

DSC12X2/3/4

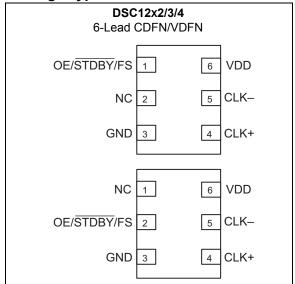
High Performance Differential MEMS Oscillators

Features

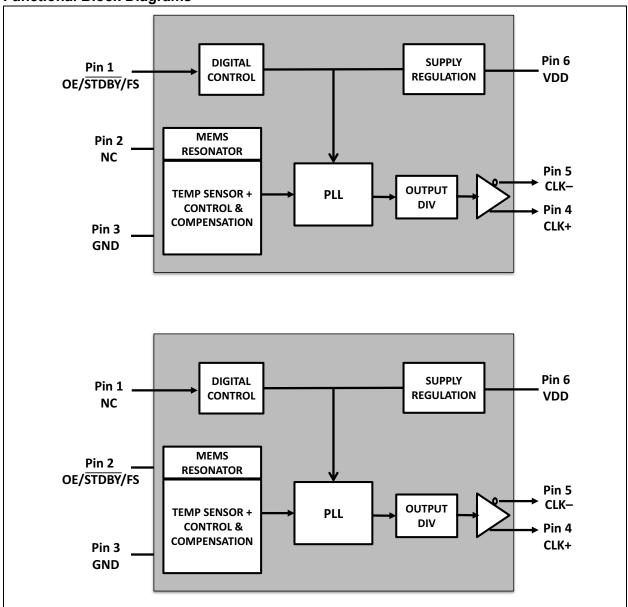
- Very Low RMS Phase Jitter: <650 fs (typ.)
- · High Stability: ±20 ppm, ±25 ppm, ±50 ppm
- · Wide Temperature Range:
 - Automotive: –40°C to +125°C (DSC12x3 LVDS Only)
 - Extended Industrial: -40°C to +105°C
 - Industrial: -40°C to +85°C
 - Commercial: -20°C to +70°C
- Supports LVPECL, LVDS, or HCSL Differential Outputs
- Wide Frequency Range: 2.5 MHz to 450 MHz
- · Small Industry-Standard Footprints
 - 2.5 mm x 2.0 mm
 - 3.2 mm x 2.5 mm
 - 5.0 mm x 3.2 mm
 - 7.0 mm x 5.0 mm
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- · High Reliability
 - 20x Better MTF than Quartz Oscillators
- Supply Range of 2.25V to 3.63V
- Standby, Frequency Select, and Output Enable Functions
- · Lead-Free and RoHS-Compliant

Applications

- · Storage Area Networks
- Passive Optical Networks
- 10/100G Ethernet
- · HD/SD/SDI Video and Surveillance
- PCI Express Gen 1/2/3/4
- Display Port


General Description

The DSC12x2/3/4 family of high performance oscillators utilizes the latest generation of silicon MEMS technology that reduces close-in noise and provides excellent jitter and stability over a wide range of supply voltages and temperatures. By eliminating the need for quartz or SAW technology, MEMS oscillators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of communications, storage, and networking applications.


The DSC12x2/3/4 family features a control function on pin 1 or pin 2 that permits either a standby feature (complete power down when STDBY is low), output enable (output is tri-stated with OE low), or a frequency select (choice of two frequencies selected by FS high/low). See the Product Identification System section for detailed information.

All oscillators are available in industry-standard packages, including the small 2.5 mm x 2.0 mm, and are "drop-in" replacements for standard 6-pin LVPECL/LVDS/HCSL crystal oscillators.

Package Types

Functional Block Diagrams

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage	
Input Voltage	
ESD Protection (HBM)	
ESD Protection (MM)	
ESD Protection (CDM)	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V_{DD} = 2.5V ±10% or 3.3V±10%; T_A = -40°C to +105°C, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Supply Voltage	V_{DD}	2.25	_	3.63	V	Note 1
		_	50	_		LVPECL, f _{OUT} = 100 MHz
		_	32	_		LVDS, f _{OUT} = 100 MHz
Supply Current	I_{DD}	_	40	_	mA	HCSL, f _{OUT} = 100 MHz
		ı	23	_		Output disabled (tri-state), f _{OUT} = 100 MHz
Standby Current	I _{STDBY} _		2.5	5	μA	Input pin = \overline{STDBY} = Asserted (V _{DD} = 3.3V)
				±20		Includes frequency variations due
Frequency Stability	Δf			±25	ppm	to initial tolerance, temp., and
				±50		power supply voltage
Startup Time	t _{SU}	_	5.5	6	ms	From 90% V _{DD} to valid clock output, T = +25°C, Note 2
Input Logic Lovels	V _{IH}	0.75 x V _{DD}	_	_	٧	Input logic high
Input Logic Levels	V _{IL}	_	_	0.25 x V _{DD}	V	Input logic low
Output Disable Time	t _{DA}	_	_	25	ns	Note 3
Output Enable Time	+			6	ms	STDBY
Output Enable Time	t _{EN}			350	ns	OE
Enable Pull-Up Resistor	_	_	1.5	_	МΩ	Pull-up resistor on pin 1, Note 4
LVPECL (DSC12x2)						
Frequency	f_0	2.5	_	450	MHz	_
Output Logic Levels	V _{OH}	V _{DD} – 1.145		_	V	$R_1 = 50\Omega$
Output Logic Levels	V _{OL}	_		V _{DD} – 1.695	V	N _L = 3012
Peak-to-Peak Output Swing	V_{PP}	_	800	_	mV	Single-Ended
Output Transition Time	t _R	_	200	250	no	20% to 90% D = 500
Output Transition Time	t _F	_	250	300	ps	20% to 80%, R_L = 50Ω
Output Duty Cycle	SYM	48		52	%	Differential
Period Jitter RMS	J_{PER}		2.0	_	ps	f ₀ = 156.25 MHz, 10k cycles

DSC12X2/3/4

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V_{DD} = 2.5V ±10% or 3.3V±10%; T_A = -40°C to +105°C, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Period Jitter Peak-to-Peak	J_{PTP}	_	20	_	ps	f ₀ = 156.25 MHz, 10k cycles		
Integrated Phase Noise (Random)	J _{PH}	_	0.65	_	ps _{RMS}	12 kHz to 20 MHz @156.25 MHz		
LVDS (DSC12x3)								
Frequency	f0	2.3	_	450	MHz	_		
Output Offset Voltage	V _{OS}	1.15	1.25	1.35	V	R = 100Ω Differential		
Peak-to-Peak Output Swing	V_{PP}	250	350	450	mV	Single-Ended		
Output Transition Time	t _R	120	170	220	ps	20% to 80%, R _L = 100Ω		
Output Duty Cycle	SYM	48	_	52	%	Differential		
Period Jitter RMS	J_{PER}	_	2.5	_	ps	f ₀ = 156.25 MHz, 10k cycles		
Period Jitter Peak-to-Peak	J_{PTP}	_	20	_	ps	f ₀ = 156.25 MHz, 10k cycles		
Integrated Phase Noise (Random)	J _{PH}	_	0.65	_	ps _{RMS}	12 kHz to 20 MHz @156.25 MHz		
Period Jitter RMS	J _{PER}	_	3	_	ps	f ₀ = 156.25 MHz, T _A = -40°C to +125°C		
Period Jitter Peak-to-Peak	J _{PTP}	_	25	_	ps	f ₀ = 156.25 MHz, T _A = -40°C to +125°C		
Integrated Phase Noise (Random)	J _{PH}	_	0.9	_	ps _{RMS}	12 kHz to 20 MHz @156.25 MHz, T _A = -40°C to +125°C		
HCSL (DSC12x4)			•	•				
Frequency	f_0	2.3	_	450	MHz	_		
Output Logic Lovels	V _{OH}	0.64	_	_	V	D = 500		
Output Logic Levels	V _{OL}	_	_	0.1]	$R_L = 50\Omega$		
Peak-to-Peak Output Swing	V_{PP}	_	750	_	mV	Single-Ended		
Output Transition Time	t _R	200	260	400	200	20% to 80%, $R_1 = 50Ω$		
Output Transition Time	t _F	250	370	500	ps	20 % 10 80 %, N_ = 3012		
Output Duty Cycle	SYM	48	_	52	%	Differential		
Period Jitter RMS	J_{PER}	_	2	_	ps	f ₀ = 100.00 MHz, 10k cycles		
Period Jitter Peak-to-Peak	J_{PTP}	_	16	_	ps	f ₀ = 100.00 MHz, 10k cycles		
Integrated Phase Noise (Random)	J _{PH}	_	0.65	_	ps _{RMS}	12 kHz to 20 MHz @100.00 MHz		

Note 1: V_{DD} pin should be filtered with a 0.1 μF capacitor.

^{2:} t_{SU} is the time to 100 ppm stable output frequency after V_{DD} is applied and outputs are enabled.

^{3:} t_{DA} : See the Output Waveforms and the Test Circuits sections for more information.

^{4:} Output is enabled if pad is floated (not connected).

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Maximum Junction Temperature	TJ	_	_	+150	°C	_
Storage Temperature Range	T _S	-55	_	+150	°C	_
Lead Temperature	_	_	_	+260	°C	Soldering, 40s

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: DSC120X/1X/2X PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	OE/STDBY/FS	Control pin: Output enable/standby/frequency select.
2	NC	No connect.
3	GND	Power supply ground.
4	CLK+	Clock output +.
5	CLK-	Clock output –.
6	VDD	Power supply.

TABLE 2-2: DSC123X/4X/5X PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	NC	No connect.
2	OE/STDBY/FS	Control pin: Output enable/standby/frequency select.
3	GND	Power supply ground.
4	CLK+	Clock output +.
5	CLK-	Clock output –.
6	VDD	Power supply.

3.0 TERMINATION SCHEME

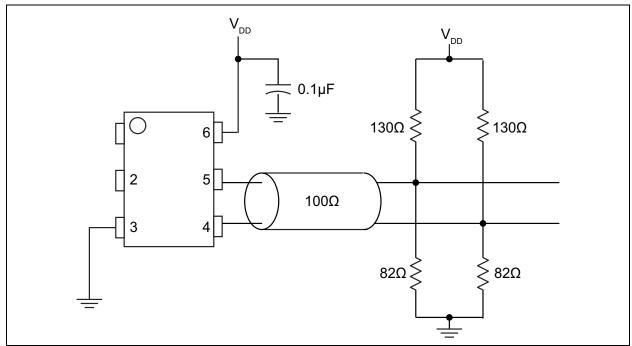


FIGURE 3-1: LVPECL Termination (DSC12x2).

In Figure 3-1, Thevenin termination for 3.3V operation. Values will differ for V_{DD} = 2.5V.

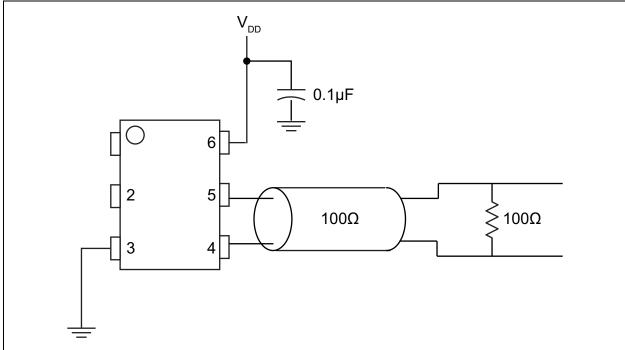


FIGURE 3-2: LVDS Termination (DSC12x3).

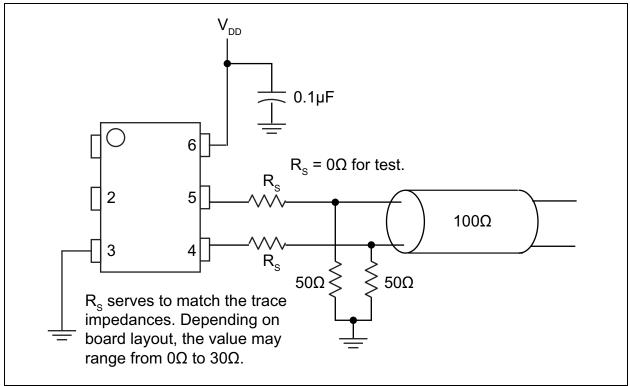


FIGURE 3-3: HCSL Termination (DSC12x4).

4.0 OUTPUT WAVEFORM

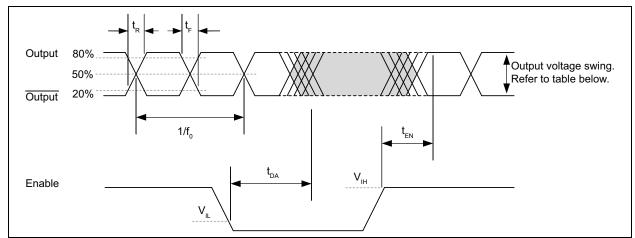


FIGURE 4-1: LVPECL, LVDS, and HCSL Output Waveform.

TABLE 4-1: OUTPUT VOLTAGE SWING BY LOGIC TYPE

Output Logic Protocol	Typical Peak-to-Peak Output Swing
LVPECL	830 mV
LVDS	350 mV
HCSL	675 mV

5.0 TEST CIRCUITS

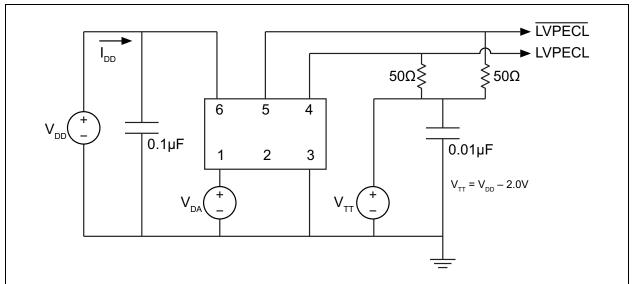


FIGURE 5-1: LVPECL Test Circuit.

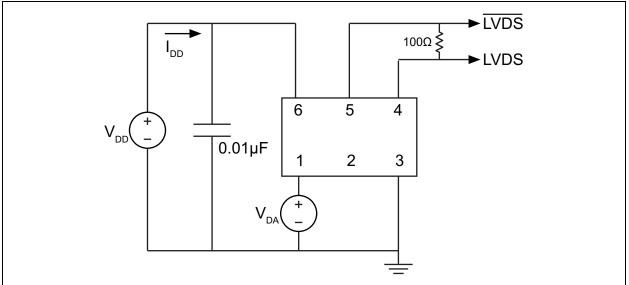


FIGURE 5-2: LVDS Test Circuit.

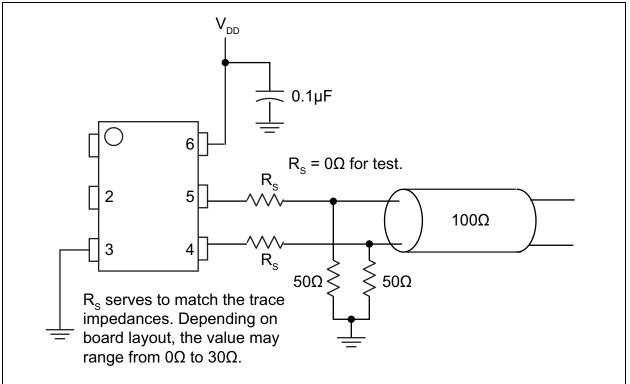


FIGURE 5-3: HCSL Test Circuit.

6.0 SOLDER REFLOW PROFILE

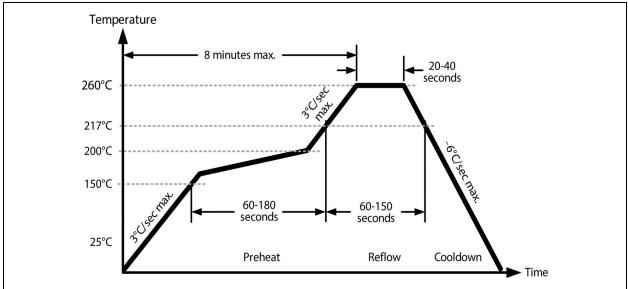


FIGURE 6-1: Solder Reflow Profile.

TABLE 6-1: SOLDER REFLOW

MSL 1 @ 260°C Refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp.)	3°C/sec. max.				
Preheat Time 150°C to 200°C	60 to 180 sec.				
Time Maintained above 217°C	60 to 150 sec.				
Peak Temperature	255°C to 260°C				
Time within 5°C of Actual Peak	20 to 40 sec.				
Ramp-Down Rate	−6°C/sec. max.				
Time 25°C to Peak Temperature	8 minutes max.				

7.0 BOARD LAYOUT (RECOMMENDED)

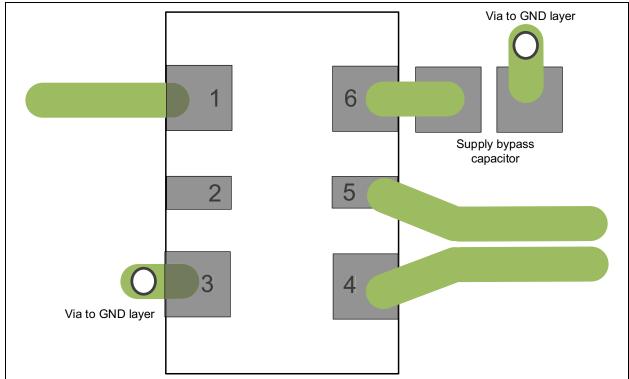


FIGURE 7-1: DSC12x2/3/4 Recommended Board Layout.

8.0 PHASE NOISE

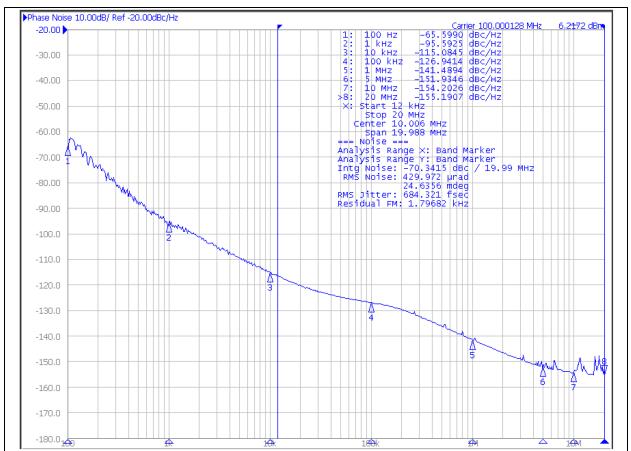


FIGURE 8-1: DSC12x4 Phase Noise at 100 MHz.

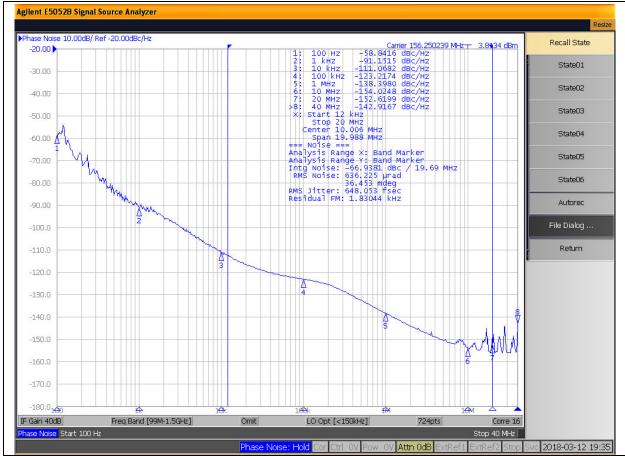


FIGURE 8-2: DSC12x2 Phase Noise at 156.25 MHz.

9.0 PACKAGING INFORMATION

9.1 **Package Marking Information**

6-Pin CDFN/VDFN*

XXXXXXX **DCPYYWW** 0SSS

Example

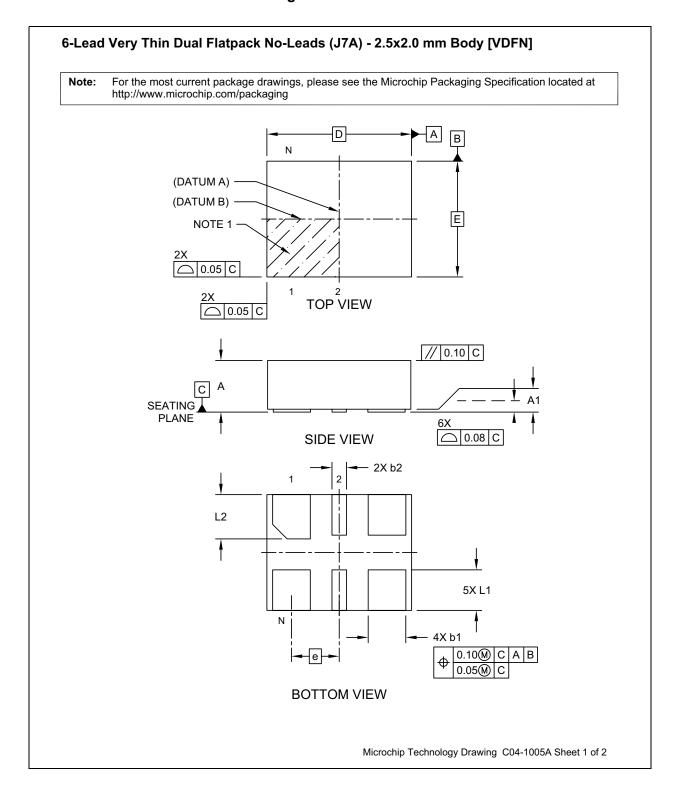
75M00000 **DCP1723** 0421

Legend: XX...X Product code or customer-specific information Year code (last digit of calendar year)

ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01')

SSS Alphanumeric traceability code

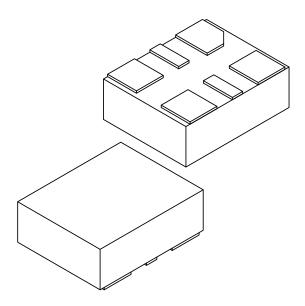
Pb-free JEDEC® designator for Matte Tin (Sn) (e3)


This package is Pb-free. The Pb-free JEDEC designator (@3)) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

In the event the full Microchip part number cannot be marked on one line, it will Note: be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.


6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern

Note:

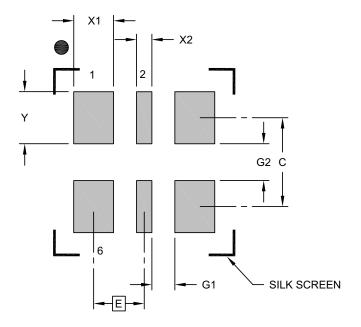
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		6	
Pitch	е		0.825 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Overall Length	D	2.50 BSC		
Overall Width	Е		2.00 BSC	
Terminal Width	b1	0.60	0.65	0.70
Terminal Width	b2	0.20	0.25	0.30
Terminal Length	L1	0.60 0.70 0.80		
Terminal Length	L2	0.665	0.765	0.865

Notes

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M $\,$


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only. \\$

Microchip Technology Drawing C04-1005A Sheet 2 of 2

6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

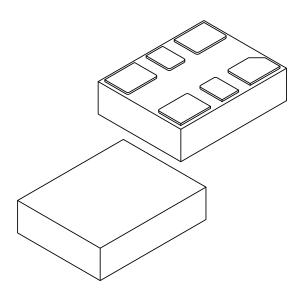
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.825 BSC		
Contact Pad Width (X4)	X1			0.65
Contact Pad Width (X2)	X2			0.25
Contact Pad Length (X6)	Υ			0.85
Contact Pad Spacing	С		1.45	
Space Between Contacts (X4)	G1	0.38		
Space Between Contacts (X3)	G2	0.60		·

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-3005A

6-Lead VDFN 3.2 mm x 2.5 mm Package Outline and Recommended Land Pattern

6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D Ν (DATUM A) (DATUM B) NOTE 1 ○ 0.05 C **TOP VIEW** △ 0.05 C 0.10 C **SEATING PLANE** 0.08 SIDE VIEW 2X b2 NOTE 1 4X b1 L1 **-**|e|-0.07M C A B 0.05M C **BOTTOM VIEW** Microchip Technology Drawing C04-1007A Sheet 1 of 2

6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

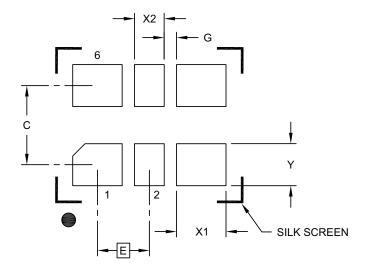
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		6		
Pitch	е		1.05 BSC		
Overall Height	Α	0.80 0.85 0.90			
Standoff	A1	0.00	0.02	0.05	
Overall Length	D	3.20 BSC			
Overall Width	Е		2.50 BSC		
Terminal Width	b1	0.85	0.90	0.95	
Terminal Width	b2	0.45	0.50	0.55	
Terminal Length	Ĺ	0.65	0.70	0.75	
Terminal Pullback	L1	0.10 REF			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1007A Sheet 2 of 2

Note:

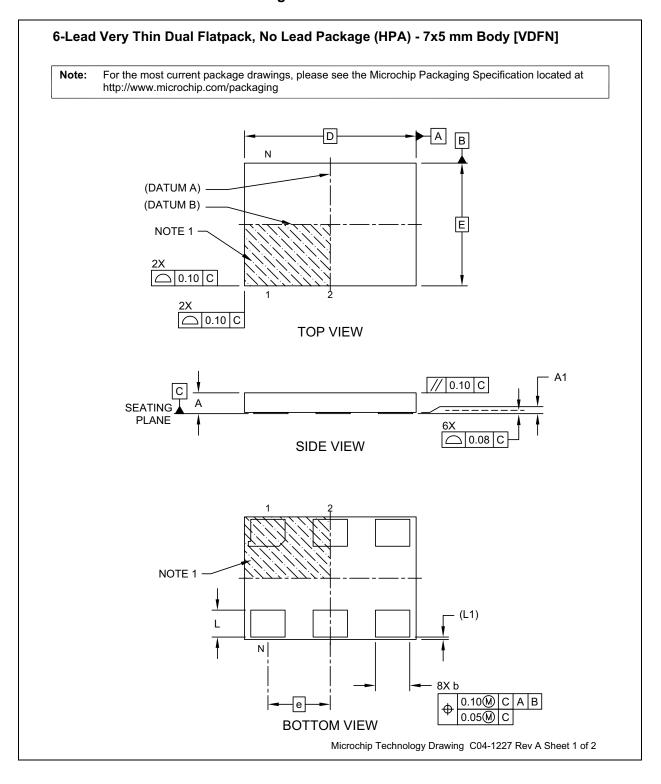
6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

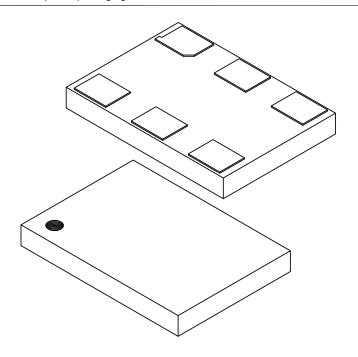
	Units			S
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	1.05 BSC		
Contact Pad Spacing	С		1.60	
Contact Pad Width (X4)	X1			1.00
Contact Pad Width (X2)	X2			0.60
Contact Pad Length (X6)	Υ			0.85
Space Between Contacts (X4)	G1	0.25		

Notes:


Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3007A

6-Lead CDFN 5.0 mm x 3.2 mm Package Outline and Recommended Land Pattern


TITLE 6 LEAD CDFN 5.0x3.2mm COL PACKAGE OUTLINE & RECOMMENDED LAND PATTERN DRAWING # | CDFN5032-6LD-PL-1 UNIT MM 3.20±.05 3.20±.05 Pin #1 5.00±.05 $0.64 \pm .05$ 1.00±.10 1.20 REF Top View Bottom View 0.85±.05 Side View Recommended Land Pattern NOTE: * Power Supply Decoupling Capacitor is required in Recommended Land Pattern. 2. Green shaded rectangles in Recommended Land Pattern are solder stencil opening. Red circles in Recommended Land Pattern are thermal VIA. For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

6-Lead VDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

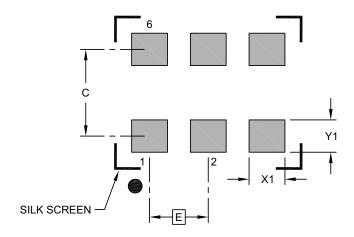
6-Lead Very Thin Dual Flatpack, No Lead Package (HPA) - 7x5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		Units	MILLIMETERS				
	Dimension Limits		MIN	NOM	MAX		
Number of Terminals		N	6				
Pitch		е	2.54 BSC				
Overall Height		Α	0.80	0.85	0.90		
Standoff		A1	0.00	0.02	0.05		
Overall Length		D	7.00 BSC				
Overall Width		Е	5.00 BSC				
Terminal Width		b	1.30	1.40	1.50		
Terminal Length		L	1.00	1.10	1.20		
Pullback		L1	0.10 REF				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1227 Rev A Sheet 2 of 2

6-Lead Very Thin Dual Flatpack, No Lead Package (HPA) - 7x5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	2.54 BSC		
Contact Pad Spacing	С		3.90	
Contact Pad Width (X6)	X1			1.55
Contact Pad Length (X6)	Y1			1.40

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3227 Rev A

APPENDIX A: REVISION HISTORY

Revision A (April 2019)

• Initial release of DSC12x2/3/4 as Microchip data sheet DS20006011A.

DSC12X2/3/4

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>x</u>	X	X	X	X	-XXXXXXXX	X
Device	Control Pin	Output Format	Package	Temperature	Freq. Stability	Output Frequency	Media Type

Control Pin:

0 = Pin 1 STDBY with Pull-up
1 = Pin 1 Frequency Select with Pull-up

2 = Pin 1 OE with Pull-up
3 = Pin 2 STDBY with Pull-up
4 = Pin 2 Frequency Select with Pull-up
5 = Pin 2 OE with Pull-up

High Performance Differential MEMS

 Output Format:
 2
 =
 LVPECL

 3
 =
 LVDS

 4
 =
 HCSL

DSC12:

Device:

 Package:
 N
 =
 7 mm x 5 mm 6-Lead VDFN

 B
 =
 5 mm x 3.2 mm 6-Lead CDFN

 C
 =
 3.2 mm x 2.5 mm 6-Lead VDFN

 D
 =
 2.5 mm x 2 mm 6-Lead VDFN

Temperature: A = -40° C to $+125^{\circ}$ C(Available on certain options)

L = -40° C to +105°C I = -40° C to +85°C E = -20° C to +70°C

Frequency 1 = ±50 ppm Stability: 2 = ±25 ppm 3 = ±20 ppm

Output Frequency: xMxxxxxx= <10 MHz

xxMxxxxx= <100 MHz xxxMxxxx= >100 MHz

CCCCC= with Frequency Select

PROG = TimeFlash

Media Type: <black>= Bulk

T = 1,000/Reel B = 3,000/Reel

Please visit the Microchip ClockWorks Configurator® website to configure the part number for customized frequency select settings.

http://clockworks.microchip.com/timing

Examples:

- a) DSC1202NE1-25M00000T: Pin 1 STDBY with Pull-up, LVPECL Output, 7x5 VDFN, -20°C to +70°C, ±50 ppm, 25 MHz Output Frequency, 1,000/Reel
- b) DSC1243CL3-C0013: Pin 2 Frequency Select with Pull-up, LVDS Output, 3.2x2.5 VDFN, -40°C to +105°C, ±20 ppm, Multiple Output Frequency, Bulk
- c) DSC1224BI2-19M50000B: Pin 1 OE with Pull-up, HCSL Output, 5x3.2 CDFN, -40°C to +85°C, ±25 ppm, 19.5 MHz Output Frequency, 3,000/Reel
- d) DSC1232DL3-55M82000T: Pin 2 STDBY with Pull-up, LVPECL Output, 2.5x2 VDFN, -40°C to +105°C, ±20 ppm, 55.82 MHz Output Frequency, 1,000/Reel
- e) DSC1213NI1-C0014B: Pin 1 Frequency Select with Pull-up, LVDS Output, 7x5 VDFN, -40°C to +85°C, ±50 ppm, Multiple Output Frequency, 3,000/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

DSC12X2/3/4

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4351-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 **China - Xian** Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Programmable Oscillators category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

8N4Q001LG-0102CDI 8N4Q001LG-0139CDI 8N4Q001LG-0055CDI DSC8121CII DSC8102DI2 DSC8124CI2 DSC8121CL5 ECS-P143
10-AN SG-8002CA 2.4576M-PCBB ECS-3525-250-B-TR DSC6013JI1A-000.0000 DSC6013HI1A-002.5000T DSC6011JE2A-000.0000

DSC6011HI1A-002.5000T DSC6083HE1A-032K800T DSC6001JI1A-000.0000 DSC6001CI1A-011.0592 SIT8008BI-22-33E-8.000000G

DSC8002CI2 AD2S99APZ AD2S99BPZ LTC6903HMS8#PBF LTC6903IMS8#PBF LTC6991CDCB#TRMPBF SG-8018CB

98.304MTJHPA DS1086LU+C66 DS1090U-2/V+T DSC2211FL2-E0016 DSC6083CI1A-010K000 DSC6011CI2A-018.0000

DSC6001CI1A-016.9344T DSC6001CI1A-016.3690T DSC6001CE2A-025.0000 DSC6001CI1A-016.3690 DSC6051CE2A-003.0720

DSC6083CI1A-350K000 DSC6053CE2A-003.0720 DSC6083CI1A-350K000T DSC6011CI2A-007.3728T DSC6011CI1A-013.5600

DSC60083CI1A-425K000 DSC6053CE2A-003.0720T DSC6051CE2A-003.0720T DSC6083CI1A-425K000T DSC6083CI1A-010K000T

DSC6001CI1A-003.6864 DSC6001CI1A-011.2896T DSC6001CI1A-012.0000 DSC6001CI2A-004.0000T DSC6001CI2A-032.7680