

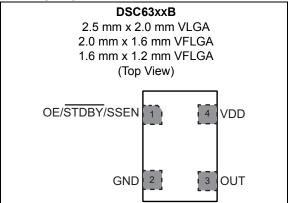
DSC63XXB

Ultra-Small, Ultra-Low Power MEMS Oscillator with Spread Spectrum

Features

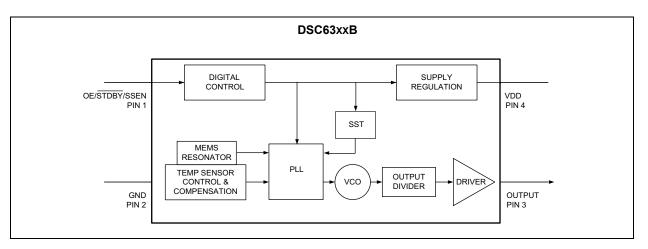
- Output Frequency: 1 MHz to 100 MHz LVCMOS
- Spread Spectrum Options:
 - Center-Spread: ±0.25%, ±0.5%, ±1.0%, ±1.5%, ±2.0%, ±2.5%
 - Down-Spread: -0.25%, -0.5%, -1.0%, -1.5%, -2.0%, -3.0%
- Ultra-Low Power Consumption: 3 mA (Active), 1 µA (Standby)
- + Wide Supply Voltage Range: $1.71V \sim 3.63V V_{DD}$
- Ultra-Small Package Sizes:
 - 1.6 mm \times 1.2 mm
 - 2.0 mm × 1.6 mm
 - 2.5 mm \times 2.0 mm
- Wide Temperature Range:
 - Automotive: -40°C to +125°C
 - Ext. Industrial: -40°C to +105°C
 - Industrial: -40°C to +85°C
 - Ext. Commercial: -20°C to +70°C
- · Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
 - 20x Better MTBF than Quartz Oscillators
- · Lead Free and RoHS Compliant
- Automotive AEC-Q100 Option Available

Applications


- Flat Panel Display/Monitor
- Multi-Function Printer
- Digital Signage
- Consumer Electronics

General Description

The DSC63xxB family of devices is the industry's smallest and lowest-power spread-spectrum MEMS oscillators. Available in three different package sizes with operating current as low as 3 mA, the smallest 4-pin package is a mere 1.6 mm x 1.2 mm in size. The devices support up to $\pm 2.5\%$ or -3% spread spectrum that can achieve up to 15 dB electromagnetic interference (EMI) reduction. Because of industry standard package and pin options, customers can solve last minute EMI problems simply by placing the new DSC63xxB on their current board layout with no redesign required.


The DSC63xxB family is available in 1.6 mm x 1.2 mm and 2.0 mm x 1.6 mm, and 2.5 mm x 2.0 mm packages. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators.

Package Types

DSC63XXB

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Supply Voltage	–0.3V to +4.0V
Input Voltage (V _{IN})	
ESD Protection	

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V_{DD} = 1.8V –5% to 3.3V +10%, T_A = -40°C to +125°C.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Supply Voltage	V _{DD}	1.71		3.63	V	Note 1		
Power Supply Ramp	t _{PU}	0.1		100	ms	Note 8		
Active Supply Current	I _{DD}	_	3.0	_	mA	f _{OUT} = 27 MHz, V _{DD} = 1.8V, No Load		
Ota a dhu Quara hu Quara at	I	_	1	_		V _{DD} = 1.8/2.5V, Note 2		
Standby Supply Current	I _{STBY}		1.5		μA	V _{DD} = 3.3V, Note 2		
Output Duty Cycle	SYM	45		55	%	_		
Frequency	f ₀	1	_	100	MHz	_		
Frequency Stability	∆f	_	_	±20 ±25 ±50	ppm	All temp ranges, Note 3		
A	A C	_		±5		1st year @ 25°C		
Aging	Δf	_	_	±1	ppm	Per year after first year		
Startup Time	t _{SU}	_	_	1.5	ms	From 90% V _{DD} to valid clock output, T = 25°C		
	V _{IH}	$0.7 \times V_{DD}$	_	_	V	Input Logic High, Note 4		
Input Logic Levels	V _{IL}	_	_	0.3 x V _{DD}	V	Input Logic Low, Note 4		
Output Disable Time	t _{DA}		_	200 + 2 Periods	ns	Note 5		
Output Enable Time	t _{EN}	_	_	1	μs	Note 6		
OE/STDBY/SSEN Pull-up Resistor	_	_	300	_	kΩ	If configured, Note 7		

Note 1: Pin 4 V_{DD} should be filtered with 0.1 μ F capacitor.

- 2: Not including current through pull-up resistor on EN pin (if configured).
- 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.
- 4: Input waveform must be monotonic with rise/fall time < 10 ms
- 5: Output Disable time takes up to two periods of the output waveform + 200 ns.
- 6: For parts configured with OE, not Standby.
- 7: Output is enabled if pad is floated or not connected.
- 8: Time to reach 90% of target V_{DD}. Power ramp rise must be monotonic.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = 1.8V - 5\%$ to 3.3V +10%, $T_A = -40^{\circ}C$ to +125°C.									
Parameters	Sym.	Min.	Тур.	Max.	Units	Co	Conditions		
					v	Output Logic High, I = 3 mA, Std. Drive			
	V _{OH}	0.8 x V _{DD}		_	V	Output Logic High Drive	High, I = 6 mA,		
Output Logic Levels	N/			0.2 × 1/	v	Output Logic Std. Drive	Low, I = -3 mA,		
	V _{OL}	_		0.2 x V _{DD}	V	Output Logic High Drive	Low, I = -6 mA,		
	t _{RX} /t _{FX}	_	1	1.5	ns	DSC61x2 High Drive, 20% to 80% C _L = 15 pF	V _{DD} = 1.8V		
Output Transition Time		_	0.5	1.0	ns		V _{DD} = 2.5V/3.3V		
Rise Time/Fall Time	t _{RY} /t _{FY}	_	1.2	2.0	ns	DSC61x1 Std Drive, 20% to 80% C _L = 10 pF	V _{DD} = 1.8V		
		_	0.6	1.2	ns		V _{DD} = 2.5V/3.3V		
			8.5			f _{OUT} =	V _{DD} = 1.8V		
Period Jitter, RMS	J_PER	_	7	_	ps _{RMS}	27 MHz, Spread Off	V _{DD} = 2.5V/3.3V		
Cycle-to-Cycle Jitter			50	70		f _{OUT} =	V _{DD} = 1.8V		
(Peak)	J _{Cy–Cy}	_	35	60	ps	27 MHz, Spread Off	V _{DD} = 2.5V/3.3V		
Period Jitter			70	—	ps	f _{OUT} = 27 MHz, Spread Off	V _{DD} = 1.8V		
(Peak-to-Peak)	J _{PP}	_	60	—			V _{DD} = 2.5V/3.3V		
Spread Spectrum Modulation Frequency	f _{SS}	_	33	_	kHz	_			

Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor.

- 2: Not including current through pull-up resistor on EN pin (if configured).
- 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.
- 4: Input waveform must be monotonic with rise/fall time < 10 ms
- 5: Output Disable time takes up to two periods of the output waveform + 200 ns.
- 6: For parts configured with OE, not Standby.
- 7: Output is enabled if pad is floated or not connected.
- 8: Time to reach 90% of target V_{DD}. Power ramp rise must be monotonic.

SPREAD SPECTRUM

Ordering Code	Spread Percentage	Spread Type	
A	±0.25%	Center-Spread	
В	±0.5%	Center-Spread	
С	±1.0%	Center-Spread	
D	±1.5%	Center-Spread	
E	±2.0%	Center-Spread	
F	±2.5%	Center-Spread	
G	-0.25%	Down-Spread	
Н	-0.5%	Down-Spread	
I	-1.0%	Down-Spread	
J	-1.5%	Down-Spread	
К	-2.0%	Down-Spread	
L	-3.0%	Down-Spread	
М	Custom	Center-Spread or Down-Spread	

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Junction Operating Temperature	Τ _J	-40	—	+150	°C	—
Storage Ambient Temperature Range	Τ _Α	-55	—	+150	°C	—
Soldering Temperature	Τ _S	_	+260	_	°C	40 sec. max.

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

2.0 PIN DESCRIPTIONS

The DSC63xxB is a highly configurable device and can be factory programmed in many different ways to meet the customer's needs. Microchip's ClockWorks[®] Configurator http://clockworks.microchip.com/Timing/ must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1.

Pin Number	Pin Name	Description
	OE	Output Enable: H = Active, L = Disabled (High Impedance).
(Note 1)	STDBY	Standby: H = Device is active, L = Device is in standby (Low Power Mode).
	SSEN	Spread Spectrum Enable: H = Enabled, L = Disabled.
2	GND	Ground.
3	Output	Oscillator clock output.
4	VDD	Power supply: 1.71V to 3.63V.

TABLE 2-1:DSC63XXB PIN FUNCTION TABLE

Note 1: DSC630xB/1xB/3xB has a 300 k Ω internal pull-up resistor on pin 1. DSC634xB/5xB/7xB has no internal pull-up resistor on pin 1 and needs an external pull-up or to be driven by another chip.

An explanation of the different options listed in Table 2-1 follows.

2.1 Pin 1

This is a control pin and may be configured to fulfill one of three different functions. If not actively driven, a 10 k Ω pull-up resistor is recommended.

2.1.1 OUTPUT ENABLE (OE)

Pin 1 may be configured as OE. Oscillator output may be turned on and off according to the state of this pin.

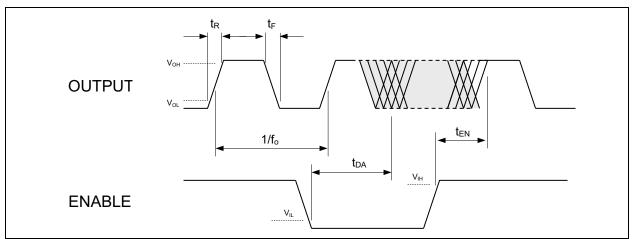
2.1.2 STDBY

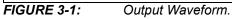
Pin 1 may be configured as Standby. When the pin is low, both output buffer and PLL will be off and the device will enter a low power mode.

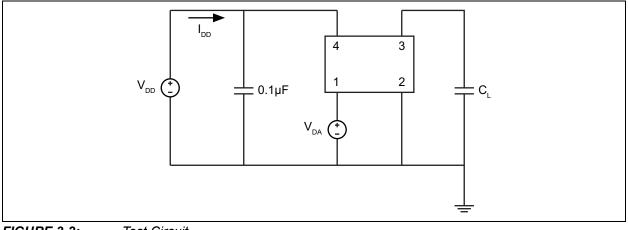
2.1.3 SPREAD SPECTRUM ENABLE (SSEN)

This pin, when high, enables spread spectrum modulation of the clock output. Various levels of center-spread and down-spread are available. For more details, see the Spread Spectrum section and the spread spectrum ordering codes on the Product Identification System.

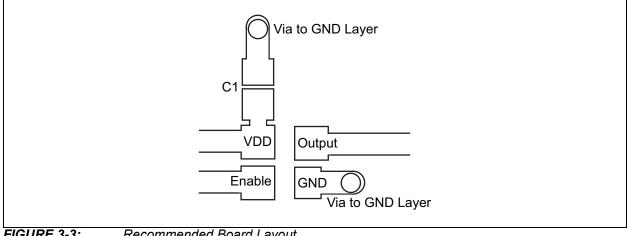
2.2 Pins 2 through 4

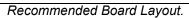

Pins 2 and 4 are the supply terminals, GND and VDD respectively. Pin 3 is the clock output, programmable to Standard and High Drive strength settings. Visit ClockWorks® Configurator to customize your device.


2.3 Output Buffer Options


The DSC63xx family is available in multiple output driver configurations.


The standard-drive (63x1) and high-drive (63x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended.


3.0 DIAGRAMS



4.0 SPREAD SPECTRUM

Spread spectrum is a slow modulation of the clock frequency over time. The PLL inside the MEMS oscillator is modulated with a triangular wave at 33 kHz. With such a slow modulation, the peak spectral energy of both the fundamental and all the harmonics is spread over a wider frequency range and such an energy is significantly reduced, thus providing an EMI reduction. The triangular wave is chosen because of its flat spectral density.

The DSC63xxB MEMS oscillator family offers several modulation options: the spreading is either center-spread or down-spread with respect to the clock frequency. Center-spread ranges from $\pm 0.25\%$ to $\pm 2.5\%$, while down-spread ranges from -0.25% to -3%.

If the clock frequency is 100 MHz and center-spread with $\pm 1\%$ is chosen, the output clock will range from 99 MHz to 101 MHz. If down-spread with -2% is chosen, the output clock will range from 98 MHz to 100 MHz.

Figure 4-1 and Figure 4-2 show a spectrum example of the DSC6331 with a 33.333 MHz clock, modulated with center-spread of ±1%.

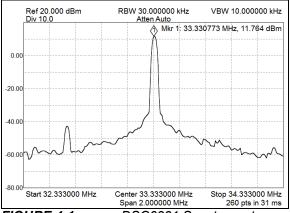
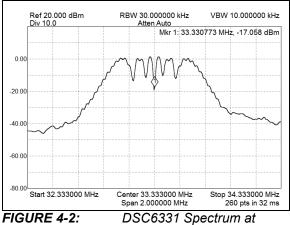



FIGURE 4-1: DSC6331 Spectrum at 33.333 MHz with Modulation Turned Off.

33.333 MHz with Modulation Turned On.

It is noticeable that the spread spectrum provides a reduction of about 10 dB from the peak power. Such a reduction may also be estimated by the following equation:

EQUATION 4-1:

EMI Reduction = $10 \times Log 10(|S| \times fc \div RBW)$

Where:

- S Peak-to-peak spread percentage (0.01, this example).
- fc Carrier frequency (33.333 MHz, this example).
- RBW Resolution bandwidth of the spectrum analyzer (30 kHz, this example).

The theoretical calculation for this example provides 10.45 dB, which is consistent with the measurement.

Similarly to the fundamental frequency, all the harmonics are spread and attenuated in similar fashion. Figure 4-3 shows how the DSC6331 fundamental at 33.333 MHz and its odd harmonics are attenuated when various types of modulations are selected. For picture clarity, only the center-spread options are shown. However, down spread with corresponding percentage provides the same level of harmonic attenuation (e.g. center-spread of $\pm 1\%$ provides the same harmonics attenuation of down spread with -2%).

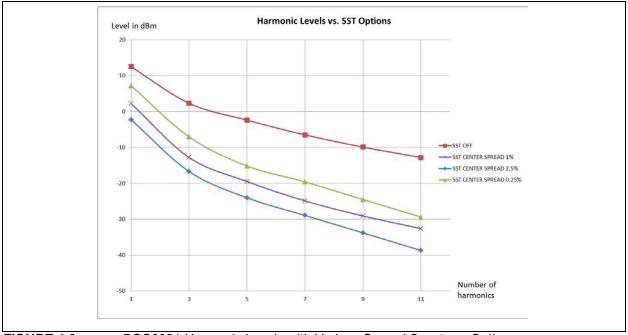
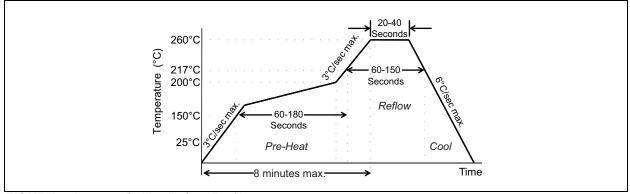
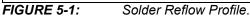
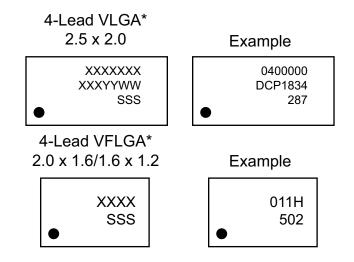




FIGURE 4-3:

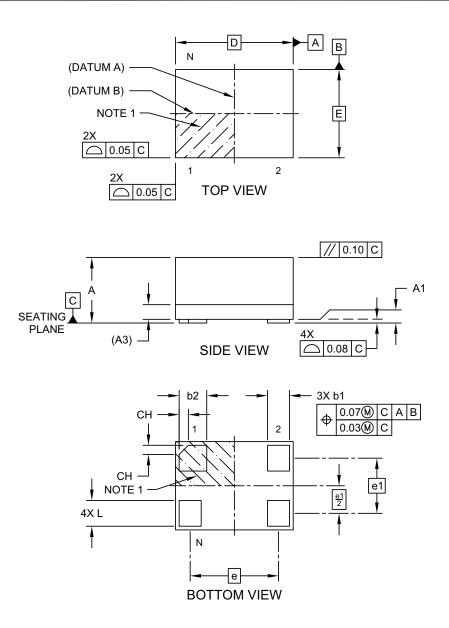
DSC6331 Harmonic Levels with Various Spread Spectrum Options.

5.0 SOLDER REFLOW PROFILE



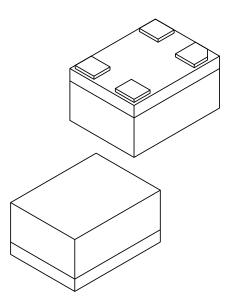
MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/sec. max.				
Preheat Time 150°C to 200°C	60 to 180 sec.				
Time maintained above 217°C	60 to 150 sec.				
Peak Temperature	255°C to 260°C				
Time within 5°C of actual Peak	20 to 40 sec.				
Ramp-Down Rate	6°C/sec. max.				
Time 25°C to Peak Temperature	8 minutes max.				

6.0 PACKAGING INFORMATION


6.1 Package Marking Information

Legend	: XXX Y YY WW SSS (e3) *	Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (€3) can be found on the outer packaging for this package.
	●, ▲, ▼ mark).	Pin one index is identified by a dot, delta up, or delta down (triangle
	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available of or customer-specific information. Package may or may not include ate logo.
	Underbar	(_) and/or Overbar (¯) symbol may not be to scale.

4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1199A Sheet 1 of 2

4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension	MIN	NOM	MAX		
Number of Terminals	N		4		
Terminal Pitch	е		1.20 BSC		
Terminal Pitch	e1	0.75 BSC			
Overall Height	Α	0.79	0.84	0.89	
Standoff	A1	0.00	0.02	0.05	
Substrate Thickness (with Terminals)	A3	0.20 REF			
Overall Length	D		1.60 BSC		
Overall Width	Е		1.20 BSC		
Terminal Width	b1	0.25	0.30	0.35	
Terminal Width	b2	0.325	0.375	0.425	
Terminal Length	L	0.30 0.35 0.40			
Terminal 1 Index Chamfer	СН	-	0.125	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1199A Sheet 2 of 2

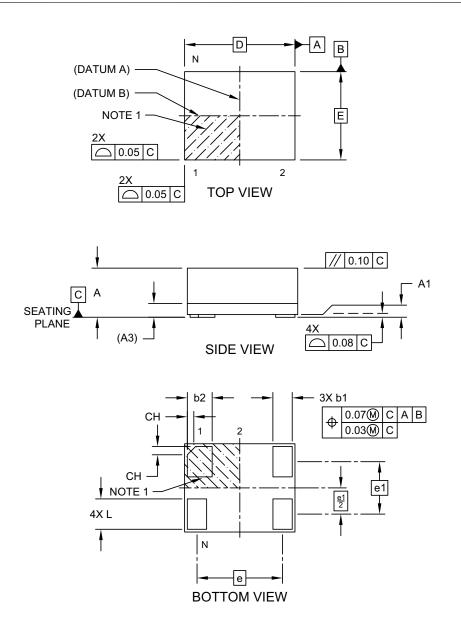
4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E1		1.20 BSC	
Contact Pitch	E2		1.16 BSC	
Contact Spacing	С		0.75	
Contact Width (X3)	X1			0.35
Contact Width	X2			0.43
Contact Pad Length (X6)	Y			0.50
Space Between Contacts (X4)	G1	0.85		
Space Between Contacts (X3)	G2	0.25		
Contact 1 Index Chamfer	СН	0.13 X 45° REF		

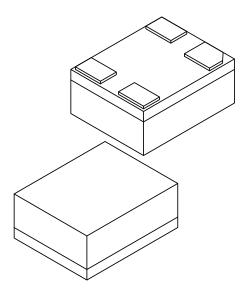
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3199A

4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1200A Sheet 1 of 2

4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

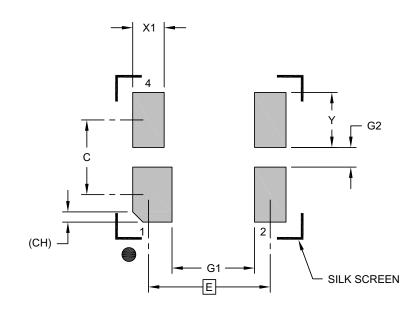
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	9		
Dimension	MIN	NOM	MAX		
Number of Terminals	N	6			
Terminal Pitch	e		1.55 BSC		
Terminal Pitch	e1	0.95 BSC			
Overall Height	А	0.79	0.84	0.89	
Standoff	A1	0.00	0.02	0.05	
Substrate Thickness (with Terminals)	A3	0.20 REF			
Overall Length	D		2.00 BSC		
Overall Width	E		1.60 BSC		
Terminal Width	b1	0.30	0.35	0.40	
Terminal Width	b2	0.40	0.45	0.50	
Terminal Length	L	0.50 0.55 0.60			
Terminal 1 Index Chamfer	CH	-	0.15	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1200A Sheet 2 of 2

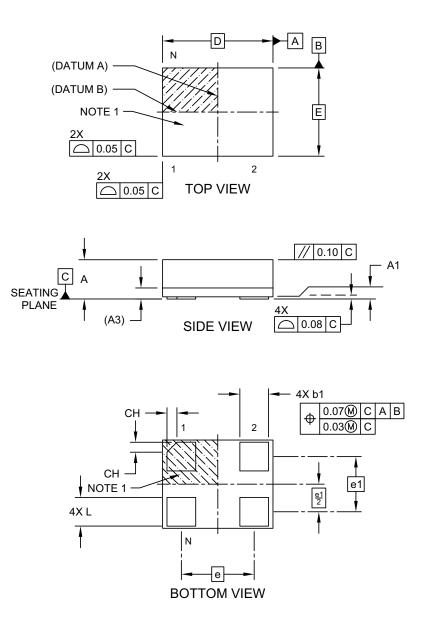
4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

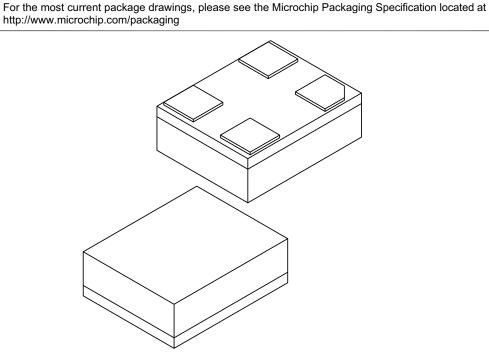
RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E		1.55 BSC	
Contact Spacing	С		0.95	
Contact Width (X4)	X1			0.50
Contact Width (X2)	X2			0.40
Contact Pad Length (X6)	Y			0.70
Space Between Contacts (X4) G1		1.05		
Space Between Contacts (X3) G2		0.25		
Contact 1 Index Chamfer	СН	().13 X 45° RE	F

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-3200A

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1202A Sheet 1 of 2

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

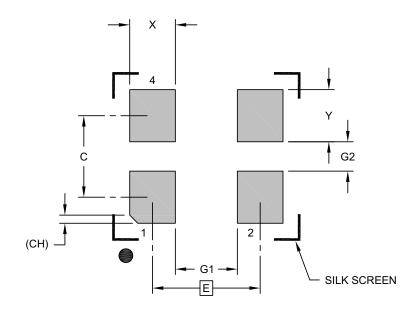
Units		MILLIMETERS		
Dimension	MIN	NOM	MAX	
Number of Terminals	Ν	4		
Terminal Pitch	е	1.65 BSC		
Terminal Pitch	e1	1.25 BSC		
Overall Height	Α	0.79	0.84	0.89
Standoff	A1	0.00	0.02	0.05
Substrate Thickness (with Terminals)	A3	0.20 REF		
Overall Length	D	2.50 BSC		
Overall Width	Е	2.00 BSC		
Terminal Width	b1	0.60	0.65	0.70
Terminal Length	L	0.60	0.65	0.70
Terminal 1 Index Chamfer	СН	-	0.225	-

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1202A Sheet 2 of 2

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	1.65 BSC		
Contact Spacing	С		1.25	
Contact Width (X4)	Х			0.70
Contact Pad Length (X6)	Y			0.80
Space Between Contacts (X4)	G1	0.95		
Space Between Contacts (X3)	G2	0.45		
Contact 1 Index Chamfer	CH	0.13 X 45° REF		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3202A

APPENDIX A: REVISION HISTORY

Revision A (January 2019)

Initial creation of DSC63xxB Microchip data sheet DS20006154A.

DSC63XXB

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

		e.g., on pricing of derivery, contact yo		xamples:
PART NO. X X	<u>x</u> T	<u>x x x x - xxx.xx</u>	XX X	•
Device Pin 1 Out	put Package	Temp. Freq. Spread Revision Freque	a.) DSC6312JI2DB-100.0000: Ultra-Small, Ultra-Low Power MEMS Oscillator with
Definition Driv	ve	Range Stability Spectrum	Туре	Spread Spectrum, Pin 1 = STDBY with Internal Pull-
Stre	ngth			Up, High Drive Strength, 4-Lead 2.5 mm x 2.0 mm
Device:	DSC63:	Ultra-Small, Ultra-Low Power MEMS		VLGA, Industrial Temperature, ±25 ppm Stability,
Device.	D0000.	Oscillator with Spread Spectrum		±1.5% Center-Spread, Revision B, 100 MHz Frequency, 140/Tube
			h) DSC6301HE1LB-016.0000T:
Pin Definition:	Selection	Pin 1 Internal Pull-Up Register		Ultra-Small, Ultra-Low Power MEMS Oscillator with
	0	OE Pull-up		Spread Spectrum, Pin 1 = OE with Internal Pull-Up,
	1	STDBY Pull-up		Standard Drive Strength, 4-Lead 1.6 mm x 1.2 mm
	3	SSEN Pull-up		VFLGA, Extended Commercial Temperature, ±50 ppm Stability, –3.0% Down-Spread, Revision B, 16 MHz
	4	OE None		Frequency, 1,000/Reel
	5	STDBY None	C,) DSC6331MI2AB-050.5000B:
	7	SSEN None		Ultra-Small, Ultra-Low Power MEMS Oscillator with
				Spread Spectrum, Pin 1 = SSEN with Internal Pull-Up,
Output Drive	1	Standard		Standard Drive Strength, 4-Lead 2.0 mm x 1.6 mm
Strength:	2	High		VFLGA, Industrial Temperature, ±25 ppm Stability,
				±0.25% Center-Spread, Revision B, 50.5 MHz Frequency, 3,000/Reel
Packages:	J =	4-Lead 2.5 mm x 2.0 mm VLGA		
-	M =	4-Lead 2.0 mm x 1.6 mm VFLGA		lote 1: Media Type identifier only appears in the catalog part number description. This
	H =	4-Lead 1.6 mm x 1.2 mm VFLGA		identifier is used for ordering purposes and
				is not printed on the device package. Check with your Microchip Sales Office for package
Temperature Range:	A = L =	 -40°C to +125°C (Automotive) -40°C to +105°C (Extended Industrial) 		availability with different media options.
itango.	I =	–40°C to +85°C (Industrial)		
	E =	–20°C to +70°C (Extended Commercial)		
Frequency Stability	1 = 2 =	± 50 ppm		
Stability:	2 =	± 25 ppm ± 20 ppm		
Spread Spectrum:	A =	±0.25% Center-Spread		
	в =	±0.5% Center-Spread		
	C = D =	±1.0% Center-Spread ±1.5% Center-Spread		
	E =	±2.0% Center-Spread		
	F =	±2.5% Center-Spread		
	G = H =	-0.25% Down-Spread -0.5% Down-Spread		
	=	–1.0% Down-Spread		
	J = K =	–1.5% Down-Spread–2.0% Down-Spread		
	L =	-3.0% Down-Spread		
	M =	Custom		
Revision:	В =	Revision B		
Frequency:	xxx.xxxx =	User-Defined Frequency between		
. ,		001.0000 MHz and 100.0000 MHz		
Media Type:	<blank>=</blank>	140/Tube (J Package Option)		
	<blank>=</blank>	100/Bag (M & H Package Option)		
	T = B =	1,000/Reel 3,000/Reel		
	<u>ы</u> –	5,000/12001		

Note 1: Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/.

DSC63XXB

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4096-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung Tel: 886-7-213-7830

Tel: 886-2-2508-8600

Thailand - Bangkok

Tel: 84-28-5448-2100

Netherlands - Drunen Tel: 31-416-690399

Italy - Milan

Italy - Padova

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Tel: 81-6-6152-7160 Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Tel: 886-3-577-8366

Taiwan - Taipei

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh

Tel: 48-22-3325737

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard Clock Oscillators category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

601252F335-12F335-25F535L-33.333F535L-50ASV-20.000MHZ-LR-TECS-2018-160-BN-TREL13C7-H2F-125.00MMXO45HS-2C-66.6666MHZSiT8209AI-32-33E-125.000000SM4420TEV-40.0M-T1KF335-24F335-40F535L-10F535L-12F535L-16F535L-24F535L-27F535L-48PE7744DW-100.0MCSX-750FCC14745600TASF1-3.686MHZ-N-K-SXO57CTECNA3M6864ECS-2100A-147.4601251EP16E7E2H26.000MTRSIT8918AA-11-33S-16.00000GXO30039120AC-2D2-33E212.5000009102AI-243N25E100.000008208AC-82-18E-25.00000ASDK2-32.768KHZ-LR-T38008AI-72-XXE-24.545454E8004AC-13-33E-133.33000XAS-4.9152-16-SMD-TRASFL1-48.000MHZ-LC-TSIT8920AM-31-33E-25.0000DSC1028DI2-019.20009121AC-2C3-25E100.000009102AI-233N3E100.00000X9102AI-233N25E200.000009102AI-232H25S125.000009102AI-133N25E200.000009102AC-283N25E200.000009001AC-33-33E1-33.0000XLH536125.000JS4I3921AI-2CF-33NZ125.000005730-1SFPXA000010SIT1602BC-83-33E-10.00000Y