Features

- Utilizes the AVR ${ }^{\circledR}$ RISC Architecture
- AVR - High-performance and Low-power RISC Architecture - 90 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General-purpose Working Registers
- Up to 4 MIPS Throughput at 4 MHz
- Nonvolatile Program Memory
- 2K Bytes of Flash Program Memory
- Endurance: 1,000 Write/Erase Cycles
- Programming Lock for Flash Program Data Security
- Peripheral Features
- Interrupt and Wake-up on Low-level Input
- One 8-bit Timer/Counter with Separate Prescaler
- On-chip Analog Comparator
- Programmable Watchdog Timer with On-chip Oscillator
- Built-in High-current LED Driver with Programmable Modulation
- Special Microcontroller Features
- Low-power Idle and Power-down Modes
- External and Internal Interrupt Sources
- Power-on Reset Circuit with Programmable Start-up Time
- Internal Calibrated RC Oscillator
- Power Consumption at $1 \mathrm{MHz}, \mathbf{2 V}, 25^{\circ} \mathrm{C}$
- Active: 3.0 mA
- Idle Mode: 1.2 mA
- Power-down Mode: <1 $\mu \mathrm{A}$
- I/O and Packages
- 11 Programmable I/O Lines, 8 Input Lines and a High-current LED Driver
- 28-lead PDIP, 32-lead TQFP, and 32-pad MLF
- Operating Voltages
$-V_{c c}$: 1.8V-5.5V for the ATtiny28V
- V_{cc} : 2.7V - 5.5V for the ATtiny28L
- Speed Grades
- 0-1.2 MHz for the ATtiny28V
- 0-4 MHz For the ATtiny28L

Pin Configurations

8-bit $A V \boldsymbol{R}^{\bullet}$
Microcontroller with 2K Bytes of Flash

ATtiny28L ATtiny28V

Summary

PDIP

TQFP/QFN/MLF

$$
\longrightarrow
$$

䔍

Description

Block Diagram

The ATtiny28 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny28 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed. The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Figure 1. The ATtiny28 Block Diagram

The ATtiny28 provides the following features: 2K bytes of Flash, 11 general-purpose I/O lines, 8 input lines, a high-current LED driver, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator and 2 software-selectable power-saving modes. The Idle Mode stops the CPU while allowing the timer/counter and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or inter-
rupt on low-level input feature enables the ATtiny28 to be highly responsive to external events, still featuring the lowest power consumption while in the power-down modes.

The device is manufactured using Atmel's high-density, nonvolatile memory technology. By combining an enhanced RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny28 is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications. The ATtiny28 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators and evaluation kits.

Pin Descriptions

VCC
GND
Port A (PA3..PA0)

Port B (PB7..PB0)

Port D (PD7..PD0)

XTAL1
XTAL2
RESET

Supply voltage pin.
Ground pin.
Port A is a 4-bit I/O port. PA2 is output-only and can be used as a high-current LED driver. At $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$, the PA2 output buffer can sink 25 mA . PA3, PA1 and PA0 are bi-directional I/O pins with internal pull-ups (selected for each bit). The port pins are tristated when a reset condition becomes active, even if the clock is not running.

Port B is an 8-bit input port with internal pull-ups (selected for all Port B pins). Port B pins that are externally pulled low will source current if the pull-ups are activated.

Port B also serves the functions of various special features of the ATtiny28 as listed on page 27. If any of the special features are enabled, the pull-up(s) on the corresponding pin(s) is automatically disabled. The port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D is an 8-bit I/O port. Port pins can provide internal pull-up resistors (selected for each bit). The port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting oscillator amplifier.
Reset input. An external reset is generated by a low level on the RESET pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	1	T	H	S	V	N	Z	C	page 6
\$3E	Reserved									
...	Reserved									
\$20	Reserved									
\$1F	Reserved									
\$1E	Reserved									
\$1D	Reserved									
\$1C	Reserved									
\$1B	PORTA	-	-	-	-	PORTA3	PORTA2	PORTA1	PORTAO	page 32
\$1A	PACR	-	-	-	-	DDA3	PA2HC	DDA1	DDAO	page 32
\$19	PINA	-	-	-	-	PINA3	-	PINA1	PINAO	page 32
\$18	Reserved									
\$17	Reserved									
\$16	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 32
\$15	Reserved									
\$14	Reserved									
\$13	Reserved									
\$12	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTDO	page 33
\$11	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 33
\$10	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PINDO	page 33
\$0F	Reserved									
\$0E	Reserved									
\$0D	Reserved									
\$0C	Reserved									
\$0B	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	-	ACO	ACI	ACIE	-	ACIS1	ACISO	page 44
\$07	MCUCS	PLUPB	-	SE	SM	WDRF	-	EXTRF	PORF	page 19
\$06	ICR	INT1	INTO	LLIE	TOIE0	ISC11	ISC10	ISC01	ISC00	page 22
\$05	IFR	INTF1	INTF0	-	TOV0	-	-	-	-	page 23
\$04	TCCR0	FOVO	-	-	OOM01	OOM00	CSO2	CS01	CSOO	page 35
\$03	TCNTO	Timer/Coun	(8-bit)							page 36
\$02	MODCR	ONTIM4	ONTIM3	ONTIM2	ONTIM1	ONTIMO	MCONF2	MCONF1	MCONFO	page 43
\$01	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 37
\$00	OSCCAL	Oscillator C	ation Regis							page 9

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $\$ 00$ to $\$ 1 F$ only.

Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	\# Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add Two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract Two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry Two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{K}$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow$ \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow$ \$00-Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(\mathrm{FFh}-\mathrm{K})$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	Rd \leftarrow \$FF	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(\mathrm{P}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(\mathrm{P}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if ($\mathrm{N}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less than Zero, Signed	if ($\mathrm{N} \oplus \mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T-flag Set	if ($\mathrm{T}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T-flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

Instruction Set Summary (Continued)

Mnemonic	Operands	Description	Operation	Flags	\# Clocks
DATA TRANSFER INSTRUCTIONS					
LD	Rd, Z	Load Register Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
ST	Z, Rr	Store Register Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
MOV	Rd, Rr	Move between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N, V	1
ROL	Rd	Rotate Left through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N, V	1
ROR	Rd	Rotate Right through Carry	$\mathrm{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N, V	1
ASR	Rd	Arithmetic Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3 . .0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit Load from T to Register	$\mathrm{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$\mathrm{I} \leftarrow 1$	I	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Two's Complement Overflow	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Two's Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half-carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half-carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information

Speed (MHz)	Power Supply (Volts)	Ordering Code	Package ${ }^{(1)}$	Operation Range
4	2.7-5.5	ATtiny28L-4AC ATtiny28L-4PC ATtiny28L-4MC	32A 28P3 32M1-A	Commercial ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
		ATtiny28L-4AI ATtiny28L-4AU ${ }^{(2)}$ ATtiny28L-4PI ATtiny28L-4PU ${ }^{(2)}$ ATtiny28L-4MI ATtiny28L-4MU ${ }^{(2)}$	32A 32A 28P3 28P3 32M1-A 32M1-A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
1.2	1.8-5.5	ATtiny28V-1AC ATtiny28V-1PC ATtiny28V-1MC	32A 28P3 32M1-A	Commercial ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
		ATtiny28V-1AI ATtiny $28 \mathrm{~V}-1 \mathrm{AU}^{(2)}$ ATtiny28V-1PI ATtiny $28 \mathrm{~V}-1 \mathrm{PU}{ }^{(2)}$ ATtiny $28 \mathrm{~V}-1 \mathrm{MI}$ ATtiny28V-1MU ${ }^{(2)}$	32A $32 A$ 28P3 28P3 32M1-A 32M1-A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green.

Package Type	
32A	32-lead, Thin $(1.0 \mathrm{~mm})$ Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)

Packaging Information

32A

Notes: 1. This package conforms to JEDEC reference MS-026, Variation ABA.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
B	0.30	-	0.45	
C	0.09	-	0.20	
L	0.45	-	0.75	
e	0.80 TYP			

10/5/2001

2325 Orchard Parkway San Jose, CA 95131

32A, 32-lead, 7×7 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
$32 A$	B

28P3

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	4.5724	
A1	0.508	-	-	
D	34.544	-	34.798	Note 1
E	7.620	-	8.255	
E1	7.112	-	7.493	Note 1
B	0.381	-	0.533	
B1	1.143	-	1.397	
B2	0.762	-	1.143	
L	3.175	-	3.429	
C	0.203	-	0.356	
eB	-	-	10.160	
e	2.540 TYP			

09/28/01

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	28P3, 28-lead (0.300 " $/ 7.62 \mathrm{~mm}$ Wide) Plastic Dual Inline Package (PDIP)	28P3	B

Errata

All revisions

 No known errata.Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

1. Updated chapter layout.
2. Updated "Ordering Information" on page 7.
3. Updated description for "Port A" on page 25.
4. Added note 6 in "DC Characteristics" on page 54.
5. Updated "Ordering Information" on page 7.
6. Added "Errata" on page 11.
7. Updated "Electrical Characteristics" on page 54.
8. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
9. Updated "Ordering Information" on page 7.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. ATMEL ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$, AVR $^{\circledR}$, AVR Studio $^{\circledR}$, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 8 -bit Microcontrollers - MCU category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :

```
CY8C20524-12PVXIT MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2
MB95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC2-G-SNE2
MB95F698KPMC-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2
MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2
LC87F0G08AUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-8768407MUA MB95F318EPMC-G-SNE2
MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87F5WC8AVU-QIP-H MB95F108AJSPMC-G-JNE1 73S1210F-
68M/F/PJ MB89F538-101PMC-GE1 LC87F7DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBK08AU-
SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87F5NC8AVU-QIP-E
LC87F76C8AU-TQFP-E LC87F2G08AU-SSOP-E CP8085AT MB95F564KPF-G-UNE2 MC9S08PA4VWJ MC9S08QG8CDTE
MC9S08SH4CWJR
```

