Features

- Utilizes the AVR ${ }^{\circledR}$ RISC Architecture
- High-performance and Low-power 8-bit RISC Architecture
- 90 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Up to 8 MIPS Throughput at 8 MHz
- Nonvolatile Program and Data Memory
- 1K Byte of Flash Program Memory

In-System Programmable (ATtiny12)
Endurance: 1,000 Write/Erase Cycles (ATtiny11/12)

- 64 Bytes of In-System Programmable EEPROM Data Memory for ATtiny12

Endurance: 100,000 Write/Erase Cycles

- Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
- Interrupt and Wake-up on Pin Change
- One 8-bit Timer/Counter with Separate Prescaler
- On-chip Analog Comparator
- Programmable Watchdog Timer with On-chip Oscillator
- Special Microcontroller Features
- Low-power Idle and Power-down Modes
- External and Internal Interrupt Sources
- In-System Programmable via SPI Port (ATtiny12)
- Enhanced Power-on Reset Circuit (ATtiny12)
- Internal Calibrated RC Oscillator (ATtiny12)
- Specification
- Low-power, High-speed CMOS Process Technology
- Fully Static Operation
- Power Consumption at $4 \mathrm{MHz}, \mathbf{3 V}, 25^{\circ} \mathrm{C}$
- Active: $\mathbf{2 . 2} \mathrm{mA}$
- Idle Mode: 0.5 mA
- Power-down Mode: <1 $\mu \mathrm{A}$
- Packages
- 8-pin PDIP and SOIC
- Operating Voltages
- 1.8-5.5V for ATtiny12V-1
- 2.7-5.5V for ATtiny11L-2 and ATtiny12L-4
- 4.0-5.5V for ATtiny11-6 and ATtiny12-8
- Speed Grades
- 0-1.2 MHz (ATtiny12V-1)
- 0-2 MHz (ATtiny11L-2)
- 0-4 MHz (ATtiny12L-4)
- 0-6 MHz (ATtiny11-6)
- 0-8 MHz (ATtiny12-8)

Pin Configuration

Not recommended for new design

Note: This is a summary document. A complete document is available on our Web site at www.atmel.com.

Overview

The ATtiny $11 / 12$ is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny11/12 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.
The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Table 1. Parts Description

Device	Flash	EEPROM	Register	Voltage Range	Frequency
ATtiny11L	1 K	-	32	$2.7-5.5 \mathrm{~V}$	$0-2 \mathrm{MHz}$
ATtiny11	1 K	-	32	$4.0-5.5 \mathrm{~V}$	$0-6 \mathrm{MHz}$
ATtiny12V	1 K	64 B	32	$1.8-5.5 \mathrm{~V}$	$0-1.2 \mathrm{MHz}$
ATtiny12L	1 K	64 B	32	$2.7-5.5 \mathrm{~V}$	$0-4 \mathrm{MHz}$
ATtiny12	1 K	64 B	32	$4.0-5.5 \mathrm{~V}$	$0-8 \mathrm{MHz}$

The ATtiny11/12 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

ATtiny11 Block Diagram

See Figure 1 on page 3. The ATtiny11 provides the following features: 1K bytes of Flash, up to five general-purpose I/O lines, one input line, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, and two software-selectable power-saving modes. The Idle Mode stops the CPU while allowing the timer/counters and interrupt system to continue functioning. The Power-down Mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or interrupt on pin change features enable the ATtiny11 to be highly responsive to external events, still featuring the lowest power consumption while in the power-down modes.

The device is manufactured using Atmel's high-density nonvolatile memory technology. By combining an RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny11 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

Figure 1. The ATtiny11 Block Diagram

ATtiny12 Block Diagram

Figure 2 on page 4. The ATtiny 12 provides the following features: 1 K bytes of Flash, 64 bytes EEPROM, up to six general-purpose I/O lines, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, and two software-selectable power-saving modes. The Idle Mode stops the CPU while allowing the timer/counters and interrupt system to continue functioning. The Power-down Mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or interrupt on pin change features enable the ATtiny 12 to be highly responsive to external events, still featuring the lowest power consumption while in the power-down modes.

The device is manufactured using Atmel's high-density nonvolatile memory technology. By combining an RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny12 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

Figure 2. The ATtiny12 Block Diagram

Pin Descriptions

vcc
GND
Port B (PB5..PB0)

XTAL1
XTAL2
RESET

Supply voltage pin.
Ground pin.
Port B is a 6-bit I/O port. PB4..0 are I/O pins that can provide internal pull-ups (selected for each bit). On ATtiny11, PB5 is input only. On ATtiny12, PB5 is input or open-drain output. The port pins are tri-stated when a reset condition becomes active, even if the clock is not running. The use of pins PB5.. 3 as input or I/O pins is limited, depending on reset and clock settings, as shown below.

Table 2. PB5..PB3 Functionality vs. Device Clocking Options

Device Clocking Option	PB5	PB4	PB3
External Reset Enabled	Used $^{(1)}$	$-(2)$	-
External Reset Disabled	Input $^{(3)} / / / O^{(4)}$	-	-
External Crystal	-	Used	Used
External Low-frequency Crystal	-	Used	Used
External Ceramic Resonator	-	Used	Used
External RC Oscillator	-	I/O ${ }^{(5)}$	Used
External Clock	-	I/O	Used
Internal RC Oscillator	-	I/O	I/O

Notes: 1. "Used" means the pin is used for reset or clock purposes.
2. "-" means the pin function is unaffected by the option.
3. Input means the pin is a port input pin.
4. On ATtiny11, PB5 is input only. On ATtiny12, PB5 is input or open-drain output.
5. I / O means the pin is a port input/output pin.

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting oscillator amplifier.
Reset input. An external reset is generated by a low level on the RESET pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

Register Summary ATtiny11

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	T	H	S	V	N	Z	C	page 9
\$3E	Reserved									
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INTO	PCIE	-	-	-	-	-	page 33
\$3A	GIFR	-	INTF0	PCIF	-	-	-	-	-	page 34
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 34
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 35
\$37	Reserved									
\$36	Reserved									
\$35	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 32
\$34	MCUSR	-	-	-	-	-	-	EXTRF	PORF	page 28
\$33	TCCR0	-	-	-	-	-	CSO2	CS01	CSOO	page 41
\$32	TCNT0	Timer/Co	$8 \mathrm{Bit})$							page 41
\$31	Reserved									
\$30	Reserved									
...	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 43
\$20	Reserved									
\$1F	Reserved									
\$1E	Reserved									
\$1D	Reserved									
\$1C	Reserved									
\$1B	Reserved									
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 37
\$17	DDRB	-	-	-	DDB4	DDB3	DDB2	DDB1	DDB0	page 37
\$16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 37
\$15	Reserved									
...	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	-	ACO	ACl	ACIE	-	ACIS1	ACIS0	page 45
\ldots	Reserved									
\$00	Reserved									

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $\$ 00$ to $\$ 1 F$ only.

Register Summary ATtiny12

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	T	H	S	V	N	Z	C	page 9
\$3E	Reserved									
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	page 33
\$3A	GIFR	-	INTFO	PCIF	-	-	-	-	-	page 34
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 34
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 35
\$37	Reserved									
\$36	Reserved									
\$35	MCUCR	-	PUD	SE	SM	-	-	ISC01	ISC00	page 32
\$34	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 29
\$33	TCCR0	-	-	-	-	-	CSO2	CS01	CSOO	page 41
\$32	TCNT0	Timer/Cou	(8 Bit)							page 41
\$31	OSCCAL	Oscillator Cand	tion Regi							page 12
\$30	Reserved									
...	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 43
\$20	Reserved									
\$1F	Reserved									
\$1E	EEAR	-	-	EEPROM	s Register					page 18
\$1D	EEDR	EEPROM	egister							page 18
\$1C	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 18
\$1B	Reserved									
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 37
\$17	DDRB	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 37
\$16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINBO	page 37
\$15	Reserved									
...	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	AINBG	ACO	ACI	ACIE	-	ACIS1	ACISO	page 45
...	Reserved									
\$00	Reserved									

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $\$ 00$ to $\$ 1 F$ only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow$ \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow$ \$00-Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \mathrm{vK}$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet$ ($\mathrm{FFh}-\mathrm{K}$)	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow$ \$FF	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
CP	Rd, Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then PC $\leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(\mathrm{Z}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if ($\mathrm{N}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if ($\mathrm{N} \oplus \mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if ($\mathrm{H}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if ($\mathrm{T}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if ($\mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if ($\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if ($\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
DATA TRANSFER INSTRUCTIONS					
LD	Rd, Z	Load Register Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
ST	Z,Rr	Store Register Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P,b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{Rd}(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\mathrm{Rd}(7) \leftarrow \mathrm{C}, \operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$S \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watch Dog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information

ATtiny11

Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7-5.5V	2	ATtiny11L-2PC ATtiny11L-2SC	$\begin{aligned} & \text { 8P3 } \\ & \text { 8S2 } \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		ATtiny11L-2PI ATtiny11L-2SI ATtiny $11 \mathrm{~L}-2 \mathrm{SU}^{(2)}$	$\begin{aligned} & \text { 8P3 } \\ & \text { 8S2 } \\ & \text { 8S2 } \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
4.0-5.5V	6	ATtiny11-6PC ATtiny11-6SC	$\begin{aligned} & \text { 8P3 } \\ & \text { 8S2 } \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		ATtiny11-6PI ATtiny11-6PU ${ }^{(2)}$ ATtiny11-6SI ATtiny11-6SU ${ }^{(2)}$	8P3 8P3 8S2 8S2	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Notes: 1. The speed grade refers to maximum clock rate when using an external crystal or external clock drive. The internal RC oscillator has the same nominal clock frequency for all speed grades.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2	8-lead, 0.200" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)

ATtiny 12

Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
1.8-5.5V	1.2	ATtiny12V-1PC ATtiny12V-1SC	$\begin{aligned} & \text { 8P3 } \\ & 8 \mathrm{~S} 2 \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		ATtiny12V-1PI ATtiny $12 \mathrm{~V}-1 \mathrm{PU}{ }^{(2)}$ ATtiny12V-1SI ATtiny $12 \mathrm{~V}-1 \mathrm{SU}^{(2)}$	8P3 8P3 8S2 8S2	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
2.7-5.5V	4	ATtiny12L-4PC ATtiny12L-4SC	$\begin{aligned} & \text { 8P3 } \\ & \text { 8S2 } \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		ATtiny12L-4PI ATtiny $12 \mathrm{~L}-4 \mathrm{PU}{ }^{(2)}$ ATtiny12L-4SI ATtiny $12 \mathrm{~L}-4 \mathrm{SU}{ }^{(2)}$	8P3 8P3 8S2 8S2	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
4.0-5.5V	8	ATtiny12-8PC ATtiny12-8SC	$\begin{aligned} & \text { 8P3 } \\ & \text { 8S2 } \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		ATtiny 12-8PI ATtiny $12-8 \mathrm{PU}{ }^{(2)}$ ATtiny12-8SI ATtiny $12-8 \mathrm{SU}^{(2)}$	8P3 8P3 8S2 8S2	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Notes: 1. The speed grade refers to maximum clock rate when using an external crystal or external clock drive. The internal RC oscillator has the same nominal clock frequency for all speed grades.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
$\mathbf{8 S 2}$	8-lead, 0.200" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)

Packaging Information

8P3

Top View

End View

COMMON DIMENSIONS
(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
A			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
c	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
e	0.100 BSC			
eA	0.300 BSC			4
L	0.115	0.130	0.150	2

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

4W1 2325 Orchard Parkway	TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	DRAWING NO. 8P3	$\begin{array}{\|c} \hline \text { REV. } \\ B \end{array}$

COMMON DIMENSIONS (Unit of Measure $=\mathrm{mm}$)				
SYMBOL	MIN	NOM	MAX	NOTE
A	1.70		2.16	
A1	0.05		0.25	
b	0.35		0.48	5
C	0.15		0.35	5
D	5.13		5.35	
E1	5.18		5.40	2,3
E	7.70		8.26	
L	0.51		0.85	
θ	0°		8°	
e	1.27 BSC			

Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
2. Mismatch of the upper and lower dies and resin burrs are not included.
3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
4. Determines the true geometric position.
5. Values b, C apply to plated terminal. The standard thickness of the plating layer shall measure between 0.007 to .021 mm .

2325 Orchard Parkway San Jose, CA 95131	TITLE 8S2, 8-lead, 0.209" Body, Plastic Small Outline Package (EIAJ)	DRAWING NO. 8 S 2	$\begin{gathered} \text { REV. } \\ \mathrm{D} \end{gathered}$

Datasheet Revision History

Rev. 1006F-06/07
Rev. 1006E-07/06

Rev. 1006D-07/03
Rev. 1006C-09/01

Please note that the page numbers listed in this section are refering to this document. The revision numbers are referring to the document revision.

1. "Not recommended for new design"
2. Updated chapter layout.
3. Updated Power-down in "Sleep Modes for the ATtiny11" on page 20.
4. Updated Power-down in "Sleep Modes for the ATtiny12" on page 20.
5. Updated Table 16 on page 36.
6. Updated "Calibration Byte in ATtiny12" on page 49.
7. Updated "Ordering Information" on page 10.
8. Updated "Packaging Information" on page 12.
9. Updated $\mathrm{V}_{\mathrm{BOT}}$ values in Table 9 on page 24.
10. N / A

Headquarters

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia	Atmel Europe	Atmel Japan
Room 1219	Le Krebs	9F, Tonetsu Shinkawa Bidg.
Chinachem Golden Plaza	8, Rue Jean-Pierre Timbaud	$1-24-8$ Shinkawa
77 Mody Road Tsimshatsui	BP 309	Chuo-ku, Tokyo 104-0033
East Kowloon	78054 Saint-Quentin-en-	Japan
Hong Kong	Yvelines Cedex	Tel: (81) 3-3523-3551
Tel: (852) 2721-9778	France	Fax: (81) 3-3523-7581

Product Contact

Web Site	Technical Support	Sales Contact
www.atmel.com	avr@atmel.com	www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 8 -bit Microcontrollers - MCU category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :

```
CY8C20524-12PVXIT MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2
MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC2-G-SNE2
MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2
MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2
LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA MB95F318EPMC-G-SNE2
MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1 73S1210F-
68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBK08AU-
SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87F5NC8AVU-QIP-E
LC87F76C8AU-TQFP-E LC87F2G08AU-SSOP-E CP8085AT MB95F564KPF-G-UNE2 MC9S08PA4VWJ MC9S08QG8CDTE
MC9S08SH4CWJR
```

