these bits
must be written to zero when DIDR0 is written.

• Bit 3:0 – VADC3D:VADC0D: V-ADC3:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding V-ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the VADC3:0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

Bit 7 6 5 4 3 2 1 0

(0x7E) – – – – VADC3D VADC2D VADC1D VADC0D DIDR0

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

121
2548F–AVR–03/2013

ATmega406

21. Voltage Reference and Temperature Sensor

21.1 Features
• Accurate Voltage Reference of 1.100V

• ± 0.1% Accuracy After Calibration (2 mV Calibration Steps)

• Temperature Drift Less than 80 ppm/°C after Calibration

• Alternate Low Power Voltage Reference for Voltage Regulator

• Internal Temperature Sensor

• Possibility for Runtime Compensation of Temperature Drift in Both Voltage Reference and On-

chip Oscillators

• External Decoupling for Optimum Noise Performance

• Low Power Consumption

A low power band-gap reference provides ATmega406 with an accurate On-chip voltage refer-
ence VREF of 1.100V. This reference voltage is used as reference for the On-chip Voltage
Regulator, the V-ADC and the CC-ADC. The reference to the ADCs uses a buffer with external
decoupling capacitor to enable excellent noise performance with minimum power consumption.
The reference voltage VREF_P/VREF_N to the CC-ADC is scaled to match the full scale require-
ment at the current sense input pins. This configuration also enables concurrent operation of
both V-ADC and CC-ADC.

To guaranty ultra low temperature drift after factory calibration, ATmega406 features a two-step
calibration algorithm. The first step is performed at 85C and the second at room temperature.
By default, Atmel factory calibration is performed at 85C, and the result is stored in Flash. The
customer can easily implement the second calibration step in their test flow. This requires an
accurate input voltage and a stable room temperature. Temperature drift after this calibration is
guarantied by design and characterization to be less than 80 ppm/C from 0C to 60C and 100
ppm/C from 0C to 85C. The BG Calibration C Register can also be altered runtime to imple-
ment temperature compensation in software. Very high accuracy for any temperature inside the
temperature range can thus be achieved at the cost of extra calibration steps.

A lower power, less accurate voltage reference source exists. This voltage reference source is
chosen as reference for the voltage regulator whenever the band-gap voltage reference is dis-
abled. This voltage reference source is not available for the V-ADC and CC-ADC.

ATmega406 has an On-chip temperature sensor for monitoring the die temperature. A voltage
Proportional-To-Absolute-Temperature, VPTAT, is generated in the voltage reference circuit and
connected to the multiplexer at the V-ADC input. This temperature sensor can be used for run-
time compensation of temperature drift in both the voltage reference and the On-chip Oscillator.
To get the absolute temperature in degrees Kelvin, the measured VPTAT voltage must be scaled
with the VPTAT factory calibration value stored in the signature row. See ”Reading the Signature
Row from Software” on page 189 for details.

122
2548F–AVR–03/2013

ATmega406

Figure 21-1. Reference Circuitry

21.2 Writing to Bandgap Calibration Registers
When the calibration registers are changed it will affect both the Voltage Regulator output and
BOD-level. The BOD will react quickly to new detection levels, while the regulator will adjust the
voltage more slowly, depending on the size of the external decoupling capacitor. To avoid that a
BOD-reset is issued when calibration is done, it is recommended to change the values of the
BGCC and BGCR bits stepwise, with a step size of 1, and with a hold-off time between each
step.

The hold-off time depends on the size of the voltage regulators external decoupling capacitor.
For details, see Table 21-1.

BG Reference

VREF

VREF_P

VREF_N

VREF_GND

CREF

VPTAT

1.1V

0.22V

Table 21-1. Hold-off Times depending on CREG.

Regulator Cap Hold-off Time BGCCR Hold-off Time BGCRR

1 F 1.2 s 3.0 s

2 F 2.4 s 6.0 s

3 F 3.6 s 9.0 s

4 F 4.8 s 12.0 s

5 F 6.0 s 15.0 s

6 F 7.2 s 18.0 s

7 F 8.4 s 21.0 s

8 F 9.6 s 24.0 s

9 F 10.8 s 27.0 s

10 F 12.0 s 30.0 s

123
2548F–AVR–03/2013

ATmega406

21.3 Register Description for Voltage Reference and Temperature Sensor

21.3.1 BGCCR – Bandgap Calibration C Register

• Bit 7 - BGEN

This bit is not available from revision E and on of the ATmega406. A complete description is
found in the revision A of this document.

• Bit 6 – Res: Reserved Bit

This bit is reserved for future use.

• Bit 5:0 – BGCC5:0: BG Calibration of PTAT Current

These bits are used for trimming of the nominal value of the bandgap reference voltage. These
bits are binary coded. Minimum VREF: 000000, maximum VREF: 111111. Step size approxi-
mately 2 mV.

21.3.2 BGCRR – Bandgap Calibration R Register

• Bit 7:0 – BGCR7:0: BG Calibration of Resistor ladder

These bits are used for temperature gradient adjustment of the bandgap reference. Figure 21-2
illustrates VREF as a function of temperature. VREF has a positive temperature coefficient at
low temperatures and negative temperature coefficient at high temperatures. Depending on the
process variations, the top of the VREF curve may be located at higher or lower temperatures.
To minimize the temperature drift in the temperature range of interest, BGCRR is used to adjust
the top of the curve towards the centre of the temperature range of interest. The BGCRR bits are
temperature coded resulting in 9 possible settings: 00000000, 00000001, 00000011, 00000111,
… , 11111111. The value 00000000 shifts the top of the VREF curve to the highest possible
temperature, and the value 11111111 shifts the top of the VREF curve to the lowest possible
temperature.

Bit 7 6 5 4 3 2 1 0

(0xD0) BGEN – BGCC5 BGCC4 BGCC3 BGCC2 BGCC1 BGCC0 BGCCR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xD1) BGCR7 BGCR6 BGCR5 BGCR4 BGCR3 BGCR2 BGCR1 BGCR0 BGCRR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

124
2548F–AVR–03/2013

ATmega406

Figure 21-2. Illustration of VREF as a function of temperature.

0

0.5

1

1.5

-40 -20 0 20 40 60 80 100
Temperature [oC]

V
R

E
F

 [
V

]

Temperature range of interest

BGCRR is used to move the top of the VREF
curve to the center of the tempearture range of
interest.

125
2548F–AVR–03/2013

ATmega406

22. Battery Protection

22.1 Features
• Deep Under-voltage Protection

• Charge Over-current Protection

• Discharge Over-current Protection

• Short-circuit Protection

• Programmable and Lockable Detection Levels and Reaction Times

• Autonomous Operation Independent of CPU

If the voltage at the VFET pin falls below the programmable Deep Under-voltage detection level,
C-FET, PC-FET, and D-FET are disabled and the chip is set in Power-off mode to reduce power
consumption to a minimum.

The Current Battery Protection circuitry (CBP) monitors the charge and discharge current and
disables C-FET, PC-FET, and D-FET if an over-current or short-circuit condition is detected.
There are three different programmable detection levels: Discharge Over-current Detection
Level, Charge Over-current Detection Level and Short-circuit Detection Level. The external filter
at the PI/NI input pins will cause too large delay for short-circuit detection. Therefore the sepa-
rate PPI/NNI inputs are used for Current Battery Protection. There are two different
programmable delays for activating Current Battery Protection: Short-circuit Reaction Time and
Over-current Reaction Time. After Current Battery Protection has been activated, the application
software must re-enable the FETs. The Battery Protection hardware provides a hold-off time of 1
second before software can re-enable the discharge FET. This provides safety in case the appli-
cation software should unintentionally re-enable the discharge FET too early.

The activation of a protection also issues an interrupt to the CPU. The battery protection inter-
rupts can be individually enabled and disabled by the CPU.

The effect of the various battery protection types is given in Table 22-1.

In order to reduce power consumption, both Short-circuit and Discharge Over-current Protection
are automatically deactivated when the D-FET is disabled. The Charge Over-current Protection
is disabled when both the C-FET and the PC-FET are disabled. Note however that Charge Over-
current Protection is never automatically disabled when any of the C-FET or PC-FETs are con-
trolled by PWM.

Table 22-1. Effect of Battery Protection Types

Battery Protection Type Interrupt Requests C-FET D-FET PC-FET Cell Balancing FETs MCU

Deep Under-voltage
Detected

CPU Reset on exit Disabled Disabled Disabled Disabled Power-off

Discharge Over-current
Protection

Entry and exit Disabled Disabled Disabled Operational Operational

Charge Over-current
Protection

Entry and exit Disabled Disabled Disabled Operational Operational

Short-circuit Protection Entry and exit Disabled Disabled Disabled Operational Operational

126
2548F–AVR–03/2013

ATmega406

22.2 Deep Under-voltage Protection
The Deep Under-voltage Protection ensures that the battery cells will not be discharged deeper
than the programmable Deep Under-voltage detection level. If the voltage at the VFET pin is
below this level for a time longer than the programmable delay time, C-FET, PC-FET and D-FET
are automatically switched off and the chip enters Power-off mode. The Deep Under-voltage
Early Warning interrupt flag (DUVIF) will be set 250 ms before the chip enters Power-off. This
will give the CPU a chance to take necessary actions before the power is switched off.

The device will remain in the Power-off mode until a charger is connected. When a charger is
detected, a normal power-up sequence is started and the chip initializes to default state.

The Deep Under-voltage delay time and Deep Under-voltage detection level are set in the Bat-
tery Protection Deep Under-voltage Register (BPDUV). The Parameter Registers can be locked
after the initial configuration, prohibiting any further updates until the next Hardware Reset.

Refer to ”Register Description for Battery Protection” on page 128 for register descriptions.

22.3 Discharge Over-current Protection
The Current Battery Protection (CBP) monitors the cell current by sampling the shunt resistor
voltage at the PPI/NNI input pins. A differential operational amplifier amplifies the voltage with a
suitable gain. The output from the operational amplifier is compared to an accurate, programma-
ble On-chip voltage reference by an Analog Comparator. If the shunt resistor voltage is above
the Discharge Over-current Detection level for a time longer than Over-current Protection Reac-
tion Time, the chip activates Discharge Over-current Protection. A sampled system clocked by
the internal ULP Oscillator is used for Over-current and Short-circuit Protection. This ensures a
reliable clock source, off-set cancellation and low power consumption.

When the Discharge Over-current Protection is activated, the external D-FET, PC-FET, and C-
FET are disabled and a Current Protection Timer is started. This timer ensures that the FETs are
disabled for at least one second. The application software must then set the DFE and CFE bits
in the FET Control and Status Register to re-enable normal operation. If the D-FET is re-enabled
while the loading of the battery still is too large, the Discharge Over-current Protection will be
activated again.

22.4 Charge Over-current Protection
If the voltage at the PPI/NNI pins is above the Charge Over-current Detection level for a time
longer than Over-current Protection Reaction Time, the chip activates Charge Over-current
Protection.

When the Charge Over-current Protection is activated, the external D-FET, PC-FET, and C-FET
are disabled and a Current Protection Timer is started. This timer ensures that the FETs are dis-
abled for at least one second. The application software must then set the DFE and CFE bits in
the FET Control and Status Register to re-enable normal operation. If the C-FET is re-enabled
and the charger continues to supply too high currents, the Charge Over-current Protection will
be activated again.

127
2548F–AVR–03/2013

ATmega406

22.5 Short-circuit Protection
A second level of high current detection is provided to enable a faster response time to very
large discharge currents. If a discharge current larger than the Short-circuit Detection Level is
present for a period longer than Short-circuit Reaction Time, the Short-circuit Protection is
activated.

When the Short-circuit Protection is activated, the external D-FET, PC-FET, and C-FET are dis-
abled and a Current Protection Timer is started. This timer ensures that the D-FET, PC-FET,
and C-FET are disabled for at least one second. The application software must then set the DFE
and CFE bits in the FET Control and Status Register to re-enable normal operation. If the D-FET
is re-enabled before the cause of the short-circuit condition is removed, the Short-circuit Protec-
tion will be activated again.

The Over-current and Short-circuit Protection parameters are programmable to adapt to different
types of batteries. The parameters are set by writing to I/O Registers. The Parameter Registers
can be locked after the initial configuration, prohibiting any further updates until the next Hard-
ware Reset.

Refer to ”Register Description for Battery Protection” on page 128 for register descriptions.

22.6 Battery Protection CPU Interface
The Battery Protection CPU Interface is illustrated in Figure 22-1.

Figure 22-1. Battery Protection CPU Interface

Each protection has an Interrupt Flag. Each Flag can be read and cleared by the CPU, and each
flag has an individual interrupt enable. All enabled flags are combined into a single battery pro-
tection interrupt request to the CPU. This interrupt can wake up the CPU from any operation
mode, except Power-off. The interrupt flags are cleared by writing a logic ‘1’ to their bit locations
from the CPU.

Note that there are neither flags nor status bits indicating that the chip has entered the Power Off
mode. This is because the CPU is powered down in this mode. The CPU will, however be able

4
/

4
/

8
/

Interrupt
Request

Interrupt
Acknowledge

FET
Control

Current
Battery

Protection

Battery Protection
Control Register

Battery Protection
Timing Register

Battery Protection
Level Register

Battery Protection
Parameter Lock

Register

Voltage
Battery

Protection

PPI

NNI

VFET

LOCK? LOCK? LOCK?

8-BIT DATA BUS

Deep Under-voltage

Power-off

Battery
Protection
Interrupt
Register

Current
Protection

128
2548F–AVR–03/2013

ATmega406

to detect that it came from a Power-off situation by monitoring CPU reset flags when it resumes
operation.

22.7 Register Description for Battery Protection
The Battery Protection module operates in a different clock domain than the CPU. Whenever a
new value is written to BPCR, BPDUV, BPOCD, BPSCD, or CPBTR, the value must be synchro-
nized to the Battery Protection clock domain. Subsequent writes to this register should not be
made during this synchronization. Therefore, after writing to one of these registers, the same
register should not be re-written within the next 8 CPU clock periods. Note that each register is
synchronized independently of the others.

22.7.1 BPPLR – Battery Protection Parameter Lock Register

• Bit 7:2 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 1 – BPPLE: Battery Protection Parameter Lock Enable

• Bit 0 – BPPL: Battery Protection Parameter Lock

The Battery Protection parameters set in the Battery Protection Parameter Registers and the
disable function set in the Battery Protection Disable Register can be locked from any further
software updates. Once locked, these registers cannot be accessed until the next hardware
reset. This provides a safe method for protecting these registers from unintentional modification
by software runaway. It is recommended that software sets these registers shortly after reset,
and then protects these registers from any further updates.

To lock these registers, the following algorithm must be followed:

1. In the same operation, write a logic one to BPPLE and BPPL.

2. Within the next four clock cycles, in the same operation. write a logic zero to BPPLE and
a logic one to BPPL.

The Battery Protection Parameter Registers are BPCR, CBPTR, BPOCP, BPSCD and BPDUV.

22.7.2 BPCR – Battery Protection Control Register

• Bit 7:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 3 – DUVD: Deep Under-voltage Protection Disable

Bit 7 6 5 4 3 2 1 0

(0xF8) – – – – – – BPPLE BPPL BPPLR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xF7) – – – – DUVD SCD DCD CCD BPCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

129
2548F–AVR–03/2013

ATmega406

When the DUVD bit is set, the Deep Under-voltage Protection is disabled. The Deep Under-volt-
age Detection will be disabled, and any Deep Under-voltage condition will be ignored

• Bit 2 – SCD: Short Circuit Protection Disabled

When the SCD bit is set, the Short-circuit Protection is disabled. The Short-circuit Detection will
be disabled, and any Short-circuit condition will be ignored.

• Bit 1 – DCD: Discharge Over-current Protection Disable

When the DCD bit is set, the Discharge Over-current Protection is disabled. The Discharge
Over-current Detection will be disabled, and any Discharge Over-current condition will be
ignored.

• Bit 0 – CCD: Charge Over-current Protection Disable

When the CCD bit is set, the Charge Over-current Protection is disabled. The Charge Over-cur-
rent Detection will be disabled, and any Charge Over-current condition will be ignored.

22.7.3 CBPTR – Current Battery Protection Timing Register

• Bit 7:4 – SCPT3:0: Short-circuit Protection Timing

These bits control the delay of the Short-circuit Protection. See Table 22-2.

• Bit 3:0 – OCPT3:0: Over-current Protection Timing

These bits control the delay of the Charge and Discharge Current Protection. See Table 22-3.
Note that the same setting applies to both types of over-current protection.

Bit 7 6 5 4 3 2 1 0

(0xF6) SCPT[3:0] OCPT[3:0] CBPTR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-2. SCPT[3:0] with Corresponding Short-circuit Delay Time

Short-circuit Protection Reaction Time

SCPT[3:0] Typ SCPT[3:0] Typ SCPT[3:0] Typ SCPT[3:0] Typ

0000 61 µs 0100 305 µs 1000 610 µs 1100 1098 µs

0001 122 µs 0101 366 µs 1001 732 µs 1101 1220 µs

0010 183 µs 0110 427 µs 1010 854 µs 1110 1342 µs

0011 244 µs 0111 488 µs 1011 976 µs 1111 1464 µs

Table 22-3. OCPT[3:0] with Corresponding Over-current Delay Time

Over-current Protection Reaction Time

OCPT[3:0] Typ OCPT[3:0] Typ OCPT[3:0] Typ OCPT[3:0] Typ

0000 1 ms 0100 8 ms 1000 16 ms 1100 24 ms

0001 2 ms 0101 10 ms 1001 18 ms 1101 26 ms

0010 4 ms 0110 12 ms 1010 20 ms 1110 28 ms

0011 6 ms 0111 14 ms 1011 22 ms 1111 30 ms

130
2548F–AVR–03/2013

ATmega406

22.7.4 BPOCD – Battery Protection Over-current Detection Level Register

• Bits 7:4 – DCDL3:0: Discharge Over-current Detection Level

These bits set the RSENSE voltage level for detection of Discharge Over-current, as defined in
Table 22-4.

• Bits 3:0 – CCDL3:0: Charge Over-current Detection Level

These bits set the RSENSE voltage level for detection of Charge Over-current, as defined in Table
22-5.

22.7.5 BPSCD – Battery Protection Short-circuit Detection Level Register

• Bit 7:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bits 3:0 – SCDL3:0: Short-circuit Detection Level

These bits set the RSENSE voltage level for detection of Short-circuit in the discharge direction,
as defined in Table 22-6 on page 131.

Bit 7 6 5 4 3 2 1 0

(0xF5) DCDL[3:0] CCDL[3:0] BPOCD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-4. DCDL[3:0] with Corresponding RSENSE Voltage for Discharge Over-current Detec-
tion Level

Discharge Over-current Protection Detection Level

DCDL[3:0] Typ DCDL[3:0] Typ DCDL[3:0] Typ DCDL[3:0] Typ

0000 0.050V 0100 0.070V 1000 0.110V 1100 0.160V

0001 0.055V 0101 0.080V 1001 0.120V 1101 0.180V

0010 0.060V 0110 0.090V 1010 0.130V 1110 0.200V

0011 0.065V 0111 0.100V 1011 0.140V 1111 0.220V

Table 22-5. CCDL[3:0] with Corresponding RSENSE Voltage for Charge Over-current Detection
Level

Charge Over-current Protection Detection Level

CCDL[3:0] Typ CCDL[3:0] Typ CCDL[3:0] Typ CCDL[3:0] Typ

0000 0.050V 0100 0.070V 1000 0.110V 1100 0.160V

0001 0.055V 0101 0.080V 1001 0.120V 1101 0.180V

0010 0.060V 0110 0.090V 1010 0.130V 1110 0.200V

0011 0.065V 0111 0.100V 1011 0.140V 1111 0.220V

Bit 7 6 5 4 3 2 1 0

(0xF4) – – – – SCDL[3:0] BPSCD

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

131
2548F–AVR–03/2013

ATmega406

22.7.6 BPDUV – Battery Protection Deep Under Voltage Register

• Bit 7:6 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bits 5:4 – DUVT1:0: Deep Under-voltage Timing

These bits set the Deep Under-voltage Protection delay.

• Bits 3:0 – DUDL3:0: Deep Under-voltage Detection Level

These bits set the Deep Under-voltage detection level.

Table 22-6. SCDL[3:0] with Corresponding RSENSE Voltage for Short-circuit Detection Level

Short-circuit Protection Detection Level

SCDL[3:0] Typ SCDL[3:0] Typ SCDL[3:0] Typ SCDL[3:0] Typ

0000 0.100V 0100 0.140V 1000 0.220V 1100 0.320V

0001 0.110V 0101 0.160V 1001 0.240V 1101 0.360V

0010 0.120V 0110 0.180V 1010 0.260V 1110 0.400V

0011 0.130V 0111 0.200V 1011 0.280V 1111 0.440V

Bit 7 6 5 4 3 2 1 0

(0xF3) – – DUVT[1:0] DUDL[3:0] BPDUV

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-7. DUVT[1:0] with Corresponding Deep Under-voltage Delay

DUVT1:0 Deep Under-voltage Delay

00 750 ms

01 1000 ms

10 1250 ms

11 1500 ms

Table 22-8. DUDL[3:0] with Corresponding Deep Under-voltage Detection Level

DUDL[3:0] Typ DUDL[3:0] Typ

0000 4.71V 1000 7.23V

0001 5.03V 1001 7.54V

0010 5.34V 1010 7.86V

0011 5.66V 1011 8.17V

0100 5.97V 1100 8.49V

0101 6.29V 1101 8.80V

0110 6.60V 1110 9.11V

0111 6.91V 1111 9.43V

132
2548F–AVR–03/2013

ATmega406

22.7.7 BPIR – Battery Protection Interrupt Register

• Bit 7 – DUVIF: Deep Under-voltage Early Warning Interrupt Flag

If the voltage at VFET pin is below the Deep Under-voltage detection level and only 250 ms is
left of the Deep Under-voltage delay, DUVIF becomes set. The flag must be cleared by writing a
logical one to it.

• Bit 6 – COCIF: Charge Over-current Protection Activated Interrupt Flag

When the Charge Over-current Protection is activated, COCIF becomes set. The flag must be
cleared by writing a logical one to it.

• Bit 5 – DOCIF: Discharge Over-current Protection Activated Interrupt Flag

When the Discharge Over-current Protection is activated, DOCIF becomes set. The flag must be
cleared by writing a logical one to it.

• Bit 4 – SCIF: Short-circuit Protection Activated Interrupt Flag

When the Short-circuit Protection is activated, SCIF becomes set. The flag must be cleared by
writing a logical one to it.

• Bit 3 – DUVIE: Deep Under-voltage Early Warning Interrupt Enable

The DUVIE bit enables interrupt caused by the Deep Under-voltage Early Warning Interrupt Flag

• Bit 2 – COCIE: Charge Over-current Protection Activated Interrupt Enable

The COCIE bit enables interrupt caused by the Charge Over-current Protection Activated Inter-
rupt Flag.

• Bit 1 – DOCIE: Discharge Over-current Protection Activated Interrupt Enable

The DOCIE bit enables interrupt caused by the Discharge Over-current Protection Activated
Interrupt Flag.

• Bit 0 – SCIE: Short-circuit Protection Activated Interrupt Enable

The SCIE bit enables interrupt caused by the Short-circuit Protection Activated Interrupt Flag.

If one of the Battery Protection Interrupt Flags is set, and the corresponding Interrupt Enable bit
and the I-bit in the Status Register (SREG) are set, the MCU will jump to the Battery Protection
interrupt vector. The application software must read the Battery Protection Interrupt Register to
determine the cause of the interrupt. The interrupt flags will not be cleared when the interrupt
routine is executed, they must be cleared by writing a logical one to them.

Bit 7 6 5 4 3 2 1 0

(0xF2) DUVIF COCIF DOCIF SCIF DUVIE COCIE DOCIE SCIE BPIR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

133
2548F–AVR–03/2013

ATmega406

23. FET Control
In addition to the FET disable control signals from the battery protection circuitry, the CPU may
disable the Charge FET (C-FET), the Discharge FET (D-FET), or both, by writing to the FET
Control Register. Note that the CPU is never allowed to enable a FET that is disabled by the bat-
tery protection circuitry. The FET control is shown in Figure 23-1 on page 133.

The PWM output from the 8-bit Timer/Counter0, OC0B, can be configured to drive the C-FET,
Precharge FET (PC-FET) or both directly. This can be useful for controlling the charging of the
battery cells. The PWM is configured by the COM0B1:0 and WGM02:0 bits in the
TCCR0A/TCCR0B registers. Note that the OC0B pins does not need to be configured as an out-
put. This means that the PWM output can be used to drive the C-FET and/or the PC-FET
without occupying the OC0B-pin.

If C-FET is disabled and D-FET enabled, discharge current will run through the body-drain diode
of the C-FET and vice versa. To avoid the potential heat problem from this situation, software
must ensure that D-FET is not disabled when a charge current is flowing, and that C-FET is not
disabled when a discharge current is flowing.

If the battery has been deeply discharged, large surge currents may result when a charger is
connected. In this case, it is recommended to first pre charge the battery through a current limit-
ing resistor. For this purpose, ATmega406 provides a Precharge FET (PC-FET) control output.
This output is default enabled.

If ATmega406 has entered the Power-off mode, all FET control outputs will be disabled. When a
charger is connected, the CPU will wake up. When waking up from Power-off mode, the C-FET
and D-FET control outputs will remain disabled while PC-FET is default enabled. When the CPU
detects that the cell voltages have risen enough to allow normal charging, it should enable the
C-FET and D-FET control outputs and disable the PC-FET control output.

If the Current Battery Protection has been activated, the Current Protection Timer will ensure a
hold-off time of 1 second before software can re-enable the external FETs.

Figure 23-1. FET Control Block Diagram

FET
Control

and
Status

Register

FET
Driver

FET
DriverDFE

CFE

CURRENT_PROTECTION

Power-off Mode

8
-B

IT
 D

A
T

A
 B

U
S OC

OD

Current Protection
Timer

1

0

PWMOC

OC0B

FET
Driver

PFD

OPC
1

0

PWMOPC

134
2548F–AVR–03/2013

ATmega406

23.1 FET Driver

Figure 23-2. Connection of external FETs

The connection of external FETs to OD, OC, and OPC is shown in Figure 23-2.

When switching on an FET, the output pulls the gate quickly low to avoid heating of the FET.
When the FET is switched completely on, the output changes operation mode in order to reduce
current consumption. The gate-source voltage for the FET when switched on, |VGS_ON|, is limited
to 13V ± 15%.

When disabling an external FET, the FET Driver output quickly pushes the gate voltage to the
source pin potential, making the gate-source voltage of the FET close to zero. This disables the
FET, and the FET Driver output switches operation mode to high impedance in order to reduce
current consumption. The external resistor will keep the gate-source voltage at zero until the
FET is enabled again and its gate is pulled low as explained above.

23.2 Register Description for FET Control
The FET Controller operates in a different clock domain than the CPU. Whenever a new value is
written to the FCSR, the value must be synchronized to the FET Controller clock domain. Subse-
quent writes to this register should not be made during this synchronization. Therefore, after
writing to this register, a guard time of 3 ULP Oscillator cycles + 3 CPU clock cycles is required.

It is recommended that software only reads the FCSR when handling a Battery Protection Inter-
rupt (BPINT).

23.2.1 FCSR – FET Control and Status Register

• Bits 7:6 – Res: Reserved Bits

These bits are reserved bits in the ATmega406, and will always read as zero.

• Bit 5 – PWMOC: Pulse Width Modulation of OC output

RcfRdf

OC OPCODPVT BATT

Rpf

Rpc

+

RN

Bit 7 6 5 4 3 2 1 0

(0xF0) – – PWMOC PWMOPC CPS DFE CFE PFD FCSR

Read/Write R R R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

135
2548F–AVR–03/2013

ATmega406

When the PWMOC is cleared (zero), the CFE bit and the battery protection circuitry controls the
OC output. When this bit is set (one), the OC output will be the logical AND of the PWM output
from the 8-bit Timer/Counter0 and the inverse of CURRENT_PROTECTION from the Battery
Protection circuitry.

• Bit 4 – PWMOPC: Pulse Width Modulation of OPC output

When the PWMOPC is cleared (zero), the PFD bit and the battery protection circuitry controls
the OPC output. When this bit is set (one), the OPC output will be the logical AND of the PWM
output from the 8-bit Timer/Counter0 and the inverse of CURRENT_PROTECTION from the
Battery Protection circuitry.

• Bit 3 – CPS: Current Protection Status

The CPS bit shows the status of the Current Protection. This bit is set (one) when the Current
Protection Timer is activated, and is cleared (zero) when the hold-off time has elapsed.

• Bit 2 – DFE: Discharge FET Enable

When the DFE bit is cleared (zero), the Discharge FET will be disabled regardless of the state of
the Battery Protection circuitry. When this bit is set (one), the Discharge FET state is determined
by the Battery Protection circuitry. This bit will be cleared when CURRENT_PROTECTION is set
(one).

• Bit 1 – CFE: Charge FET Enable

When the CFE bit is cleared (zero), the Charge FET will be disabled regardless of the state of
the Battery Protection circuitry. When this bit is set (one), the Charge FET state is determined by
the Battery Protection circuitry. This bit will be cleared when CURRENT_PROTECTION is set
(one).

• Bit 0 – PFD: Precharge FET Disable

The PFD bit provides complete control of the Precharge FET. When the PFD bit is cleared
(zero), the Precharge FET will be enabled. When the PFD bit is cleared, the Precharge FET will
be enabled. When the PFD bit is set (one), the Precharge FET will be disabled. This bit will be
cleared when the CURRENT_PROTECTION is set (one)

136
2548F–AVR–03/2013

ATmega406

24. Cell Balancing
ATmega406 incorporates cell balancing FETs. The chip provides one cell balancing FET for
each battery cell in series. The FETs are directly controlled by the application software, allowing
the cell balancing algorithms to be implemented in software. The FETs are connected in parallel
with the individual battery cells. The cell balancing is illustrated in Figure 24-1. The figure shows
a four-cell configuration. The cell balancing FETs are disabled in the Power-off mode.

Typical current through the Cell Balancing FETs (TCB) is 2 mA. The Cell Balancing FETs are
controlled by the CBCR. Neighbouring FETs cannot be simultaneously enabled. If trying to
enable two neighbouring FETs, both will be disabled.

Figure 24-1. Cell Balancing

Cell Balancing
Control Register

TCB

RP

RP

RP

RP

TCB

TCB

TCB

Level
Shift

Level
Shift

Level
Shift

Level
Shift

PV1

NV

PV2

PV3

PV4

8-
B

IT
 D

A
T

A
 B

U
S

RP

137
2548F–AVR–03/2013

ATmega406

24.1 Register Description

24.1.1 CBCR – Cell Balancing Control Register

• Bit 7:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 3 – CBE4: Cell Balancing Enable 4

When this bit is set, the integrated Cell Balancing FET between terminals PV4 and PV3 will be
enabled. When the bit is cleared, the Cell Balancing FET will be disabled. The Cell Balancing
FETs are always disabled in Power-off mode. CBE4 cannot be set if CBE3 is set.

• Bit 2 – CBE3: Cell Balancing Enable 3

When this bit is set, the integrated Cell Balancing FET between terminals PV3 and PV2 will be
enabled. When the bit is cleared, the Cell Balancing FET will be disabled. The Cell Balancing
FETs are always disabled in Power-off mode. CBE3 cannot be set if CBE2 or CBE4 is set.

• Bit 1 – CBE2: Cell Balancing Enable 2

When this bit is set, the integrated Cell Balancing FET between terminals PV2 and PV1 will be
enabled. When the bit is cleared, the Cell Balancing FET will be disabled. The Cell Balancing
FETs are always disabled in Power-off mode. CBE2 cannot be set if CBE1 or CBE3 is set.

• Bit 0 – CBE1: Cell Balancing Enable 1

When this bit is set (one), the integrated Cell Balancing FET between terminals PV1 and NV will
be enabled. When the bit is cleared (zero), the Cell Balancing FET will be disabled. The Cell Bal-
ancing FETs are always disabled in Power-off mode. CBE1 cannot be set if CBE2 is set.

Bit 7 6 5 4 3 2 1 0

(0xF1) – – – – CBE4 CBE3 CBE2 CBE1 CBCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

138
2548F–AVR–03/2013

ATmega406

25. 2-wire Serial Interface

25.1 Features
• Simple yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed

• Both Master and Slave Operation Supported

• Device can Operate as Transmitter or Receiver

• 7-bit Address Space allows up to 128 Different Slave Addresses

• Multi-master Arbitration Support

• Operates on 4 MHz Clock, achieving up to 100 kHz Data Transfer Speed

• Slew-rate Limited Output Drivers

• Noise Suppression Circuitry Rejects Spikes on Bus Lines

• Fully Programmable Slave Address with General Call Support

• Address Recognition Causes Wake-up when AVR is in Sleep Mode

25.2 Two-wire Serial Interface Bus Definition
The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

The PRTWI bit in ”PRR0 – Power Reduction Register 0” on page 36 must be written to zero to
enable TWI module.

Figure 25-1. TWI Bus Interconnection

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VBUS

139
2548F–AVR–03/2013

ATmega406

25.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

25.2.2 Electrical Interconnection

As depicted in Figure 25-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in ”2-wire Serial Interface Characteristics” on page 229.

25.3 Data Transfer and Frame Format

25.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 25-2. Data Validity

Table 25-1. TWI Terminology

Term Description

Master
The device that initiates and terminates a transmission. The Master also generates the
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

SDA

SCL

Data Stable Data Stable

Data Change

140
2548F–AVR–03/2013

ATmega406

25.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other Master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 25-3. START, REPEATED START, and STOP Conditions

25.3.3 Address Packet Format

All address packets transmitted on the TWI bus are nine bits long, consisting of seven address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read
operation is to be performed, otherwise a write operation should be performed. When a slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

SDA

SCL

START STOPREPEATED STARTSTOP START

141
2548F–AVR–03/2013

ATmega406

Figure 25-4. Address Packet Format

25.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 25-5. Data Packet Format

25.3.5 Combining Address and Data Packets Into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 25-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START, or Next
Data Byte

142
2548F–AVR–03/2013

ATmega406

Figure 25-6. Typical Data Transmission

25.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves
(i.e., the data being transferred on the bus must not be corrupted).

• Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the master with the shortest high period. The low period of the combined clock is equal to
the low period of the master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low Time-out periods when the combined
SCL line goes high or low, respectively.

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

143
2548F–AVR–03/2013

ATmega406

Figure 25-7. SCL Synchronization between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the master had output, it has
lost the arbitration. Note that a master can only lose arbitration when it outputs a high SDA value
while another master outputs a low value. The losing master should immediately go to Slave
mode, checking if it is being addressed by the winning master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one master remains, and this may take many
bits. If several masters are trying to address the same slave, arbitration will continue into the
data packet.

Figure 25-8. Arbitration between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

TA low TA high

SCL from
Master A

SCL from
Master B

SCL bus
Line

TB low TB high

Masters Start
Counting Low Period

Masters Start
Counting High Period

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START
Master A Loses

Arbitration, SDAA SDA

144
2548F–AVR–03/2013

ATmega406

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

25.5 Overview of the TWI Module
The TWI module is comprised of several submodules, as shown in Figure 25-9. The shaded reg-
isters are accessible through the AVR data bus.

Figure 25-9. Overview of the TWI Module

25.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns.

T
W

I U
ni

t

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Status Register
(TWSR)

State Machine and
Status Control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration Detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

Control Register
(TWCR)

145
2548F–AVR–03/2013

ATmega406

25.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register.

• TWPS = Value of the prescaler bits in the TWI Status Register.

Notes: 1. TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10,
the master may produce an incorrect output on SDA and SCL for the reminder of the byte. The
problem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a
slave (a slave does not need to be connected to the bus for the condition to happen).

2. The TWI clock is 4 MHz, see “Calibrated Fast RC Oscillator” on page 26.

25.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

25.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the 7-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake-up if addressed by a Master.

SCL frequency
TWI Clock frequency

16 2(TWBR) 4
TWPS+

---=

146
2548F–AVR–03/2013

ATmega406

25.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI interrupt flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

147
2548F–AVR–03/2013

ATmega406

25.6 TWI Register Description

25.6.1 TWBR – TWI Bit Rate Register

• Bits 7:0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See ”Bit Rate Generator
Unit” on page 145 for calculating bit rates.

25.6.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT flag is set, the SCL low period is stretched. The TWINT
flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire
Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

148
2548F–AVR–03/2013

ATmega406

dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition
is detected, and then generates a new START condition to claim the Bus Master status. TWSTA
is cleared by the TWI hardware when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT flag is high.

25.6.3 TWSR – TWI Status Register

• Bits 7:3 – TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different sta-
tus codes are described in Table 25-3 on page 156 through Table 25-6 on page 165. Note that
the value read from TWSR contains both the 5-bit status value and the 2-bit prescaler value. The
application designer should mask the prescaler bits to zero when checking the status bits. This
makes status checking independent of prescaler setting. This approach is used in this data-
sheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 1:0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

149
2548F–AVR–03/2013

ATmega406

To calculate bit rates, see ”Bit Rate Generator Unit” on page 145. The value of TWPS1:0 is used
in the equation.

25.6.4 TWDR – TWI Data Register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the data register
cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains sta-
ble as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake-up from a sleep
mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost
bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7:0 – TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the Two-wire Serial Bus.

25.6.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a slave transmitter or Receiver, and
not needed in the Master modes. In multi-master systems, TWAR must be set in masters which
can be addressed as slaves by other masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7:1 – TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

Table 25-2. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

150
2548F–AVR–03/2013

ATmega406

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

25.6.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7:1 – TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 25-10 shown the address match logic in
detail.

Figure 25-10. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit

This bit is an unused bit in the ATmega406, and will always read as zero.

25.7 Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in
order to detect actions on the TWI bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR registers.

Figure 25-11 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0

151
2548F–AVR–03/2013

ATmega406

Figure 25-11. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent.

Application loads SLA+W into TWDR,
and loads appropriate control signals

into TWCR, making sure that TWINT is
written to one

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

A
pp

lic
at

io
n

A
ct

io
n

T
W

I
H

ar
dw

ar
e

A
ct

io
n

152
2548F–AVR–03/2013

ATmega406

not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT flag is
set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT flag is set, the user must update all TWI registers with the value relevant for
the next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted
in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one
to TWINT clears the flag. The TWI will then commence executing whatever operation was
specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made for example by using include-files.

Assembly code example(1) C example(1) Comments

1

ldi r16,
(1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2

wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT flag set. This
indicates that the START
condition has been transmitted

3

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status
Register. Mask prescaler bits. If
status different from START go to
ERROR

153
2548F–AVR–03/2013

ATmega406

Note: 1. See ”About Code Examples” on page 7.

25.8 Transmission Modes
The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

4

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
Register. Clear TWINT bit in
TWCR to start transmission of
address

wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

5

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load DATA into TWDR Register.
Clear TWINT bit in TWCR to start
transmission of data

6

wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

7

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16,
(1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition

Assembly code example(1) C example(1) Comments

154
2548F–AVR–03/2013

ATmega406

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 25-13 to Figure 25-19, circles are used to indicate that the TWINT flag is set. The num-
bers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At
these points, actions must be taken by the application to continue or complete the TWI transfer.
The TWI transfer is suspended until the TWINT flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 25-3 to Table 25-6. Note that the prescaler bits are masked to zero in
these tables.

25.8.1 Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see
Figure 25-12). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

Figure 25-12. Data Transfer in Master Transmitter Mode

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VBUS

155
2548F–AVR–03/2013

ATmega406

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT flag. The TWI
will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT flag is set by hard-
ware, and the status code in TWSR will be 0x08 (see Table 25-3). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 25-3.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

156
2548F–AVR–03/2013

ATmega406

Table 25-3. Status Codes for Master Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+W X 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+W or

Load SLA+R

X

X

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x28 Data byte has been transmit-
ted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x30 Data byte has been transmit-
ted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not ad-
dressed slave mode entered
A START condition will be transmitted when the bus
becomes free

157
2548F–AVR–03/2013

ATmega406

Figure 25-13. Formats and States in the Master Transmitter Mode

25.8.2 Master Receiver Mode

In the Master Receiver mode, a number of data bytes are received from a slave transmitter (see
Figure 25-14). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

S

158
2548F–AVR–03/2013

ATmega406

Figure 25-14. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT flag. The TWI will
then test the Two-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT flag is set by hardware, and the
status code in TWSR will be 0x08 (see Table 25-3). In order to enter MR mode, SLA+R must be
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-
ing value to TWCR:

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 25-13. Received data can be read from the TWDR Register when the TWINT
flag is set high by hardware. This scheme is repeated until the last byte has been received. After
the last byte has been received, the MR should inform the ST by sending a NACK after the last
received data byte. The transfer is ended by generating a STOP condition or a repeated START
condition. A STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VBUS

159
2548F–AVR–03/2013

ATmega406

enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control over the bus.

Table 25-4. Status Codes for Master Receiver Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+R X 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

X

X

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode

0x38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not ad-
dressed Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

160
2548F–AVR–03/2013

ATmega406

Figure 25-15. Formats and States in the Master Receiver Mode

25.8.3 Slave Receiver Mode

In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see
Figure 25-16). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 25-16. Data Transfer in Slave Receiver Mode

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

Device 3 Device n

SDA

SCL

........ R1 R2

VBUS

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

161
2548F–AVR–03/2013

ATmega406

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 25-5.
The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the Two-wire Serial Bus is still monitored and address recognition may
resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake-up from sleep
and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is cleared
(by writing it to one). Further data reception will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte
present on the bus when waking up from these Sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X

162
2548F–AVR–03/2013

ATmega406

Table 25-5. Status Codes for Slave Receiver Mode

Status Code
(TWSR)
Prescaler Bits
Are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
master; own SLA+W has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x70 General call address has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
master; General call address has
been received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0x90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xA0 A STOP condition or repeated
START condition has been
received while still addressed as
slave

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

163
2548F–AVR–03/2013

ATmega406

Figure 25-17. Formats and States in the Slave Receiver Mode

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

164
2548F–AVR–03/2013

ATmega406

25.8.4 Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see
Figure 25-18). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 25-18. Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 25-6.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xC0 or state 0xC8 will be entered, depending on whether the master receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the master if it continues the transfer. Thus the master receiver receives
all “1” as serial data. State 0xC8 is entered if the master demands additional data bytes (by
transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the master).

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X

Device 3 Device n

SDA

SCL

........ R1 R2

VBUS

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER

165
2548F–AVR–03/2013

ATmega406

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-wire
Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the
SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR – does not reflect the last byte
present on the bus when waking up from these sleep modes.

Table 25-6. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler
Bits are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

166
2548F–AVR–03/2013

ATmega406

Figure 25-19. Formats and States in the Slave Transmitter Mode

25.8.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 25-7.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO flag (no other bits in TWCR
are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

167
2548F–AVR–03/2013

ATmega406

25.8.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomic operation. If this principle is violated in a multi-master sys-
tem, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the
master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 25-20. Combining Several TWI Modes to Access a Serial EEPROM

25.9 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a slave receiver.

Table 25-7. Miscellaneous States

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0xF8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

168
2548F–AVR–03/2013

ATmega406

Figure 25-21. An Arbitration Example

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same slave. In this
case, neither the slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying
to output a one on SDA while another master outputs a zero will lose the arbitration. Losing
masters will switch to not addressed Slave mode or wait until the bus is free and transmit a
new START condition, depending on application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are
being addressed by the winning master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed Slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

This is summarized in Figure 25-22. Possible status values are given in circles.

Figure 25-22. Possible Status Codes Caused by Arbitration

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER
Device n

SDA

SCL

........ R1 R2

VBUS

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

169
2548F–AVR–03/2013

ATmega406

25.10 Bus Connect/Disconnect for Two-wire Serial Interface
The Bus Connect/Disconnect module is an addition to the TWI Interface. Based on a configura-
tion bit, an interrupt can be generated either when the TWI bus is connected or disconnected.

Figure 25-23 illustrates the Bus Connect/Disconnect logic, where SDA and SCL are the TWI
data and clock lines, respectively.

When the TWI bus is connected, both the SDA and the SCL lines will become high simultane-
ously. If the TWBCIP bit is cleared, the interrupt will be executed if enabled. Once the bus is
connected, the TWBCIP bit should be set. This enables detection of when the bus is discon-
nected, and prevents repetitive interrupts every time both the SDA and SCL lines are high (e.g.
bus IDLE state).

When the TWI bus is disconnected, both the SDA and the SCL lines will become low simultane-
ously. If the TWBCIP bit is set, the interrupt will be executed if enabled and if both lines remain
low for a configurable time period. By adding this time constraint, unwanted interrupts caused by
both lines going low during normal bus communication is prevented.

Figure 25-23. Overview of Bus Connect/Disconnect.

25.10.1 TWBCSR – TWI Bus Control and Status Register

• Bit 7 - TWBCIF: TWI Bus Connect/Disconnect Interrupt Flag

Based on the TWBCIP bit, the TWBCIF bit is set when the TWI bus is connected or discon-
nected. TWBCIF is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, TWBCIF is cleared by writing a logic one to the flag. When the SREG I-bit,
TWBCIE (TWI Bus Connect/Disconnect Interrupt Enable), and TWBCIF are set, the TWI Bus

DELAY ELEMENT

START OUTPUT

DELAY

TWBCSR

SDA
SCL

SET TWBCIF

IRQ

T
W

B
D

T

TWBCIP

8-BIT DATA BUS

Bit 7 6 5 4 3 2 1 0

(0xBE) TWBCIF TWBCIE – – – TWBDT1 TWBDT0 TWBCIP TWBCSR

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value X 0 0 0 0 0 0 0

170
2548F–AVR–03/2013

ATmega406

Connect/Disconnect Interrupt is executed. If both SDA and SCL are high during reset, TWBCIF
will be set after reset. Otherwise TWBCIF will be cleared after reset.

• Bit 6 - TWBCIE: TWI Bus Connect/Disconnect Interrupt Enable

When the TWBCIE bit and the I-bit in the Status Register are set, the TWI Bus Connect/Discon-
nect Interrupt is enabled. The corresponding interrupt is executed i f a TWI Bus
Connect/Disconnect occurs, i.e., when the TWBCIE bit is set.

• Bit 5:3 - Res: Reserved Bits

These bits are reserved bits in the ATmega406 and will always read as zero.

• Bit 2:1 - TWBDT1, TWBDT0: TWI Bus Disconnect Time-out Period

The TWBDT bits decides how long both the TWI data (SDA) and clock (SCL) signals must be
low before generating the TWI Bus Disconnect Interrupt. The different configuration values and
their corresponding time-out periods are shown in Table 25-8.

• Bit 0 - TWBCIP: TWI Bus Connect/Disconnect Interrupt Polarity

The TWBCIP bit decide if the TWI Bus Connect/Disconnect Interrupt Flag (TWBCIF) should be
set on a Bus Connect or a Bus Disconnect. If TWBCIP is cleared, the TWBCIF flag is set on a
Bus Connect. If TWBCIP is set, the TWBCIF flag is set on a Bus Disconnect.

Table 25-8. TW Bus Disconnect Time-out Period

TWBDT1 TWBDT0 TWI Bus Disconnect Time-out Period

0 0 250 ms

0 1 500 ms

1 0 1000 ms

1 1 2000 ms

171
2548F–AVR–03/2013

ATmega406

26. JTAG Interface and On-chip Debug System

26.1 Features
• JTAG (IEEE std. 1149.1 Compliant) Interface

• Debugger Access to:

– All Internal Peripheral Units

– Internal and External RAM

– The Internal Register File

– Program Counter

– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including

– AVR Break Instruction

– Break on Change of Program Memory Flow

– Single Step Break

– Program Memory Break Points on Single Address or Address Range

– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• On-chip Debugging Supported by AVR Studio®

26.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface can be found in the section ”Programming via the JTAG Interface” on page
211. The On-chip Debug support is considered being private JTAG instructions, and distributed
within ATMEL and to selected third party vendors only.

Figure 26-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The JTAG Programming Interface (actually consisting of several physical and virtual Data Reg-
isters) is used for serial programming via the JTAG interface. The Internal Scan Chain and
Break Point Scan Chain are used for On-chip debugging only.

26.3 Test Access Port – TAP
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

172
2548F–AVR–03/2013

ATmega406

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not
provided.

When the JTAGEN Fuse is unprogrammed, these four TAP pins are normal port pins, and the
TAP controller is in reset. When programmed, the input TAP signals are internally pulled high
and the JTAG is enabled for programming. The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

Figure 26-1. Block Diagram

TAP
CONTROLLER

TDI
TDO
TCK
TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

173
2548F–AVR–03/2013

ATmega406

Figure 26-2. TAP Controller State Diagram

26.4 TAP Controller
The TAP controller is a 16-state finite state machine that controls the operation of the JTAG pro-
gramming circuitry, or On-chip Debug system. The state transitions depicted in Figure 26-2
depend on the signal present on TMS (shown adjacent to each state transition) at the time of the
rising edge at TCK. The initial state after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high. While
the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the
TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and
TDO and controls the circuitry surrounding the selected Data Register.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

174
2548F–AVR–03/2013

ATmega406

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-
IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register – Shift-DR state. While in this state, upload the selected data register (selected by the
present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising edge
of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during input of
all bits except the MSB. The MSB of the data is shifted in when this state is left by setting TMS
high. While the data register is shifted in from the TDI pin, the parallel inputs to the data
register captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected data register
has a latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR,
Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using data registers, and some JTAG instructions may select certain func-
tions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in ”JTAG Inter-
face and On-chip Debug System” on page 171.

26.5 Using the On-chip Debug System
As shown in Figure 26-1, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break
Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in ”On-chip Debug Specific JTAG
Instructions” on page 175.

175
2548F–AVR–03/2013

ATmega406

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio® supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000 and Microsoft Windows NT®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

26.6 On-chip Debug Specific JTAG Instructions
The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

26.6.1 PRIVATE0; 0x8

Private JTAG instruction for accessing On-chip debug system.

26.6.2 PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

26.6.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

26.6.4 PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip debug system.

176
2548F–AVR–03/2013

ATmega406

26.7 On-chip Debug Related Register

26.7.1 OCDR – On-chip Debug Register

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

26.7.2 MCUCR – MCU Control Register

The MCU Control Register contains control bits for general MCU functions.

• Bit 7 - JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value.

Note that this bit must not be altered when using the On-chip Debug system.

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) On-Chip Debug Register OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD PUD IVSEL IVCE MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

177
2548F–AVR–03/2013

ATmega406

26.8 Using the JTAG Programming Capabilities
Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section ”Programming via the JTAG Interface” on page 211.

178
2548F–AVR–03/2013

ATmega406

27. Boot Loader Support – Read-While-Write Self-Programming
The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection.

27.1 Boot Loader Features
• Read-While-Write Self-Programming

• Flexible Boot Memory Size

• High Security (Separate Boot Lock Bits for a Flexible Protection)

• Separate Fuse to Select Reset Vector

• Optimized Page(1) Size

• Code Efficient Algorithm

• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see ”Page Size” on page 198)
used during programming. The page organization does not affect normal operation.

27.2 Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 27-2). The size of the different sections is configured by the
BOOTSZ Fuses as shown in Table 27-7 on page 193 and Figure 27-2. These two sections can
have different level of protection since they have different sets of Lock bits.

27.2.1 Application Section

The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(Boot Lock bits 0), see Table 27-2 on page 182. The Application section can never store any
Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

27.2.2 BLS – Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 27-3 on page 182.

179
2548F–AVR–03/2013

ATmega406

27.3 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 27-
8 on page 193 and Figure 27-2 on page 181. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during the
entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

27.3.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW
section. See Section “27.5.1” on page 183. for details on how to clear RWWSB.

27.3.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 27-1. Read-While-Write Features

Which Section does the Z-pointer
Address During the Programming?

Which Section Can be Read
During Programming?

CPU
Halted?

Read-While-Write
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No

180
2548F–AVR–03/2013

ATmega406

Figure 27-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in
NRWW Section
Can be Read During
the Operation

181
2548F–AVR–03/2013

ATmega406

Figure 27-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 27-7 on page 193.

27.4 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 27-2 and Table 27-3 for further details. The Boot Lock bits can be set in software and
in Serial or Parallel Programming mode, but they can be cleared by a Chip Erase command
only. The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash
memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1) does not
control reading nor writing by LPM/SPM, if it is attempted.

0x0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

0x0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application Flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader

182
2548F–AVR–03/2013

ATmega406

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Table 27-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Table 27-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

183
2548F–AVR–03/2013

ATmega406

27.5 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via the TWI interface. Alternatively, the
Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash start
address after a reset. In this case, the Boot Loader is started after a reset. After the application
code is loaded, the program can start executing the application code. Note that the fuses cannot
be changed by the MCU itself. This means that once the Boot Reset Fuse is programmed, the
Reset Vector will always point to the Boot Loader Reset and the fuse can only be changed
through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

27.5.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

• Bit 5 - SIGRD: Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within three
clock cycles will read a byte from the signature row into the destination register. see “Reading
the Signature Row from Software” on page 189 for details.

An SPM instruction within four cycles after SIGRD and SPMEN are set will have no effect. This
operation is reserved for future use and should not be used.

Table 27-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 27-7 on page 193)

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

184
2548F–AVR–03/2013

ATmega406

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits, according to the data in R0. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock
bit set, or if no SPM instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Reg-
ister, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See ”Reading the Fuse and Lock Bits from Software” on page 188 for
details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.

Writing any other combination than “100001”, “010001”, “001001”, “000101”, “000011” or
“000001” in the lower five bits will have no effect.

185
2548F–AVR–03/2013

ATmega406

27.6 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see ”Fuse Bits” on page 196), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 27-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 27-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 27-3 are listed in Table 27-9 on page 193.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

186
2548F–AVR–03/2013

ATmega406

27.7 Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the
same page. See ”Simple Assembly Code Example for a Boot Loader” on page 191 for an
assembly code example.

27.7.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

27.7.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

187
2548F–AVR–03/2013

ATmega406

27.7.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer will be ignored during
this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

27.7.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in ”Interrupts” on page 51.

27.7.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

27.7.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in ”Interrupts” on page 51, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See ”Simple Assembly Code Example for a Boot Loader” on
page 191 for an example.

27.7.7 Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.

See Table 27-2 and Table 27-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5:2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future compatibility it

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

188
2548F–AVR–03/2013

ATmega406

is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock bits. When pro-
gramming the Lock bits the entire Flash can be read during the operation.

27.7.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

27.7.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the ”AVR Instruction Set”
description.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to Table 28-4 on page 197 for a
detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to Table 28-3 on page 196 for detailed description and mapping of the Fuse High byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

189
2548F–AVR–03/2013

ATmega406

27.7.10 Reading the Signature Row from Software

To read the Signature Row from software, load the Z-pointer with the signature byte address
given in Table 27-5 and set the SIGRD and SPMEN bits in SPMCSR. When an LPM instruction
is executed within three CPU cycles after the SIGRD and SPMEN bits are set in SPMCSR, the
signature byte value will be loaded in the destination register. The SIGRD and SPMEN bits will
auto-clear upon completion of reading the Signature Row Lock bits or if no LPM instruction is
executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will work as
described in the ”AVR Instruction Set” description.

Table 27-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device ID 0, Manufacture ID 0x00

Device ID 1, Flash Size 0x02

Device ID 2, Device 0x04

FOSCCAL(1) 0x01

Reserved 0x03

Slow RC FRQ(2) 0x05

Slow RC L 0x06

Slow RC H(3) 0x07

Slow RC Temp Prediction L 0x0C

Slow RC Temp Prediction H(7) 0x0D

ULP RC FRQ(5) 0x08

ULP RC L 0x0A

ULP RC H(6) 0x0B

Bandgap PTAT Current Calibration Byte(4) 0x09

V-ADC RAW Cell 1 L 0x0E

V-ADC RAW Cell 1 H(8) 0x0F

V-ADC Cell1 Gain Calibration Word L 0x10

V-ADC Cell1 Gain Calibration Word H(9) 0x11

V-ADC Cell2 Gain Calibration Word L 0x12

V-ADC Cell2 Gain Calibration Word H(9) 0x13

V-ADC Cell3 Gain Calibration Word L 0x14

V-ADC Cell3 Gain Calibration Word H(9) 0x15

V-ADC Cell4 Gain Calibration Word L 0x16

V-ADC Cell4 Gain Calibration Word H(9) 0x17

V-ADC ADC0 Gain Calibration Word L 0x18

V-ADC ADC0 Gain Calibration Word H(10) 0x19

V-ADC Cell1 Offset(12) 0x1C

190
2548F–AVR–03/2013

ATmega406

Notes: 1. Default FOSCCAL value after reset.
2. Slow RC oscillator Frequency in kHz
3. Slow RC Oscillator fastest timeout in µs.
4. Calibration value found for BGCCR which gives 1.1V at VREF when BGCRR = 0x0F.
5. ULP RC Oscillator Frequency in kHz.
6. ULP RC Oscillator fastest timeout in µs.
7. Slow RC Oscillator Frequency Temperature drift prediction value (word). Measured over sev-

eral lots. Not implemented.
8. Calibration Word used for the second step of VREF calibration. This step is performed by the

customer at 25C. Value stored is VADCH/L when Cell1 had 4096 mV at 85C.
9. Calibration Word used to compensate for gain error in V-ADC Cell input 1 - 4. Cell x in mV =

VADCH/L*this word/16384.
10. Calibration Word used to compensate for gain error in V-ADC ADC0. ADC0 in 0.1mV =

VADCH/L*this word/16384.
11. Calibration Word used to calculate the absolute temperature in Kelvin from VTEMP conver-

sion. Temp in K = VADCH/L*this word/16384.
12. Calibration Byte used to compensate for offset in V-ADC Cells. Not implemented.

All other addresses are reserved for future use.

V-ADC Cell2 Offse(12)t 0x1D

V-ADC Cell3 Offse(12)t 0x1E

V-ADC Cell4 Offset(12) 0x1F

VPTAT CAL L 0x1A

VPTAT CAL H(11) 0x1B

Table 27-5. Signature Row Addressing

Signature Byte Z-Pointer Address

191
2548F–AVR–03/2013

ATmega406

27.7.11 Programming Time for Flash when Using SPM

The Fast RC Oscillator is used to time Flash accesses. Table 27-6 shows the typical program-
ming time for Flash accesses from the CPU.

27.7.12 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section
; can be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the
; Boot loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section

Table 27-6. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM)

3.7 ms 4.5 ms

192
2548F–AVR–03/2013

ATmega406

ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop
; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

193
2548F–AVR–03/2013

ATmega406

27.7.13 ATmega406 Boot Loader Parameters

In Table 27-7 through Table 27-9, the parameters used in the description of the Self-Program-
ming are given

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 27-2

Note: 1. For details about these two section, see ”NRWW – No Read-While-Write Section” on page
179 and ”RWW – Read-While-Write Section” on page 179.

Table 27-7. Boot Size Configuration(1)

B
O

O
T

S
Z

1

B
O

O
T

S
Z

0

B
o

o
t

S
iz

e

P
ag

es

A
p

p
lic

at
io

n

F
la

sh
 S

ec
ti

o
n

B
o

o
t

L
o

ad
er

F
la

sh
 S

ec
ti

o
n

E
n

d
 A

p
p

lic
at

io
n

S

ec
ti

o
n

B
o

o
t

R
es

et

A
d

d
re

ss

(S
ta

rt
 B

o
o

t
L

o
ad

er
 S

ec
ti

o
n

)

1 1
256

words
4

0x0000 -
0x4EFF

0x4F00 -
0x4FFF

0x4EFF 0x4F00

1 0
512

words
8

0x0000 -
0x4DFF

0x4E00 -
0x4FFF

0x4DFF 0x4E00

0 1
1024

words
16

0x0000 -
0x4BFF

0x4C00 -
0x4FFF

0x4BFF 0x4C00

0 0
2048

words
32

0x0000 -
0x47FF

0x4800 -
0x4FFF

0x47FF 0x4800

Table 27-8. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 288 0x0000 - 0x47FF

No Read-While-Write section (NRWW) 32 0x4800 - 0x4FFF

Table 27-9. Explanation of different variables used in Figure 27-3 and the mapping to the Z-
pointer(1)

Variable
Corresponding

Z-value Description

PCMSB 14
Most significant bit in the Program Counter. (The
Program Counter is 13 bits PC[12:0])

PAGEMSB 5
Most significant bit which is used to address the
words within one page (64 words in a page requires
six bits PC [5:0]).

ZPCMSB Z15
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPAGEMSB equals PAGEMSB +
1.

PCPAGE PC[14:6] Z13:Z7
Program Counter page address: Page select, for
Page Erase and Page Write

PCWORD PC[5:0] Z6:Z1
Program Counter word address: Word select, for
filling temporary buffer (must be zero during Page
Write operation)

194
2548F–AVR–03/2013

ATmega406

Note: 1. Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 185 for details about the use of
Z-pointer during Self-Programming.

195
2548F–AVR–03/2013

ATmega406

28. Memory Programming

28.1 Program And Data Memory Lock Bits
The ATmega406 provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 28-2. The Lock bits can only be
erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 28-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 28-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB
Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Fuse bits are locked in
both Serial and Parallel Programming mode.(1)

3 0 0

Further programming and verification of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode. The Boot Lock
bits and Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

BLB0
Mode BLB02 BLB01

1 1 1 No restrictions for SPM or LPM accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read from
the Application section. If Interrupt Vectors are placed in the Boot
Loader section, interrupts are disabled while executing from the
Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in the
Boot Loader section, interrupts are disabled while executing from
the Application section.

196
2548F–AVR–03/2013

ATmega406

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

28.2 Fuse Bits
The ATmega406 has two Fuse bytes. Table 28-3 - Table 28-4 describe briefly the functionality of
all the fuses and how they are mapped into the Fuse bytes. Note that the fuses are read as logi-
cal zero, “0”, if they are programmed.

28.2.1 High Byte

Notes: 1. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits
and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

BLB1
Mode BLB12 BLB11

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read from
the Boot Loader section. If Interrupt Vectors are placed in the
Application section, interrupts are disabled while executing from the
Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in the
Application section, interrupts are disabled while executing from the
Boot Loader section.

Table 28-2. Lock Bit Protection Modes(1)(2) (Continued)

Memory Lock Bits Protection Type

Table 28-3. Fuse High Byte

Fuse High Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

OCDEN(1) 1 Enable OCD
1 (unprogrammed, OCD
disabled)

JTAGEN 0 Enable JTAG 0 (programmed, JTAG enabled)

197
2548F–AVR–03/2013

ATmega406

28.2.2 Low Byte

Notes: 1. The default value of SUT1:0 results in maximum start-up time for the default clock source. See
Table 7-2 on page 28 for details.

2. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 27-7 on page 193
for details.

3. See ”WDTCSR – Watchdog Timer Control Register” on page 47 for details.
4. When unpgrogrammed, Internal RC Oscillator is used. Programming this fuse is for test pur-

pose only, and should not be used in application.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

28.2.3 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

Table 28-4. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

WDTON(3) 7 Watchdog Timer always on 1 (unprogrammed)

EESAVE 6
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM
not preserved)

BOOTSZ1 5
Select Boot Size (see Table 27-7 on
page 193 for details)

0 (programmed)(2)

BOOTSZ0 4
Select Boot Size (see Table 27-7 on
page 193 for details)

0 (programmed)(2)

BOOTRST 3 Select Reset Vector 1 (unprogrammed)

SUT1 2 Select start-up time 1 (unprogrammed)(1)

SUT0 1 Select start-up time 0 (programmed)(1)

CKSEL 0 Clock Selection 1 (unprogrammed)(4)

198
2548F–AVR–03/2013

ATmega406

28.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

For the ATmega406 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x95 (indicates 40KB Flash memory).

3. 0x002: 0x07(indicates ATmega406 device when 0x001 is 0x95).

28.4 Calibration Bytes
The ATmega406 has calibration bytes for the Fast RC Oscillator, Slow RC Oscillator, internal
voltage reference, internal temperature reference and each differential cell voltage input. These
bytes reside in the high bytes in the signature address space. During Reset, the calibration byte
for the Fast RC Oscillator is automatically written into the corresponding calibration register. The
other calibration bytes should be handled by the application software. See ”Reading the Signa-
ture Row from Software” on page 189 for details.

28.5 Page Size

Table 28-5. No. of Words in a Page and No. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

20K words (40K bytes) 64 words PC[5:0] 320 PC[14:6] 14

Table 28-6. No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

199
2548F–AVR–03/2013

ATmega406

28.6 Parallel Programming
This section describes parameters, pin mapping, and commands used to parallel program and
verify Flash Program memory, EEPROM Data memory, Memory Lock bits, and Fuse bits in the
ATmega406. Pulses are assumed to be at least 250 ns unless otherwise noted.

28.6.1 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

Address high byte needs only be loaded before programming or reading a new 256 word win-
dow in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes reading.

28.6.2 Signal Names

In this section, some pins of the ATmega406 are referenced by signal names describing their
functionality during parallel programming, see Figure 28-1 on page 199 and Table 28-7 on page
200. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 28-9 on page 200.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 28-10 on page 201. Table 28-11 on page 210 shows the Parallel
programming characteristics.

Figure 28-1. Parallel Programming

VFET

+4 - 25V

GND

XTAL1 DATA

RESETVPP

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

WR

BS2

VREG

VCC (3.3V)

PV1

BATT

PVT See "Enter Programming Mode"

200
2548F–AVR–03/2013

ATmega406

Table 28-7. Pin Name Mapping

Signal Name in
Programming Mode

Pin
Name I/O Function

BS2 PA0 I
Byte Select 2 (“0” selects low byte, “1” selects 2’nd high
byte).

RDY/BSY PA1 O
0: Device is busy programming, 1: Device is ready for new
command.

OE PA2 I Output Enable (Active low).

WR PA3 I Write Pulse (Active low).

BS1 PA4 I Byte Select 1 (“0” selects low byte, “1” selects high byte).

XA0 PA5 I XTAL Action Bit 0

XA1 PA6 I XTAL Action Bit 1

PAGEL PA7 I Program Memory and EEPROM data Page Load.

DATA PB7:0 I/O Bi-directional Data bus (Output when OE is low).

Table 28-8. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 28-9. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0
Load Flash or EEPROM Address (High or low address byte determined by
BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

201
2548F–AVR–03/2013

ATmega406

28.6.3 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:

1. Make sure the chip is started as explained in Section 9.2.1 ”Power-on Reset and Charger
Connect” on page 40.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 28-8 on page 200 to “0000” and wait at least 100
ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V
has been applied to RESET, will cause the device to fail entering programming mode.

5. Wait at least 50 µs before sending a new command.

28.6.4 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

Table 28-10. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

202
2548F–AVR–03/2013

ATmega406

28.6.5 Programming the Flash

The Flash is organized in pages, see Table 28-5 on page 198. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 28-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 28-2 on page 203. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

203
2548F–AVR–03/2013

ATmega406

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (See Figure 28-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

Figure 28-2. Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 28-5 on page 198.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

204
2548F–AVR–03/2013

ATmega406

Figure 28-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

28.6.6 Programming the EEPROM

The EEPROM is organized in pages, see Table 28-6 on page 198. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to ”Programming the Flash” on page 202 for details on Command, Address and
Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 28-4 for
signal waveforms).

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

205
2548F–AVR–03/2013

ATmega406

Figure 28-4. Programming the EEPROM Waveforms

28.6.7 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to ”Programming the Flash” on
page 202 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

28.6.8 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”
on page 202 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

206
2548F–AVR–03/2013

ATmega406

28.6.9 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”
on page 202 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

28.6.10 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the
Flash” on page 202 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Figure 28-5. Programming the FUSES Waveforms

28.6.11 Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to ”Programming the Flash” on
page 202 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

BS2

207
2548F–AVR–03/2013

ATmega406

28.6.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to ”Programming the Flash”
on page 202 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

5. Set OE to “1”.

Figure 28-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

28.6.13 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to ”Programming the Flash” on
page 202 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

28.6.14 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to ”Programming the Flash” on
page 202 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

0

208
2548F–AVR–03/2013

ATmega406

28.6.15 Parallel Programming Characteristics

Figure 28-7. Parallel Programming Timing, Including some General Timing Requirements

Figure 28-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 28-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

209
2548F–AVR–03/2013

ATmega406

Figure 28-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 28-7 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

210
2548F–AVR–03/2013

ATmega406

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

Table 28-11. Parallel Programming Characteristics

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage (RESET input) 11.5 12.5 V

IPP Programming Enable Current 250 A

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 s

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

211
2548F–AVR–03/2013

ATmega406

28.7 Programming via the JTAG Interface
Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

28.7.1 Programming Specific JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which data register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 28-10.

212
2548F–AVR–03/2013

ATmega406

Figure 28-10. State Machine Sequence for Changing the Instruction Word

28.7.2 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as data register. Note that the reset will be active as long as there
is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

28.7.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as data register. The active states are the
following:

• Shift-DR: The programming enable signature is shifted into the data register.

• Update-DR: The programming enable signature is compared to the correct value, and
Programming mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

213
2548F–AVR–03/2013

ATmega406

28.7.4 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as data register. The active states
are the following:

• Capture-DR: The result of the previous command is loaded into the data register.

• Shift-DR: The data register is shifted by the TCK input, shifting out the result of the previous
command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not always
required, see Table 28-12 below).

28.7.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the data register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A
write sequence is initiated that within 11 TCK cycles loads the content of the temporary register
into the Flash page buffer. The AVR automatically alternates between writing the low and the
high byte for each new Update-DR state, starting with the low byte for the first Update-DR
encountered after entering the PROG_PAGELOAD command. The Program Counter is pre-
incremented before writing the low byte, except for the first written byte. This ensures that the
first data is written to the address set up by PROG_COMMANDS, and loading the last location
in the page buffer does not make the program counter increment into the next page.

28.7.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the data register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte
Register. The AVR automatically alternates between reading the low and the high byte for each
new Capture-DR state, starting with the low byte for the first Capture-DR encountered after
entering the PROG_PAGEREAD command. The Program Counter is post-incremented after
reading each high byte, including the first read byte. This ensures that the first data is captured
from the first address set up by PROG_COMMANDS, and reading the last location in the page
makes the program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

28.7.7 Data Registers

The data registers are selected by the JTAG instruction registers described in section ”Program-
ming Specific JTAG Instructions” on page 211. The data registers relevant for programming
operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

214
2548F–AVR–03/2013

ATmega406

28.7.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to ”Clock
Sources” on page 26) after releasing the Reset Register. The output from this data register is not
latched, so the reset will take place immediately, as shown in Figure 9-1 on page 40.

28.7.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 28-11. Programming Enable Register

28.7.10 Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 28-12. The state sequence when shifting
in the programming commands is illustrated in Figure 28-13.

TDI

TDO

D
A
T
A

= D Q

ClockDR & PROG_ENABLE

Programming Enable
0xA370

215
2548F–AVR–03/2013

ATmega406

Figure 28-12. Programming Command Register
TDI

TDO

S
T
R
O
B
E
S

A
D
D
R
E
S
S
/
D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

Table 28-12. JTAG Programming Instruction
Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

216
2548F–AVR–03/2013

ATmega406

3d. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data High Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse High Byte

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse Low Byte

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(8) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

Table 28-12. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x

Instruction TDI Sequence TDO Sequence Notes

217
2548F–AVR–03/2013

ATmega406

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses High byte is listed in Table 28-3 on page 196
7. The bit mapping for Fuses Low byte is listed in Table 28-4 on page 197
8. The bit mapping for Lock bits byte is listed in Table 28-1 on page 195
9. Address bits exceeding PCMSB and EEAMSB (Table 28-5 and Table 28-6) are don’t care
10. All TDI and TDO sequences are represented by binary digits (0b...).

7c. Write Lock Bits

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Fuse High Byte(6) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse Low Byte(7) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Lock Bits(8) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(5)

8e. Read Fuses and Lock Bits

0111010_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

(5)

Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

Table 28-12. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x

Instruction TDI Sequence TDO Sequence Notes

218
2548F–AVR–03/2013

ATmega406

Figure 28-13. State Machine Sequence for Changing/Reading the Data Word

28.7.11 Flash Data Byte Register

The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the
temporary register and initiates a write sequence that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates between
writing the low and the high byte for each new Update-DR state, starting with the low byte for the
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading
the last location in the page buffer does not make the Program Counter increment into the next
page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte
Register during the Capture-DR state. The AVR automatically alternates between reading the
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

219
2548F–AVR–03/2013

ATmega406

ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 28-14. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

28.7.12 Programming Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 28-12.

28.7.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

28.7.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine

220
2548F–AVR–03/2013

ATmega406

28.7.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer
to Table 28-11 on page 210).

28.7.16 Programming the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 28-11 on page 210).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to
Table 28-5 on page 198) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, starting
with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Reg-
ister into the Flash page location and to auto-increment the Program Counter before
each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 28-11 on page 210).

9. Repeat steps 3 to 8 until all data have been programmed.

28.7.17 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 28-5 on page 198) is used to address within one page and must be written as 0.

221
2548F–AVR–03/2013

ATmega406

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash),
starting with the LSB of the first instruction in the page (Flash) and ending with the MSB
of the last instruction in the page (Flash). The Capture-DR state both captures the data
from the Flash, and also auto-increments the program counter after each word is read.
Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is
shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

28.7.18 Programming the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 28-11 on page 210).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

28.7.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

28.7.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will program
the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 28-11 on page 210).

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 28-11 on page 210).

222
2548F–AVR–03/2013

ATmega406

28.7.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 28-11 on page 210).

28.7.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

28.7.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

28.7.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.

223
2548F–AVR–03/2013

ATmega406

29. Operating Circuit

Figure 29-1. Operating Circuit Diagram

RP

RN

RP

RP

RP

RP

Rsense

Rpi

Rni

Ci

Rpc

Rpf

RcfRdf

Rled

Rled

Rled

Rled

Rled

ATmega406

+

NV

PPI

PI

NI

PA4

PA3

PA2

XTAL2

RESET

XTAL1

VREG

SCK

PB4

PB3

PB0

PB1

PB2

SDA

GND

-

CREG 1 CREG 2

V CC

100

100

SMB Clock

SMB Data

 RP1 RP2

SGNDVREF VREFGND

RT4

RT3

RT2

PA1

Rnni
NNI

Ci

Ci

Rppi

CP

CP

CP

CP

PV1

PV2

PV3

PV4

PVT

OD OC
BATT

VFETOPC

RT1

PA0/ADC0

R1

CXTAL2

CXTAL 2

CRESET

CREF

224
2548F–AVR–03/2013

ATmega406

Table 29-1. Recommended values for external devices

Note: 1. The sense resistor should be adjusted to the current flow for the application.

2. The pre-charger resistor should be adjusted to the pre-charger curret flow for the application.

Symbol Use Parameter Min Typ Max unit

R1 Pull-up resistor for thermistors R 10 k

RT1
RT2

RT3
RT4

NTC Thermistor

R@25C 10 k

B-constant 3000 4000 K

RS
Source Impedance when
using PA0...4 as V-ADC inputs

R 0 3 7 k

Worst Gain-error due to RS 0 1 2 %

Rnni
Rppi

Current protection LP-filter
resistor

R 1 k

Rni

Rpi

Current sense LP-filter
resistors

R 10 100 500

Ci
Current sense LP-filter
capasitor

C 0.01 0.1 0.4 µF

(Rpi-Rni)*Ci
Current sense LP-filter time
constant

 10 20 µs

Rsense
(1) Current sense resistor R 5 m

RP Cell input LP-filter resistor R 10 500 1000

CP Cell input LP-filter capacitor C 0.01 0.1 0.5 µF

RP*CP
Cell input LP-filter time
constant

 6.5 25 100 µs

RN Pull-up resistor R 0 10 TBD

Rdf
Rcf
Rpf

Pull-up resistors R 1 M

Rpc
(2) Pre-charge resistor R 1 k

CREF VREF decoupling C 1 1 22 µF

CREG1

CREG2
VREG charge-storage C

0.1
µF

1

RP1
RP2

TWI Pull-up resistors C 2.2 M

CRESET C 0.1 µF

225
2548F–AVR–03/2013

ATmega406

30. Electrical Characteristics

30.1 Absolute Maximum Ratings*

30.2 DC Characteristics

Operating Temperature......................................-30C to +85C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on PA0 - PA7, PB0 - PB7, PD0 - PD1,
VCC, PI, PPI, NI, NNI, XTAL1, and XTAL2
with respect to Ground -0.5V to VREG +0.5V

Voltage on SCL, SDA, NV, PV1 and RESET
with respect to Ground-0.5V to + 6.0V

Voltage on PVT and VFET
with respect to Ground-0.5V to + 35V

Voltage on PC0, OPC, OC and BATT
with respect to Ground-0.5V to VFET + 0.5V

Voltage on OD, PV2 - PV4
with respect to Ground-0.5V to PVT + 0.5V

Maximum Operating Voltage ... 25V

DC Characteristics, TA = -30C to 85C, VCC = 3.3V

Parameter Condition Min Typ Max Unit

Supply Current Power Supply Current

Active 1.2 mA

Idle 270 A

ADC Noise Reduction 220 A

Power-save 35 A

Power-down 20 A

Power-off 1.5 A

Voltage
Regulator(1)

Regulated Output Voltage(2) IOUT = 5 mA 3.25 3.3 3.35 V

Temperature Stability(2)

IOUT = 5 mA
TA = 0 - 60 C ± 5 ± 15 mV

IOUT = 5 mA
TA = -30 – 85 C

± 20 ± 70 mV

Load Regulation 0.1 mA < IOUT < 5 mA ± 20 ± 60 mV

Line Regulation 4V < VFET < 25V, IOUT = 1 mA ± 2 ± 10 mV

VREF

Reference voltage 1.1 V

Ref. Voltage Accuracy
After calibration, at calibration
temperature

±0.1 ± 0.2 %

Temperature Drift(3) TA = -30 – 60 C 80 ppm/C

226
2548F–AVR–03/2013

ATmega406

V-ADC

Reference Voltage 1.100 V

Conversion Time 519 s

Effective Resolution 12 Bits

1 LSB Un-scaled Inputs 269 V

1 LSB Scaled Inputs (x 0.2) 1.34 mV

INL ± 1 ± 3 LSB

Input Voltage Range

ADC0, ADC1, ADC2, ADC3,
VTEMP

0 1 V

ADC4 0 5 V

CELL1 2 5 V

CELL2, PV1 2V 0 5 V

CELL3, PV1 2V 0 5 V

CELL4, PV1 2V 0 5 V

Offset 1.6 mV

Gain Error Cell Inputs(5) ± 1 ± 0.5 %

CC-ADC

Reference Voltage ± 220 mV

Conversion Time and
Resolution

53.7 V Resolution 3.9 ms

1.68 V Resolution 125 1000 ms

INL 1000 ms conversion time ± 4 LSB

CC-ADC Offset(6) Uncompensated ± 50 ± 200 V

CC-ADC Offset Drift(4) TA = 0 - 60C ± 1 ± 15 V

CC-ADC Gain Error ± 1

Temperature
Sensor

VPTAT, Voltage Proportional to
Absolute Temperature

0.6 mV/K

Absolute Accuracy(3) ± 4 K

FET Driver

|VGS_ON| 11 15 V

OC/OD Rise time (10 - 90%)

(Switching OFF)
CL = 10 nF 10 50 µs

OC/OD Fall time
(VGS = 0 - VGS = -5V)
(Switching ON)

CL = 10 nF 100 µs

OPC Rise time (10 - 90%)

(Switching OFF)
CL = 1 nF 100 500 µs

OPC Fall time
(VGS = 0 - VGS = -5V)
(Switching ON)

CL = 1 nF 100 500 µs

DC Characteristics, TA = -30C to 85C, VCC = 3.3V (Continued)

Parameter Condition Min Typ Max Unit

227
2548F–AVR–03/2013

ATmega406

Notes: 1. Voltage Regulator performance is based on 1 µF smooth capacitor.
2. After VREF calibration at second temperature. By default the first calibration is performed at 85 C in Atmel factory test. The

second calibration step can easily be implemented in a standard test flow at room temperature.
3. This value is not tested in production.
4. After system offset compensation in software.
5. After software gain error compensation.
6. This value should be measured at system level and stored in EEPROM for software offset compensation.

Slow RC
Oscillator

Frequency TA = - 30 – 85C 165 kHz

Temperature Drift 5 %

Ultra Low Power
RC Oscillator

Frequency TA = - 30 – 85C 124 kHz

Temperature Drift 8 %

DC Characteristics, TA = -30C to 85C, VCC = 3.3V (Continued)

Parameter Condition Min Typ Max Unit

228
2548F–AVR–03/2013

ATmega406

30.3 General I/O Lines characteristics

30.3.1 Low voltage ports

Notes: 1. Applicable for all except PC0.
2. “Max” means the highest value where the pin is guaranteed to be read as low.
3. “Min” means the lowest value where the pin is guaranteed to be read as high.
4. Although each I/O port can sink more than the test conditions (5 mA at VCC = 3.3V) under steady state conditions (non-tran-

sient, the following must be observed:
- The sum of all IOL should not exceed 20 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

5. Although each I/O port can source more than the test conditions (2 mA at VCC = 3.3V) under steady state conditions (non-
transient, the following must be observed:
- The sum of all IOH should not exceed 2 mA.

30.3.2 High voltage ports

Notes: 1. Parameter characterized and not tested.
2. Cb = capacitance of one bus line in pF

Figure 30-1. TA = -30C to 85C, VCC = 3.3V (unless otherwise noted) (1)

Symbol Parameter Condition Min. Typ. Max. Units

VIL Input Low Voltage VCC = 3.3V -0.5 0.3VCC
(2) V

VIH Input High Voltage VCC = 3.3V 0.6VCC
(3) VCC + 0.5 V

VOL Output Low Voltage(4) IOL = 5mA, VCC = 3.3V 0.5 V

VOH Output High Voltage(5) IOH = 2 mA, VCC = 3.3V 2.3 V

IIL
Input Leakage
Current I/O Pin

VCC = 3.3V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 3.3V, pin high
(absolute value)

1 µA

Figure 30-2. TA = -30C to 85C, VCC = 3.3V (unless otherwise noted)

Symbol Parameter Condition Min. Typ. Max. Units

VOL
(1) Output Low Voltage VCC = 3.3V 0.5 V

tr
(1) Rise Time VCC = 3.3V 300 ns

tof
(1) Output Fall Time from

VIHmin to VILmax
Cb < 400 pF(2) 200 ns

229
2548F–AVR–03/2013

ATmega406

30.4 2-wire Serial Interface Characteristics
Table 30-1 describes the requirements for devices connected to the Two-wire Serial Bus. The ATmega406 Two-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 30-3.

Notes: 1. In ATmega406, this parameter is characterized and not tested.
2. Cb = capacitance of one bus line in pF.
3. fCK = CPU clock frequency
4. This requirement applies to all ATmega406 Two-wire Serial Interface operation. Other devices connected to the Two-wire

Serial Bus need only obey the general fSCL requirement.

Table 30-1. Two-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.8 V

VIH Input High-voltage 2.1 5.5 V

VOL
(1) Output Low-voltage 350 µA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax Cb < 400 pF(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50 ns

Ii Input Current each I/O Pin 0.1VBUS < Vi < 0.9VBUS -5 5 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(3) > max(16fSCL, 450 kHz)(4) 0 100 kHz

Rp Value of Pull-up resistor
fSCL 100 kHz

tHD;STA Hold Time (repeated) START Condition fSCL 100 kHz 4.0 – µs

tLOW Low Period of the SCL Clock fSCL 100 kHz 4.7 – µs

tHIGH High period of the SCL clock fSCL 100 kHz 4.0 – µs

tSU;STA Set-up time for a repeated START condition fSCL 100 kHz 4.7 – µs

tHD;DAT Data hold time fSCL 100 kHz 0.3 3.45 µs

tSU;DAT Data setup time fSCL 100 kHz 250 – ns

tSU;STO Setup time for STOP condition fSCL 100 kHz 4.0 – µs

tBUF
Bus free time between a STOP and START
condition

fSCL 100 kHz 4.7 – µs

VBUS 0,4V–

350µA

VBUS 0,4V–

100µA

230
2548F–AVR–03/2013

ATmega406

Figure 30-3. Two-wire Serial Bus Timing

30.5 Reset Characteristics

Notes: 1. Power-on Reset is issued when a charger is connected and the regulator has stable work conditions.
2. Values based on characterization.

Note: Internal Voltage Regulator must be on.

Note: Internal Voltage Regulator must be on.

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 30-2. Characteristics for Powering-up the LDO(1)

Symbol(2) Parameter Min Typ Max Units

Charger Present

VROT Regulator Power-on Threshold 3.0 4.0 V

VCHT Charge Voltage Threshold 1.0 V

No Charger Present

VROT Regulator Power-on Threshold 3.0 4.0 V

VPVIT Voltage Threshold on Battery Cell 1 2.0 V

Table 30-3. Power-on Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VCOT Charger-on Thresholt Voltage Regulator must operate 6 7 8 V

Table 30-4. External Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VRST RESET Pin Threshold Voltage VREG = 3.3V 0.66 2.8 V

tRST Minimum pulse width on RESET Pin 900 ns

231
2548F–AVR–03/2013

ATmega406

30.6 Supply Current of I/O Modules
Table 30-5 on page 231 is showing the additional current consumption compared to ICC Active
and ICC Idle for every I/O module controlled by the Power Reduction Register, see ”PRR0 –
Power Reduction Register 0” on page 36 for details. The tables and formulas below can be used
to calculate the additional current consumption for the different I/O modules in Active and Idle
mode.

30.6.0.1 Example 1

Calculate the expected current consumption in idle mode with TIMER1, V-ADC and Battery Pro-
tection enabled at VCC = 3.3V and F = 1MHz. From Table 30-5, fourth column, we see that we
need to add 1.7% for the TIMER1, 1.9% for the V-ADC, and 25.2% for the TWI module. Reading
from ”DC Characteristics” on page 225, we find that the idle current consumption is typically 1.2
mA at VCC = 3.3V and F = 1MHz. The total current consumption in idle mode with USART0,
TIMER1, and SPI enabled, gives:

Table 30-5. Additional Current Consumption for the different I/O modules

PRR0 bit

Additional Current
Consumption at

VCC = 3.3V, F = 1 MHZ
[µA]

Additional Current
Consumption compared

to Active mode [%]

Additional Current
Consumption compared

to Idle mode [%]

PRTWI 68.0 5.6 25.2

PRTIM1 4.5 0.4 1.7

PRTIM0 6.0 0.5 2.2

PRVADC 5.0 4.2 1.9

ICCtotal 1.2mA 1 0.017 0.019 0.252+ + + 1.55mA

232
2548F–AVR–03/2013

ATmega406

31. Typical Characteristics – Preliminary
The following charts are tested on a few microcontrollers only. These figures are not tested dur-
ing manufacturing, and are added for illustration purpose.

31.1 Pin Pull-up

Figure 31-1. I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 3.3V)

Figure 31-2. Reset Pull-Up Resistor Current vs. Input Voltage (VCC = 3.3V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

VCC = 3.3V

85 ˚C

25 ˚C

-30 ˚C
0

10

20

30

40

50

60

70

80

90

0 0,5 1 1,5 2 2,5 3 3,5

V I (V)

I O
P (

u
A

)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 3.3V

85 ˚C

25 ˚C

-30 ˚C

0

10

20

30

40

50

60

70

80

0 0,5 1 1,5 2 2,5 3 3,5

VRESET (V)

I R
E

S
E

T (
u
A

)

233
2548F–AVR–03/2013

ATmega406

31.2 Pin Driver Strength

Figure 31-3. I/O Pin Putput Voltage vs. Sink Current (VCC = 3.3V)

Figure 31-4. I/O Pin output Voltage vs. Source Current (VCC = 3.3V)

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 3.3V

85 ˚C

25 ˚C

-30 ˚C

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20 25

IOL (mA)

V O
L (

V
)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 3.3V

85 ˚C
25 ˚C

-30 ˚C

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

0 5 10 15 20 25

IOH (mA)

V O
H
(V

)

234
2548F–AVR–03/2013

ATmega406

31.3 Internal Oscillator Speed

Figure 31-5. Watchdog Oscillator Frequency vs. Temperature (VCC = 3.3V)

Figure 31-6. Calibrated 1 MHz RC Oscillator Frequency vs. Temperature (VCC = 3.3V)

WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE
VCC = 3.3 V

117

118

119

120

121

122

123

124

125

126

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature

F R
C

(k
H

z)

CALIBRATED 1 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE
VCC = 3.3 V

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature

F R
C

(M
H

z)

235
2548F–AVR–03/2013

ATmega406

Figure 31-7. Calibrated 1 MHz RC Oscillator Frequency vs. OSCCAL Value (VCC = 3.3V)

Figure 31-8. Slow RC Oscillator Frequency vs. Temperature (VCC = 3.3V)

CALIBRATED 1 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

85 ˚C

25 ˚C

-30 ˚C

0

0.5

1

1.5

2

2.5

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F R
C
(M

H
z)

SLOW RC OSCILLATOR FREQUENCY vs. TEMPERATURE

VCC = 3.3 V

153

153.5

154

154.5

155

155.5

156

156.5

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature

F R
C

(k
H

z)

236
2548F–AVR–03/2013

ATmega406

32. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) BPPLR – – – – – – BPPLE BPPL 128

(0xF7) BPCR – – – – DUVD SCD DCD CCD 128

(0xF6) CBPTR SCPT[3:0] OCPT[3:0] 129

(0xF5) BPOCD DCDL[3:0] CCDL[3:0] 130

(0xF4) BPSCD – – – – SCDL[3:0] 130

(0xF3) BPDUV – – DUVT1 DUVT0 DUDL[3:0] 131

(0xF2) BPIR DUVIF COCIF DOCIF SCIF DUVIE COCIE DOCIE SCIE 132

(0xF1) CBCR – – – – CBE4 CBE3 CBE2 CBE1 137

(0xF0) FCSR – – PWMOC PWMOPC CPS DFE CFE PFD 134

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) CADICH CADIC[15:8] 111

(0xE8) CADICL CADIC[7:0] 111

(0xE7) CADRDC CADRDC[7:0] 112

(0xE6) CADRCC CADRCC[7:0] 112

(0xE5) CADCSRB – CADACIE CADRCIE CADICIE – CADACIF CADRCIF CADICIF 110

(0xE4) CADCSRA CADEN – CADUB CADAS1 CADAS0 CADSI1 CADSI0 CADSE 109

(0xE3) CADAC3 CADAC[31:24] 111

(0xE2) CADAC2 CADAC[23:16] 111

(0xE1) CADAC1 CADAC[15:8] 111

(0xE0) CADAC0 CADAC[7:0] 111

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) BGCRR BGCR7 BGCR6 BGCR5 BGCR4 BGCR3 BGCR2 BGCR1 BGCR0 123

(0xD0) BGCCR BGEN – BGCC5 BGCC4 BGCC3 BGCC2 BGCC1 BGCC0 123

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) Reserved – – – – – – – –

(0xC5) Reserved – – – – – – – –

(0xC4) Reserved – – – – – – – –

(0xC3) Reserved – – – – – – – –

(0xC2) Reserved – – – – – – – –

(0xC1) Reserved – – – – – – – –

(0xC0) CCSR – – – – – – XOE ACS 29

237
2548F–AVR–03/2013

ATmega406

(0xBF) Reserved – – – – – – – –

(0xBE) TWBCSR TWBCIF TWBCIE – – – TWBDT1 TWBDT0 TWBCIP 169

(0xBD) TWAMR TWAM[6:0] – 150

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 147

(0xBB) TWDR 2–wire Serial Interface Data Register 149

(0xBA) TWAR TWA[6:0] TWGCE 149

(0xB9) TWSR TWS[7:3] – TWPS1 TWPS0 148

(0xB8) TWBR 2–wire Serial Interface Bit Rate Register 147

(0xB7) Reserved – – – – – – –

(0xB6) Reserved – – – – – – – –

(0xB5) Reserved – – – – – – – –

(0xB4) Reserved – – – – – – – –

(0xB3) Reserved – – – – – – – –

(0xB2) Reserved – – – – – – – –

(0xB1) Reserved – – – – – – – –

(0xB0) Reserved – – – – – – – –

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) Reserved – – – – – – – –

 (0x8A) Reserved – – – – – – – –

(0x89) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 101

(0x88) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 101

(0x87) Reserved – – – – – – – –

(0x86) Reserved – – – – – – – –

(0x85) TCNT1H Timer/Counter1 – Counter Register High Byte 101

(0x84) TCNT1L Timer/Counter1 – Counter Register Low Byte 101

(0x83) Reserved – – – – – – – –

(0x82) Reserved – – – – – – – –

(0x81) TCCR1B – – – – CTC1 CS12 CS11 CS10 100

(0x80) Reserved – – – – – – – –

(0x7F) Reserved – – – – – – – –

(0x7E) DIDR0 – – – – VADC3D VADC2D VADC1D VADC0D 120

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

238
2548F–AVR–03/2013

ATmega406

(0x7D) Reserved – – – – – – – –

(0x7C) VADMUX – – – – VADMUX3 VADMUX2 VADMUX1 VADMUX0 118

(0x7B) Reserved – – – – – – – –

(0x7A) VADCSR – – – – VADEN VADSC VADCCIF VADCCIE 118

(0x79) VADCH – – – – VADC Data Register High byte 119

(0x78) VADCL VADC Data Register Low byte 119

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) Reserved – – – – – – – –

(0x6F) TIMSK1 – – – – – – OCIE1A TOIE1 102

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 93

(0x6D) Reserved – – – – – – – –

(0x6C) PCMSK1 PCINT[15:8] 59

(0x6B) PCMSK0 PCINT[7:0] 59

(0x6A) Reserved – – – – – – – –

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 56

(0x68) PCICR – – – – – – PCIE1 PCIE0 58

(0x67) Reserved – – – – – – – –

(0x66) FOSCCAL Fast Oscillator Calibration Register 29

(0x65) Reserved – – – – – – – –

(0x64) PRR0 – – – – PRTWI PRTIM1 PRTIM0 PRVADC 36

(0x63) Reserved – – – – – – – –

(0x62) WUTCSR WUTIF WUTIE WUTCF WUTR WUTE WUTP2 WUTP1 WUTP0 49

(0x61) Reserved – – – – – – – –

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 47

0x3F (0x5F) SREG I T H S V N Z C 10

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 12

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 183

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE 55/73/176

0x34 (0x54) MCUSR – – – JTRF WDRF BODRF EXTRF PORF 46

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 31

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) OCDR On-Chip Debug Register 176

0x30 (0x50) Reserved – – – – – – – –

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) Reserved – – – – – – – –

0x2D (0x4D) Reserved – – – – – – – –

0x2C (0x4C) Reserved – – – – – – – –

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 24

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 24

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B 92

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 92

0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 92

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00 91

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 88

0x23 (0x43) GTCCR TSM – – – – – – PSRSYNC 105

0x22 (0x42) EEARH – – – – – – – High Byte 19

0x21 (0x41) EEARL EEPROM Address Register Low Byte 19

0x20 (0x40) EEDR EEPROM Data Register 19

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 19

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 24

0x1D (0x3D) EIMSK – – – – INT3 INT2 INT1 INT0 57

0x1C (0x3C) EIFR – – – – INTF3 INTF2 INTF1 INTF0 57

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

239
2548F–AVR–03/2013

ATmega406

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O reg-
isters as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega406 is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and
OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions
can be used.

0x1B (0x3B) PCIFR – – – – – – PCIF1 PCIF0

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) Reserved – – – – – – – –

0x16 (0x36) TIFR1 – – – – – – OCF1A TOV1 102

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0 94

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) Reserved – – – – – – – –

0x0D (0x2D) Reserved – – – – – – – –

0x0C (0x2C) Reserved – – – – – – – –

0x0B (0x2B) PORTD – – – – – – PORTD1 PORTD0 74

0x0A (0x2A) DDRD – – – – – – DDD1 DDD0 74

0x09 (0x29) PIND – – – – – – PIND1 PIND0 74

0x08 (0x28) PORTC – – – – – – – PORTC0 76

0x07 (0x27) Reserved – – – – – – – –

0x06 (0x26) Reserved – – – – – – – –

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 74

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 74

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 74

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTB3 PORTA2 PORTA1 PORTA0 73

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 73

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 73

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

240
2548F–AVR–03/2013

ATmega406

33. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd Rd Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd Rd K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1

COM Rd One’s Complement Rd 0xFF Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd 0x00 Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z,N,V 1

INC Rd Increment Rd Rd + 1 Z,N,V 1

DEC Rd Decrement Rd Rd 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd Rd Rd Z,N,V 1

CLR Rd Clear Register Rd Rd Rd Z,N,V 1

SER Rd Set Register Rd 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC Z None 2

JMP k Direct Jump PC k None 3

RCALL k Relative Subroutine Call PC PC + k + 1 None 3

ICALL Indirect Call to (Z) PC Z None 3

CALL k Direct Subroutine Call PC k None 4

RET Subroutine Return PC STACK None 4

RETI Interrupt Return PC STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd Rr C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2

241
2548F–AVR–03/2013

ATmega406

BRIE k Branch if Interrupt Enabled if (I = 1) then PC PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2

LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1

BSET s Flag Set SREG(s) 1 SREG(s) 1

BCLR s Flag Clear SREG(s) 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) T None 1

SEC Set Carry C 1 C 1

CLC Clear Carry C 0 C 1

SEN Set Negative Flag N 1 N 1

CLN Clear Negative Flag N 0 N 1

SEZ Set Zero Flag Z 1 Z 1

CLZ Clear Zero Flag Z 0 Z 1

SEI Global Interrupt Enable I 1 I 1

CLI Global Interrupt Disable I 0 I 1

SES Set Signed Test Flag S 1 S 1

CLS Clear Signed Test Flag S 0 S 1

SEV Set Twos Complement Overflow. V 1 V 1

CLV Clear Twos Complement Overflow V 0 V 1

SET Set T in SREG T 1 T 1

CLT Clear T in SREG T 0 T 1

SEH Set Half Carry Flag in SREG H 1 H 1

CLH Clear Half Carry Flag in SREG H 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd K None 1

LD Rd, X Load Indirect Rd (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2

LD Rd, Y Load Indirect Rd (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2

LD Rd, Z Load Indirect Rd (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd (k) None 2

ST X, Rr Store Indirect (X) Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2

ST Y, Rr Store Indirect (Y) Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2

ST Z, Rr Store Indirect (Z) Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2

STS k, Rr Store Direct to SRAM (k) Rr None 2

LPM Load Program Memory R0 (Z) None 3

LPM Rd, Z Load Program Memory Rd (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3

SPM Store Program Memory (Z) R1:R0 None -

IN Rd, P In Port Rd P None 1

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks

242
2548F–AVR–03/2013

ATmega406

OUT P, Rr Out Port P Rr None 1

PUSH Rr Push Register on Stack STACK Rr None 2

POP Rd Pop Register from Stack Rd STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

33. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks

243
2548F–AVR–03/2013

ATmega406

34. Ordering Information

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

Speed (MHz) Power Supply Ordering Code Package(1) Operation Range

1 4.0 - 25V ATmega406-1AAU(2) 48AA
Industrial

(-30C to 85C)

Package Type

48AA 48-lead, 7 x 7 x 1.44 mm body, 0.5 mm lead pitch, Low Profile Plastic Quad Flat Package (LQFP)

244
2548F–AVR–03/2013

ATmega406

35. Packaging Information

35.1 48AA

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

48AA, 48-lead, 7 x 7 mm Body Size, 1.4 mm Body Thickness,
0.5 mm Lead Pitch, Low Profile Plastic Quad Flat Package (LQFP)

D48AA

2010-10-19

PIN 1 IDENTIFIER

0°~7°

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes:
 1. This package conforms to JEDEC reference MS-026, Variation BBC.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable
 protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
 plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.08 mm maximum.

 A – – 1.60

 A1 0.05 – 0.15

 A2 1.35 1.40 1.45

 D 8.75 9.00 9.25

 D1 6.90 7.00 7.10 Note 2

 E 8.75 9.00 9.25

 E1 6.90 7.00 7.10 Note 2

 B 0.17 – 0.27

 C 0.09 – 0.20

 L 0.45 – 0.75

 e 0.50 TYP

245
2548F–AVR–03/2013

ATmega406

36. Errata

36.1 Rev. F
• Voltage-ADC Common Mode Offset

• Voltage Reference Spike

1. Voltage-ADC Common Mode Offset

The cell conversion will have an Offset-error depending on the Common Mode (CM) level.
This means that the error of a cell is depending on the voltage of the lower cells. The CM
Offset is calibrated away in Atmel production when the cells are balanced. When the cells
get un-balanced the CM depending offset will reappear:

a. Cell 1 defines its own CM level, and will never be affected by the CM dependent
offset.

b. The CM level for Cell 2 will change if Cell 1 voltage deviates from Cell 2 voltage.

c. The CM level for Cell 3 will change if Cell 1 and/or Cell 2 voltage deviates from the
voltage at Cell 3. The worst-case error is when Cell 1 and 2 are balanced while Cell 3
voltage deviates from the voltage at Cell 1 and 2.

d. The CM level for Cell 4 will change if Cell 1, Cell 2 and/or Cell 3 deviate from the volt-
age at Cell 4. The worst-case error is when Cell 1, Cell 2 and Cell 3 are balanced
while Cell 4 voltage deviates from the voltage at Cell 1, 2 and 3.

Figure 36-1 on page 246, shows the error of Cell2, Cell3 and Cell4 with 5% and 10% unbal-
anced cells.

246
2548F–AVR–03/2013

ATmega406

Figure 36-1. CM Offset with unbalanced cells.

Problem Fix/Workaround

Avoid getting unbalanced cells by using the internal cell balancing FETs.

2. Voltage Reference spike

The Voltage Reference, VREF, will spike each time the internal temperature sensor is
enabled. The temperature sensor is enabled when the VTEMP is selected in the VADMUX
register and the V-ADC is enabled by the VADEN bit.

The spike will be approximately 50mV and lasts for about 5ms, and it will affect any ongoing
current accumulation in the CC-ADC, as well as V-ADC conversions in the period of the
spike. Figure 36-2 on page 247 illustrates the Voltage Reference spike.

247
2548F–AVR–03/2013

ATmega406

Figure 36-2. Voltage Reference Spike

Problem workaround:

To get correct temperature measurement, the VADSC bit should not be written until the
spike has settled (external decoupling capacitor of 1F).

VREF

time

Voltage

t ~< 5ms

V~50mV
1.1 V

VADEN

VADMUX3:0 XXX VTEMP

248
2548F–AVR–03/2013

ATmega406

36.2 Rev. E
• Voltage ADC not functional below 0°C
• Voltage-ADC Common Mode Offset

• Voltage Reference Spike

1. Voltage-ADC Failing at Low Temperatures

Voltage ADC not functional below 0°C. The voltage ADC has a very large error below 0°C,
and can not be used

Problem Fix/Workaround

Do not use this revision below 0 celsius.

2. Voltage-ADC Common Mode Offset

The cell conversion will have an Offset-error depending on the Common Mode (CM) level.
This means that the error of a cell is depending on the voltage of the lower cells. The CM
Offset is calibrated away in Atmel production when the cells are balanced. When the cells
get un-balanced the CM depending offset will reappear:

a. Cell 1 defines its own CM level, and will never be affected by the CM dependent
offset.

b. The CM level for Cell 2 will change if Cell 1 voltage deviates from Cell 2 voltage.

c. The CM level for Cell 3 will change if Cell 1 and/or Cell 2 voltage deviates from the
voltage at Cell 3. The worst-case error is when Cell 1 and 2 are balanced while Cell 3
voltage deviates from the voltage at Cell 1 and 2.

d. The CM level for Cell 4 will change if Cell 1, Cell 2 and/or Cell 3 deviate from the volt-
age at Cell 4. The worst-case error is when Cell 1, Cell 2 and Cell 3 are balanced
while Cell 4 voltage deviates from the voltage at Cell 1, 2 and 3.

Figure 36-1 on page 246, shows the error of Cell2, Cell3 and Cell4 with 5% and 10% unbal-
anced cells.

249
2548F–AVR–03/2013

ATmega406

Figure 36-3. CM Offset with unbalanced cells.

Problem Fix/Workaround

Avoid getting unbalanced cells by using the internal cell balancing FETs.

3. Voltage Reference Spike

The Voltage Reference, VREF, will spike each time a temperature measurement is started
with the Voltage-ADC.

Problem Fix/Workaround

An accurate temperature measurement could be obtained by doing 10 temperature conver-
sions immediately after each other. The first 9 results would be inaccurate, but the 10th
conversion will be correct.

Figure 36-4 on page 250 illustrates the spike on the Voltage Reference when doing 10 tem-
perature conversions in a row (external decoupling capacitor of 1F).

250
2548F–AVR–03/2013

ATmega406

Figure 36-4. Voltage Reference Spike

If the CC-ADC is doing current accumulation while the V-ADC is doing temperature mea-
surement, both the Instantaneous and the Accumulated conversion results will be affected.
The spike on VREF will be visible on 1 Accumulated Current (CADAC3…0) and 2 Instanta-
neous Current (CADIC1…0) conversion results.

36.3 Rev. D
• Voltage ADC not functional below 0°C
• Voltage-ADC Common Mode Offset

• Voltage Reference Spike

• Voltage Regulator Start-up sequence

• VREF influenced by MCU state

• EEPROM read from application code does not work in Lock Bit Mode 3

1. Voltage-ADC Failing at Low Temperatures

Voltage ADC not functional below 0°C. The voltage ADC has a very large error below 0°C,
and can not be used

Problem Fix/Workaround

1. Voltage-ADC Common Mode Offset

The cell conversion will have an Offset-error depending on the Common Mode (CM) level.
This means that the error of a cell is depending on the voltage of the lower cells. The CM
Offset is calibrated away in Atmel production when the cells are balanced. When the cells
get un-balanced the CM depending offset will reappear:

VREF

time

Voltage

t ~< 5ms

V~50mV
1.1 V

VADSC (10 VTEMP conversion in a row)

VADMUX3:0 XXX VTEMP

251
2548F–AVR–03/2013

ATmega406

a. Cell 1 defines its own CM level, and will never be affected by the CM dependent
offset.

b. The CM level for Cell 2 will change if Cell 1 voltage deviates from Cell 2 voltage.

c. The CM level for Cell 3 will change if Cell 1 and/or Cell 2 voltage deviates from the
voltage at Cell 3. The worst-case error is when Cell 1 and 2 are balanced while Cell 3
voltage deviates from the voltage at Cell 1 and 2.

d. The CM level for Cell 4 will change if Cell 1, Cell 2 and/or Cell 3 deviate from the volt-
age at Cell 4. The worst-case error is when Cell 1, Cell 2 and Cell 3 are balanced
while Cell 4 voltage deviates from the voltage at Cell 1, 2 and 3.

Figure 36-1 on page 246, shows the error of Cell2, Cell3 and Cell4 with 5% and 10% unbal-
anced cells.

Figure 36-5. CM Offset with unbalanced cells.

Problem Fix/Workaround

Avoid getting unbalanced cells by using the internal cell balancing FETs.

252
2548F–AVR–03/2013

ATmega406

3. Voltage Reference Spike

The Voltage Reference, VREF, will spike each time a temperature measurement is started
with the Voltage-ADC.

Problem Fix/Workaround

An accurate temperature measurement could be obtained by doing 10 temperature conver-
sions immediately after each other. The first 9 results would be inaccurate, but the 10th
conversion will be correct.

Figure 36-6 illustrates the spike on the Voltage Reference when doing 10 temperature con-
versions in a row (external decoupling capacitor of 1F).

Figure 36-6. Voltage Reference Spike

If the CC-ADC is doing current accumulation while the V-ADC is doing temperature mea-
surement, both the Instantaneous and the Accumulated conversion results will be affected.
The spike on VREF will be visible on 1 Accumulated Current (CADAC3…0) and 2 Instanta-
neous Current (CADIC1…0) conversion results.

VREF

time

Voltage

t ~< 5ms

V~50mV
1.1 V

VADSC (10 VTEMP conversion in a row)

VADMUX3:0 XXX VTEMP

253
2548F–AVR–03/2013

ATmega406

4. Voltage Regulator Start-up sequence

When powering up ATmega406 some precautions are necessary to ensure proper start-up
of the Voltage Regulator.

Problem Fix/Workaround

The three steps below are needed to ensure proper start-up of the voltage regulator.

a. Do NOT connect a capacitor larger than 100 nF on the VFET pin. This is to ensure
fast rise time on the VFET pin when a supply voltage is connected.

b. During assembly, always connect Cell1 first, then Cell2 and so on until the top cell is
connected to PVT. If the cell voltages are about 2 volts or larger, the Voltage Regula-
tor will normally start up properly in Power-off mode (VREG appr. 2.8 volts).

c. After all cells have been assembled as described in step 2, a charger source must be
connected at the BATT+ terminal to initialize the chip, see Section 8.3 ”Power-on
Reset and Charger Connect” on page 38 in the datasheet.

If the Voltage Regulator started up in Power-off during assembly of the cells, the chip will ini-
tialize when the charger source makes the voltage at the BATT pin exceed 7 - 8 Volts.

If the Voltage Regulator did not start up properly, the charger source has one additional
requirement to ensure proper start up and initialization. In this case the charger source must
ensure that the voltage at the VFET pin increases quickly at least 3 Volts above the voltage
at the PVT pin, and that the voltage at the BATT pin exceeds 7 - 8 Volts. This will start up
and initialize the chip directly.

5. VREF influenced by MCU state

The reference voltage at the VREF pin depends on the following conditions of the device:

a. Charger Over-current and/or Discharge Over-current Protection active but Short-cir-
cuit inactive. This will increase VREF voltage with typical 1 mV compared to a
condition were all Current Protections are disabled.

b. Short-circuit Protection active. Short-circuit measurements are activated when SCD
in BPCR is zero (default) and DFE in FET Control and Status Register (FCSR) is set.
This will increase VREF voltage with typical 8 mV compared to a condition with short-
circuit measurements inactive.

c. V-ADC conversion of the internal VTEMP voltage. This will increase VREF voltage
with typical 15 mV compared to a condition with short-circuit measurements inactive.

Problem Fix/Work around

To ensure the highest accuracy, set the Bandgap Calibration Register (BGCC) to get 1.100
V at VREF after the chip is configured with the actual Battery Protection settings and the Dis-
charge FET is enabled.

6. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does
not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from
EEPROM.

254
2548F–AVR–03/2013

ATmega406

37. Datasheet Revision History

37.1 Rev 2548F - 03/13

37.2 Rev 2548E - 07/06

1. Updated heading titles of “PPI/NNI” and ”PI/NI” on page 6.

2. Updated Note 10 in Table 27-5 on page 189

3. Updated Section 30.2 on page 225.

1. Updated ”Pin Configurations” on page 2.

2. Updated ”ADC Noise Reduction Mode” on page 32.

3. Updated ”Power-save Mode” on page 32.

4. Updated ”Power-down Mode” on page 33.

5 Updated ”Power-off Mode” on page 33.

6. Updated ”Power Reduction Register” on page 36.

7. Added ”Voltage ADC” on page 37 and ”Coloumb Counter” on page 38.

8. Updated ”Reset Sources” on page 39.

9. Updated ”Power-on Reset and Charger Connect” on page 40.

10. Updated ”External Reset” on page 41.

11. VCC replaced by VREG in ”Brown-out Detection” on page 42.

12. Updated ”Alternate Port Functions” on page 66.

13. Updated ”Internal Clock Source” on page 103.

14. Updated ”External Clock Source” on page 103.

15. Updated Features in ”Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC”
on page 106.

16. Updated Operation in Section 18. ”Coulomb Counter - Dedicated Fuel Gauging
Sigma-delta ADC” on page 106.

17. Updated Features in ”Voltage Regulator” on page 114.

18. Updated Operation in ”Voltage Regulator” on page 114.

19. Updated Bit description in ”VADCL and VADCH – The V-ADC Data Register” on page
119.

20. Updated ”Writing to Bandgap Calibration Registers” on page 122.

21. Updated Text in ”Register Description for FET Control” on page 134.

22. Added ”MCUCR – MCU Control Register” on page 176.

23 Updated ”Operating Circuit” on page 223

24. Updated ”Electrical Characteristics” on page 225.

25. Added ”Typical Characteristics – Preliminary” on page 232.

26 Updated ”Register Summary” on page 236.

27. Updated ”Errata” on page 245.

28. Updated Table 9-2 on page 48, Table 27-5 on page 189.

29. Updated Figure 8-1 on page 35, Figure 9-5 on page 42, Figure 17-2 on page 104,
Figure 18-2 on page 107, Figure 18-3 on page 108, Figure 19-1 on page 114, Figure
29-1 on page 223.

30. Updated Register Adresses.

255
2548F–AVR–03/2013

ATmega406

37.3 Rev 2548D - 06/05

37.4 Rev 2548C - 05/05

37.5 Rev 2548B - 04/05

1. Updated Section 36. ”Errata” on page 245.

1. Updated Section 36. ”Errata” on page 245.

1. Typos updated, bit “PSRASY” removed, CS12:0 renamed CS1[2:0].

2. Removed “BGEN” bit in BGCCR register. The bandgap voltage reference is always
enabled in ATmega406 revision E.

3. Updated Figure 2-1 on page 3, Figure 6-1 on page 25, Figure 24-9 on page 137, Fig-
ure 21-1 on page 120.

4. Updated Table 7-2 on page 33, Table 7-3 on page 34, Table 8-1 on page 38, Table
26-5 on page 181, Figure 27-1 on page 188.

5. Updated Section 12.3.2 ”Alternate Functions of Port A” on page 66 and Section 21.
”Battery Protection” on page 118 description.

6. Updated registers ”External Interrupt Flag Register – EIFR” on page 55 and
”Timer/Counter Control Register B – TCCR0B” on page 89.

7. Updated Section 17.1 ”Features” on page 103 and Section 17.2 ”Operation” on page
103.

Updated Section 19.1 ”Features” on page 111.

Updated Section 20.2 ”Register Description for Voltage Reference and Temperature
Sensor” on page 116.

8. Updated Section 29. ”Electrical Characteristics” on page 211.

9. Updated Section 35. ”Errata” on page 225.

256
2548F–AVR–03/2013

ATmega406

i
2548F–AVR–03/2013

ATmega406

Table of Contents

Features ... 1

1 Pin Configurations ... 2

1.1 Disclaimer ...2

2 Overview ... 3

2.1 Block Diagram ..3

2.2 Pin Descriptions ...5

3 Resources ... 7

4 About Code Examples ... 7

5 AVR CPU Core .. 8

5.1 Introduction ...8

5.2 Architectural Overview ...8

5.3 ALU – Arithmetic Logic Unit ...9

5.4 Status Register ...10

5.5 General Purpose Register File ...11

5.6 Stack Pointer ..12

5.7 Instruction Execution Timing ..13

5.8 Reset and Interrupt Handling ...14

6 AVR Memories .. 16

6.1 In-System Reprogrammable Flash Program Memory ..16

6.2 SRAM Data Memory ..17

6.3 EEPROM Data Memory ...18

6.4 I/O Memory ...24

7 System Clock and Clock Options ... 25

7.1 Clock Systems and their Distribution ..25

7.2 Clock Sources ..26

7.3 Calibrated Fast RC Oscillator ...26

7.4 32 kHz Crystal Oscillator ..27

7.5 Slow RC Oscillator ...27

7.6 Ultra Low Power RC Oscillator ...27

7.7 CPU, I/O, Flash, and Voltage ADC Clock ...27

7.8 Coulomb Counter ADC and Wake-up Timer Clock ..28

7.9 Watchdog Timer and Battery Protection Clock ...28

ii
2548F–AVR–03/2013

ATmega406

7.10 Run-Time Clock Source Select ..28

7.11 Register Description ...29

8 Power Management and Sleep Modes ... 31

8.1 Idle Mode ..32

8.2 ADC Noise Reduction Mode ..32

8.3 Power-save Mode ..32

8.4 Power-down Mode ...33

8.5 Power-off Mode ..33

8.6 Power Reduction Register ..36

8.7 Minimizing Power Consumption ...37

9 System Control and Reset .. 39

9.1 Resetting the AVR ..39

9.2 Reset Sources ..39

9.3 Watchdog Timer ...43

9.4 Register Description ...46

10 Wake-up Timer ... 49

10.1 Overview ..49

10.2 Register Description ...49

11 Interrupts .. 51

11.1 Interrupt Vectors in ATmega406 ..51

11.2 Moving Interrupts Between Application and Boot Space54

11.3 Register Description ...55

12 External Interrupts ... 56

12.1 Overview ..56

12.2 Register Description ...56

13 Low Voltage I/O-Ports .. 60

13.1 Introduction ...60

13.2 Low Voltage Ports as General Digital I/O ...61

13.3 Alternate Port Functions ...66

13.4 Register Description ...73

14 High Voltage I/O Ports ... 75

14.1 High Voltage Ports as General Digital Outputs ..75

14.2 Configuring the Pin ...76

14.3 Register Description for High Voltage Output Ports ...76

iii
2548F–AVR–03/2013

ATmega406

15 8-bit Timer/Counter0 with PWM .. 77

15.1 Overview ..77

15.2 Timer/Counter Clock Sources ..78

15.3 Counter Unit ...78

15.4 Output Compare Unit ...79

15.5 Compare Match Output Unit ...81

15.6 Modes of Operation ..82

15.7 Timer/Counter Timing Diagrams ..86

15.8 8-bit Timer/Counter Register Description ...88

16 16-bit Timer/Counter1 .. 95

16.1 Overview ..95

16.2 Accessing 16-bit Registers ...96

16.3 Timer/Counter Clock Sources ..98

16.4 Counter Unit ...99

16.5 Output Compare Unit ...99

16.6 16-bit Timer/Counter Register Description ...100

17 Timer/Counter0 and Timer/Counter1 Prescalers 103

17.1 Internal Clock Source ...103

17.2 Prescaler Reset ..103

17.3 External Clock Source ..103

17.4 Register Description ...105

18 Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC 106

18.1 Features ...106

18.2 Operation ..107

19 Voltage Regulator .. 114

19.1 Features ...114

19.2 Operation ..114

20 Voltage ADC – 10-channel General Purpose 12-bit Sigma-Delta ADC ..
116

20.1 Features ...116

20.2 Operation ..117

20.3 Register Description ...118

21 Voltage Reference and Temperature Sensor 121

21.1 Features ...121

iv
2548F–AVR–03/2013

ATmega406

21.2 Writing to Bandgap Calibration Registers ...122

21.3 Register Description for Voltage Reference and Temperature Sensor123

22 Battery Protection .. 125

22.1 Features ...125

22.2 Deep Under-voltage Protection ..126

22.3 Discharge Over-current Protection ...126

22.4 Charge Over-current Protection ...126

22.5 Short-circuit Protection ...127

22.6 Battery Protection CPU Interface ...127

22.7 Register Description for Battery Protection ..128

23 FET Control .. 133

23.1 FET Driver ..134

23.2 Register Description for FET Control ..134

24 Cell Balancing .. 136

24.1 Register Description ...137

25 2-wire Serial Interface .. 138

25.1 Features ...138

25.2 Two-wire Serial Interface Bus Definition ...138

25.3 Data Transfer and Frame Format ...139

25.4 Multi-master Bus Systems, Arbitration and Synchronization142

25.5 Overview of the TWI Module ..144

25.6 TWI Register Description ...147

25.7 Using the TWI ...150

25.8 Transmission Modes ..153

25.9 Multi-master Systems and Arbitration ...167

25.10 Bus Connect/Disconnect for Two-wire Serial Interface169

26 JTAG Interface and On-chip Debug System 171

26.1 Features ...171

26.2 Overview ..171

26.3 Test Access Port – TAP ...171

26.4 TAP Controller ..173

26.5 Using the On-chip Debug System ..174

26.6 On-chip Debug Specific JTAG Instructions ..175

26.7 On-chip Debug Related Register ...176

v
2548F–AVR–03/2013

ATmega406

26.8 Using the JTAG Programming Capabilities ..177

27 Boot Loader Support – Read-While-Write Self-Programming 178

27.1 Boot Loader Features ...178

27.2 Application and Boot Loader Flash Sections ..178

27.3 Read-While-Write and No Read-While-Write Flash Sections179

27.4 Boot Loader Lock Bits ..181

27.5 Entering the Boot Loader Program ...183

27.6 Addressing the Flash During Self-Programming ..185

27.7 Self-Programming the Flash ...186

28 Memory Programming ... 195

28.1 Program And Data Memory Lock Bits ..195

28.2 Fuse Bits ..196

28.3 Signature Bytes ..198

28.4 Calibration Bytes ..198

28.5 Page Size ...198

28.6 Parallel Programming ...199

28.7 Programming via the JTAG Interface ...211

29 Operating Circuit .. 223

30 Electrical Characteristics .. 225

30.1 Absolute Maximum Ratings* ..225

30.2 DC Characteristics ...225

30.3 General I/O Lines characteristics ...228

30.4 2-wire Serial Interface Characteristics ..229

30.5 Reset Characteristics ...230

30.6 Supply Current of I/O Modules ...231

31 Typical Characteristics – Preliminary .. 232

31.1 Pin Pull-up ..232

31.2 Pin Driver Strength ...233

31.3 Internal Oscillator Speed ..234

32 Register Summary ... 236

33 Instruction Set Summary .. 240

34 Ordering Information ... 243

35 Packaging Information .. 244

vi
2548F–AVR–03/2013

ATmega406

35.1 48AA ...244

36 Errata ... 245

36.1 Rev. F ...245

36.2 Rev. E ...248

36.3 Rev. D ..250

37 Datasheet Revision History .. 254

37.1 Rev 2548F - 03/13 ..254

37.2 Rev 2548E - 07/06 ...254

37.3 Rev 2548D - 06/05 ...255

37.4 Rev 2548C - 05/05 ...255

37.5 Rev 2548B - 04/05 ...255

Table of Contents... i

Atmel Corporation

1600 Technology Drive

San Jose, CA 95110

USA

Tel: (+1) (408) 441-0311

Fax: (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Millennium City 5

418 Kwun Tong Roa

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus

Parkring 4

D-85748 Garching b. Munich

GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg

1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300

Fax: (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 2548F–AVR–03/2013

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation or
its subsidiaries. Other terms and product names may be trademarks of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

CY8C20524-12PVXIT MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2

MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC2-G-SNE2

MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2

MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2

 LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA MB95F318EPMC-G-SNE2

MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1 73S1210F-

68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBK08AU-

SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87F5NC8AVU-QIP-E

LC87F76C8AU-TQFP-E LC87F2G08AU-SSOP-E CP8085AT MB95F564KPF-G-UNE2 MC9S08PA4VWJ MC9S08QG8CDTE

MC9S08SH4CWJR

https://www.x-on.com.au/category/semiconductors/integrated-circuits-ics/embedded-processors-controllers/microcontrollers-mcu/8-bit-microcontrollers-mcu
https://www.x-on.com.au/manufacturer/microchip
https://www.x-on.com.au/mpn/cypress/cy8c2052412pvxit
https://www.x-on.com.au/mpn/cypress/mb95f013kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f263kpfgsne2
https://www.x-on.com.au/mpn/cypress/mb95f264kpftgsne2
https://www.x-on.com.au/mpn/cypress/mb95f398kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f478kpmc2gsne2
https://www.x-on.com.au/mpn/cypress/mb95f564kpfgsne2
https://www.x-on.com.au/mpn/cypress/mb95f636kwqngsne1
https://www.x-on.com.au/mpn/cypress/mb95f696kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f698kpmc2gsne2
https://www.x-on.com.au/mpn/cypress/mb95f698kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f818kpmc1gsne2
https://www.x-on.com.au/mpn/hitachi/901015x
https://www.x-on.com.au/mpn/cypress/cy8c3mfidock125
https://www.x-on.com.au/mpn/intel/403708r
https://www.x-on.com.au/mpn/cypress/mb95f354epfgsne2
https://www.x-on.com.au/mpn/cypress/mb95f564kwqngsne1
https://www.x-on.com.au/mpn/cypress/mb95f636kpgshsne2
https://www.x-on.com.au/mpn/cypress/mb95f694kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f778jpmc1gsne2
https://www.x-on.com.au/mpn/cypress/mb95f818kpmcgsne2
https://www.x-on.com.au/mpn/onsemiconductor/lc87f0g08aujaah
https://www.x-on.com.au/mpn/cypress/cp8361bt
https://www.x-on.com.au/mpn/cypress/cg8421af
https://www.x-on.com.au/mpn/cypress/mb95f202kpfgsne2
https://www.x-on.com.au/mpn/renesas/df36014fpv
https://www.x-on.com.au/mpn/e2v/59628768407mua
https://www.x-on.com.au/mpn/cypress/mb95f318epmcgsne2
https://www.x-on.com.au/mpn/cypress/mb94f601apmc1gse1
https://www.x-on.com.au/mpn/cypress/mb95f656epfgsne2
https://www.x-on.com.au/mpn/onsemiconductor/lc78615e01ush
https://www.x-on.com.au/mpn/onsemiconductor/lc87f5wc8avuqiph
https://www.x-on.com.au/mpn/cypress/mb95f108ajspmcgjne1
https://www.x-on.com.au/mpn/maxim/73s1210f68mfpj
https://www.x-on.com.au/mpn/maxim/73s1210f68mfpj
https://www.x-on.com.au/mpn/cypress/mb89f538101pmcge1
https://www.x-on.com.au/mpn/onsemiconductor/lc87f7dc8avuqiph
https://www.x-on.com.au/mpn/cypress/mb95f876kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb88386pmcgsbnde1
https://www.x-on.com.au/mpn/onsemiconductor/lc87fbk08aussoph
https://www.x-on.com.au/mpn/onsemiconductor/lc87fbk08aussoph
https://www.x-on.com.au/mpn/onsemiconductor/lc87f2c64auqfph
https://www.x-on.com.au/mpn/cypress/mb95f636knwqng118sne1
https://www.x-on.com.au/mpn/cypress/mb95f136nbstpfvgsn2e1
https://www.x-on.com.au/mpn/onsemiconductor/lc87f5nc8avuqipe
https://www.x-on.com.au/mpn/onsemiconductor/lc87f76c8autqfpe
https://www.x-on.com.au/mpn/onsemiconductor/lc87f2g08aussope
https://www.x-on.com.au/mpn/cypress/cp8085at
https://www.x-on.com.au/mpn/cypress/mb95f564kpfgune2
https://www.x-on.com.au/mpn/nxp/mc9s08pa4vwj
https://www.x-on.com.au/mpn/nxp/mc9s08qg8cdte
https://www.x-on.com.au/mpn/nxp/mc9s08sh4cwjr

