Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on-resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Telecom

General Description

This depletion-mode (normally-on) transistor utilizes an advanced vertical DMOS structure and Supertex's wellproven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Product Summary

$\mathrm{BV}_{\mathrm{Dsx}} / \mathrm{BV}_{\mathrm{DGx}}$	$\mathrm{R}_{\mathrm{DS}(0 \times)}($ max $)$	$\mathrm{I}_{\mathrm{Dss}}(\mathbf{m i n})$
650 V	8.0Ω	200 mA

Pin Configuration

Product Marking

YY = Year Sealed
WW = Week Sealed
L = Lot Number
___ = "Green" Packaging
Package may or may not include the following marks: Si or $\$ 7$
TO-252 (D-PAK)

Thermal Characteristics

Package	I_{D} (continuous) †	I_{D} (pulsed)	Power Dissipation $@ T_{A}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{DR}}{ }^{\dagger}$	$\mathbf{I}_{\mathrm{DRM}}$
TO-252 (D-PAK)	300 mA	500 mA	2.5 W	300 mA	500 mA

Notes:

$\dagger \quad I_{D}$ (continuous) is limited by max rated T_{j} of $150^{\circ} \mathrm{C}$.
$\ddagger \quad$ Mounted on FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$.

Electrical Characteristics ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSX }}$	Drain-to-source breakdown voltage	650	-	-	V	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {GS(OFF) }}$	Gate-to-source off voltage	-1.5	-	-3.5	V	$\mathrm{V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$
$\Delta \mathrm{V}_{\text {GS(OFF) }}$	Change in $\mathrm{V}_{\text {GS(OFF) }}$ with temperature	-	-	-4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$
$\mathrm{I}_{\text {GSS }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\text {GS }}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$
		-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=$ Max Rating
$\mathrm{I}_{\text {(IOFF) }}$	Drain-to-source leakage current	-	-	1.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.8 \text { Max Rating, } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {DSs }}$	Saturated drain-to-source current	200	-	-	mA	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=25 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static drain-to-source on-state resistance	-	-	8.0	Ω	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
$\Delta R_{\text {DS(ON })}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	-	1.1	\%/ ${ }^{\circ} \mathrm{C}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
G_{FS}	Forward transductance	100	-	-	mmho	$\mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	-	825	pF	$\begin{aligned} & V_{\text {GS }}=-10 \mathrm{~V}, \\ & V_{\text {DS }}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
Coss	Common source output capacitance	-	-	190		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	-	110		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	-	50	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	-	75		
$\mathrm{t}_{\text {d(IFF) }}$	Turn-off delay time	-	-	75		
t_{f}	Fall time	-	-	100		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	800	-	ns	$\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

3-Lead TO-252 (D-PAK) Package Outline (K4)

View B

Note:

1. Although 4 terminal locations are shown, only 3 are functional. Lead number 2 was removed.

Symbol		A	A1	b	b2	b3	c2	D	D1	E	E1	e	H	L	L1	L2	L3	L4	L5	θ	01
$\begin{aligned} & \text { Dimen- } \\ & \text { sion } \\ & \text { (inches) } \end{aligned}$	MIN	. 086	.000*	. 025	. 030	. 195	. 018	. 235	. 205	. 250	. 170	$\begin{aligned} & .090 \\ & \text { BSC } \end{aligned}$. 370	. 055	$\begin{aligned} & .108 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & .020 \\ & \text { BSC } \end{aligned}$. 035	.025*	. $035{ }^{+}$	0^{0}	0^{0}
	NOM	-	-	-	-	-	-	. 240	-	-			-	. 060			-			-	-
	MAX	. 094	. 005	. 035	. 045	. 215	. 035	. 245	.217*	. 265	.200*		. 410	. 070			. 050	. 040	. 060	10^{0}	15^{0}

JEDEC Registration TO-252, Variation AA, Issue E, June 2004.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc. \#: DSPD-3TO252K4, Version F040910.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

