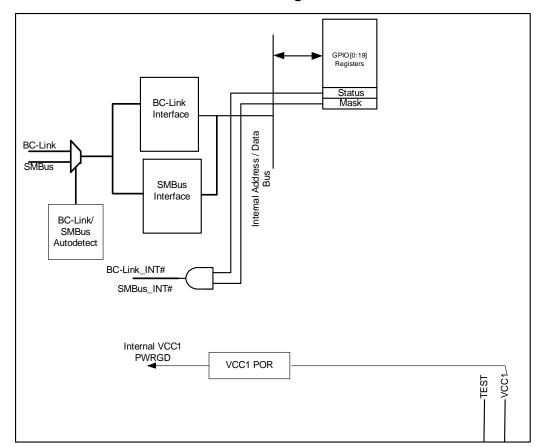


ECE1088


GPIO Expansion via SMBus or BC-Link Bus

Highlights

The ECE1088 is a 28-Pin 3.3V GPIO Expansion device. The device is connected to a Master via the BC-Link interface or via the SMBus.

Features

- 20 Multiplexed General Purpose I/O pins
 All are MCU addressable I/O Pins
- BC-Link Interconnect Bus
 - Link to embedded controller
- SMBus Interconnect
 - One of two address selection
- 3.3V Operation
 - 28-Pin, QFN RoHS Compliant package
 - 0.5mm Pitch
 - 5x5mm Body size

Block Diagram

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

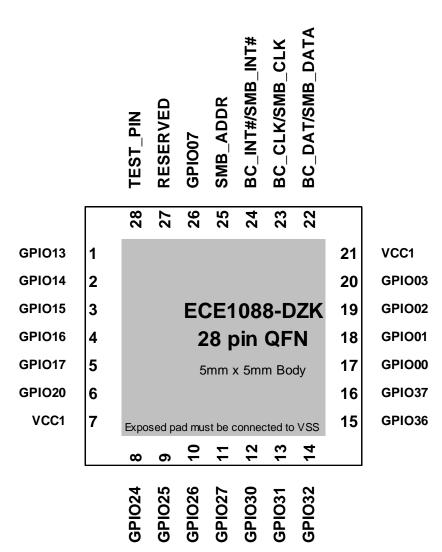
- To determine if an errata sheet exists for a particular device, please check with one of the following:
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Table of Contents


1.0 Pin Functions	4
2.0 Product Description	10
3.0 Operational Description	22
4.0 Timing Diagrams	
5.0 Package Outline	
Appendix A: Data sheet Revision History	27
The Microchip Web Site	
Customer Change Notification Service	28
Customer Support	28
Product Identification System	29

1.0 PIN FUNCTIONS

TABLE 1-1: ECE1088 PIN TABLE

Pin #	Name	Pin #	Name
1	GPIO13	15	GPIO36
2	GPIO14	16	GPIO37
3	GPIO15	17	GPIO00
4	GPIO16	18	GPIO01
5	GPIO17	19	GPIO02
6	GPIO20	20	GPIO03
7	VCC1	21	VCC1
8	GPIO24	22	BC_DAT/SMB_DATA
9	GPIO25	23	BC_CLK/SMB_CLK
10	GPIO26	24	BC_INT#/SMB_INT#
11	GPIO27	25	SMB_ADDR
12	GPIO30	26	GPIO07
13	GPIO31	27	RESERVED
14	GPIO32	28	TEST_PIN

FIGURE 1-1: ECE1088 PIN DIAGRAM (TOP VIEW, EXPOSED PAD IS ON THE BOTTOM)

TABLE 1-2: ECE1088 PIN DESCRIPTIONS

Pin #	Name	Description	Buffer	Notes
1	GPIO13	General Purpose IO.	ISP/O8	3
2	GPIO14	General Purpose IO.	ISP/O8	3
3	GPIO15	General Purpose IO.	ISP/O8	3
4	GPIO16	General Purpose IO.	ISP/O8	3
5	GPIO17	General Purpose IO.	ISP/O8	3
6	GPIO20	General Purpose IO.	IP/O8	3
7	VCC1	PWR	PWR	
8	GPIO24	General Purpose IO.	IP/O8	3
9	GPIO25	General Purpose IO.	IP/08	3
10	GPIO26	General Purpose IO.	IP/O8	3
11	GPIO27	General Purpose IO.	IP/O8	3
12	GPIO30	General Purpose IO.	IP/O8	3
13	GPIO31	General Purpose IO.	IP/O8	3
14	GPIO32	General Purpose IO.	IP/08	3
15	GPIO36	General Purpose IO.	IP/O8	3
16	GPIO37	General Purpose IO.	IP/08	3
17	GPIO00	General Purpose IO.	IP/O8	3
18	GPIO01	General Purpose IO.	IP/O8	3
19	GPIO02	General Purpose IO.	IP/O8	3

Pin #	Name	Description	Buffer	Notes
20	GPIO03	General Purpose IO.	IP/O8	3
21	VCC1	PWR	PWR	
22	BC_DAT/SMB_DATA	BC_DAT IO. SMBus Data IO	I/O8	
23	BC_CLK/SMB_CLK	BC_CLK. SMBus Slave Clock I	I	
24	BC_INT#/SMB_INT#	BCINT#t Output Active Low . SMBus Interrupt Output Active Low	O8	4
25	SMB_ADDR	SMBus Address Select Strap. Selects between one of two SMBus Slave Addresses	Ι	
26	GPIO07	General Purpose IO.	IP/O8	3
27	RESERVED	Reserved	NC	2
28	TEST_PIN	Test Pin Input	I	1
		Exposed pad must be connected to VSS		

Note 1: This pin requires an external pull-down resister to ensure that the pin remains de-asserted.

- 2: NC Not Connected.
- 3: Full Function GPIO Refer to Table 2-4, "GPIO Configuration Register".
- 4: SMB_INT# is Open Drain / BC_INT# is Push-pull. SMBus is default.

TABLE 1-3: ALTERNATE PIN FUNCTIONS

Pin #	Primary	Alternate
1	GPIO13	
2	GPIO14	
3	GPIO15	
4	GPIO16	
5	GPIO17	
6	GPIO20	
7	VCC1	
8	GPIO24	
9	GPIO25	
10	GPIO26	
11	GPIO27	
12	GPIO30	
13	GPIO31	
14	GPIO32	
15	GPIO36	
16	GPIO37	
17	GPIO00	
18	GPIO01	
19	GPIO02	
20	GPIO03	
21	VCC1	
22	BC_DAT	SMB_DATA
23	BC_CLK	SMB_CLK
24	BC_INT#	SMB_INT#
25	SMB_ADDR	
26	GPIO07	
27	RESERVED	
28	TEST_PIN	

1.1 XNOR Chain Test Mode

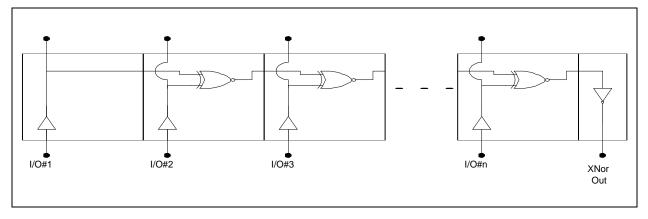
An XNOR Chain test structure is in to the ECE1088 to allow users to confirm that all pins are in contact with the motherboard during assembly and test operations (Figure 1-2, "XNOR Chain Test Structure").

The XNOR Chain test structure must be activated to perform these tests. When the XNOR Chain is activated, the ECE1088 pin functions are disconnected from the device pins, which all become input pins except for one output pin at the end of XNOR Chain.

The tests that are performed when the XNOR Chain test structure is activated require the board-level test hardware to control the device pins and observe the results at the XNOR Chain output pin.

1.2 Pins in XNOR Chain Structure

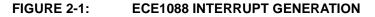
All pins are inputs into the XNOR Chain with the exception of the following pins:

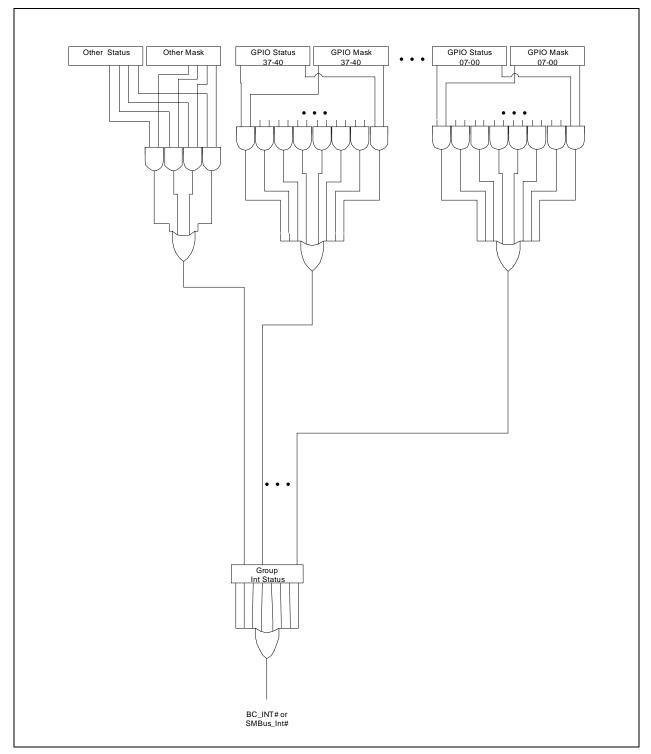

- TEST_PIN (this is the XNOR Chain enable input)
- RESERVED
- SMB_ADDR
- BC_INT#/SMB_INT#

1.3 Entering and Exiting the XNOR Chain

The XNOR Chain test is entered by setting TEST_PIN to 1 while SMB_ADDR is 0.

When activated, the test mode allows one single input pin, when switched, to toggle the BC_INT#/SMB_INT# output. The XNOR Chain is exited by setting TEST_PIN to 0, independent of the value of SMB_ADDR.


2.0 PRODUCT DESCRIPTION


2.1 Summary

The ECE1088 is a 28-pin 3.3V GPIO Expansion device. The device is connected to a Master via the BC-Link interface or via the SMBus.

2.2 Interrupt Generation

Interrupts can be generated by an edge detection on a GPIO pin or an edge detection on one of the bus interface pins. The bus interrupt pin (BC_INT# or SMBUS_INT#) is asserted if any bit in one of the Interrupt Status registers is 1 and the corresponding Interrupt Mask bit is also 1. Interrupt generation is illustrated in Figure 2-1, "ECE1088 Interrupt Generation".

In order for software to determine which device is the source of an interrupt, it should first read the Group Interrupt Status Register to determine which Status register group is a source for the interrupt. Software should read both the Status register and the associated Mask register, then AND the two values together. Bits that are 1 in the result of the AND are active interrupts.

Software clears an interrupt by writing a 1 to the corresponding bit in the Status register.

Note: Although the ECE1088 can generate the SMBus interrupt signal SMBUS_INT# as described above, it will not respond to the SMBus Alert Response Address transaction unless Bit4 ARA in the Clock Control Register (Register FAh) is set to 1.

2.3 Integrated VCC1 Reset Generator

When VCC1 power is applied to the ECE1088, a VCC1 POR will be generated. This VCC1 POR will reset the device.

2.4 Register Address Table

TABLE 2-1:	REGISTER SUMMARY
------------	------------------

Address (HEX)	Register	VCC1 POR Default		
00h	GPIO[7, 3:0] Input	00h		
01h	GPIO[17:13] Input	00h		
02h	GPIO[27,24:20] Input	00h		
03h	GPIO[37:36,32:30] Input	00h		
04h	Reserved	00h		
05h	GPIO[7,3:0] Output	00h		
06h	GPIO[17:10] Output	00h		
07h	GPIO[27:24,20] Output	00h		
08h	GPIO[37:36,32:30] Output	00h		
09h	Reserved	00h		
0Ah	GPIO00 Configuration	00h		
0Bh	GPIO01 Configuration	00h		
0Ch	GPIO02 Configuration	00h		
0Dh	GPIO03 Configuration	00h		
0E-10h	Reserved	00h		
11h	GPIO07 Configuration	00h		
12-14h	Reserved	00h		
15h	GPIO13 Configuration	00h		
16h	GPIO14 Configuration	00h		
17h	GPIO15 Configuration	00h		
18h	GPIO16 Configuration	00h		
19h	GPIO17 Configuration	00h		
1Ah	GPIO20 Configuration	00h		
1B-1Dh	Reserved	00h		
1Eh	GPIO24 Configuration	00h		
1Fh	GPIO25 Configuration	00h		
20h	GPIO26 Configuration 00			
21h	GPIO27 Configuration	00h		
22h	GPIO30 Configuration	00h		
23h	GPIO31 Configuration	00h		

Address (HEX)	Register	VCC1 POR Default
24h	GPIO32 Configuration	00h
25-27h	Reserved	00h
28h	GPIO36 Configuration	00h
29h	GPIO37 Configuration	00h
2A-31h	Reserved	00h
32h	GPIO[7,3:0] Interrupt Status	00h
33h	GPIO[17:13] Interrupt Status	00h
34h	GPIO[27:24.20] Interrupt Status	00h
35h	GPIO[37:36,32:30]Interrupt Status	00h
36h	Reserved	00h
37h	GPIO[7,3:0] Interrupt Mask	00h
38h	GPIO[17:13] Interrupt Mask	00h
39h	GPIO[27:24,20] Interrupt Mask	00h
3Ah	GPIO[37:36,32:30] Interrupt Mask	00h
3B-F4h	Reserved	00h
F5h	Reset	00h
F6h	MCHP test	00h
F7h-F8h	Reserved	00h
F9h	Group Interrupt	00h
FAh	Clock Control	00h
FBh	Wakeup Control	00h
FCH	Device ID	40h
FDh	Device Version Number	Current version
FEh	Vendor ID (LSB)	55h
FFh	Vendor ID (MSB)	10h

TABLE 2-1: REGISTER SUMMARY (CONTINUED)

2.5 Detailed Register Descriptions

2.5.1 GPIO REGISTERS

2.5.2 GPIO INPUT REGISTER

TABLE 2-2:GPIO INPUT REGISTER

ADDRESS	REFER TO Table 2-1, "Register Summary"			8-bit SIZE				
POWER	VCC1					N/A	VCC1 POF DEFAULT	R
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
BIT NAME	GPIOx7	GPIOx6	GPIOx5	GPIOx4	GPIOx3	GPIOx2	GPIOx1	GPIOx0

ECE1088

2.5.3 GPIO OUTPUT REGISTER

TABLE 2-3: GPIO OUTPUT REGISTER

ADDRESS	REFER TO Table 2-1, "Register Summary"			8-bit			SIZE	
POWER	VCC1					00h	VCC1 POF DEFAULT	R
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
BIT NAME	GPIOx7	GPIOx6	GPIOx5	GPIOx4	GPIOx3	GPIOx2	GPIOx1	GPIOx0

2.5.4 GPIO CONFIGURATION REGISTER

TABLE 2-4:GPIO CONFIGURATION REGISTER

ADDRESS	REFER TO Summary"	Table 2-1,	"Register	8-bit SIZE				
POWER	VCC1					00h	VCC1 POR DEFAULT	
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R/W	R/W	R/W	R/W	R/W	R	R/W
BIT NAME	RES ALT DIR			TY	PE	POL	RES	PU

2.5.4.1 ALT

ALT Function select bit should always be set as 0.

2.5.4.2 DIR, TYPE

The level/edge and output type are controlled by these fields. The effects are defined in Table 2-5, "Direction, Level/Edge, Output Type Bit Definition".

TABLE 2-5: DIRECTION, LEVEL/EDGE, OUTPUT TYPE BIT DEFINITION

Direction Bit 5	Type Bit 4	Type Bit 3	Selected Function
0	0	0	Input, Level Sensitive Low
0	0	1	Input, Rising Edge Triggered
0	1	0	Input, Falling Edge Triggered
0	1	1	Input, Both Edge Triggered
1	0	х	Output, Push-Pull
1	1	х	Output, Open Drain

In order to enable oscillator wakeup from Low Power Mode for any GPIO pin, the GPIO Configuration Register for that GPIO must be configured for Input in Bit 5). See Section 2.6.2, "Clock Control".

2.5.4.3 POL

When the **POL** bit is set to '1" the signal output is inverted when routed to its pin and the interrupt level sense is inverted when a level-sensitive interrupt is selected by the **DIR**, **TYPE** fields. The state of the pin is always reported without inversion in the GPIO Input Register.

2.5.4.4 PU

When this bit is 1, an internal pull-up resistor is connected to the pin. When this bit is 0, the pullup is disabled.

2.5.5 GPIO INTERRUPT STATUS REGISTER

TABLE 2-6: GPIO INTERRUPT STATUS REGISTER

ADDRESS	REFER TO Summary"	Table 2-1,	"Register	8-bit			SIZE	
POWER	VCC1			00h			VCC1 POR DEFAULT	
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC	R/WC
BIT NAME	GPIOX7	GPIOX6	GPIOX5	GPIOX4	GPIOX3	GPIOX2	GPIOX1	GPIOX0

A bit in a GPIOX Interrupt Status Register is set to 1 when the DIRECTION field for that bit in the corresponding GPIOX n Configuration Register is set for Input and the bit in the corresponding GPIOX Input Register matches the conditions defined by the TYPE field in the GPIOX Configuration Register. For example, if the TYPE field for GPIO Xn is set for Level Sensitive Low, then bit n in the GPIOX Interrupt Status Register is set to 1 when bit n in the GPIOX Input Register is 0. If the TYPE field specifies edge triggering, then the Status Register bit is set when the Input Register bit transitions with the specified edge.

Writing a bit in a GPIOX Interrupt Status Register clears that bit. Writing a bit with a 0 has no effect.

2.5.6 GPIO INTERRUPT MASK REGISTER

TABLE 2-7:GPIO INTERRUPT MASK REGISTER

ADDRESS	REFER TO Summary"	Table 2-1,	"Register	8-bit			SIZE	
POWER	VCC1			00h VCC1 POR DEFAULT			2	
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R/W							
BIT NAME	GPIOX7 0 No Int 1 Int	GPIOX6 0 No Int 1 Int	GPIOX5 0 No Int 1 Int	GPIOX4 0 No Int 1 Int	GPIOX3 0 No Int 1 Int	GPIOX2 0 No Int 1 Int	GPIOX1 0 No Int 1 Int	GPIOX0 0 No Int 1 Int

An interrupt is signaled on either BC_INT# or SMBus_INT# when a GPIOX bit in a GPIO Interrupt Status Register is 1 and the corresponding GPIOX bit in the GPIO Interrupt Mask Register is also 1.

ECE1088

2.6 Other Control Registers

2.6.1 GROUP INTERRUPT STATUS

TABLE 2-8: GROUP INTERRUPT STATUS REGISTER

ADDRESS	F9h			8-bit SIZE				
POWER	VCC1			00h VCC1 POR DEFAULT				2
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
BIT NAME	Reserved	Reserved	Reserved	Reserved	Grp3	Grp2	Grp1	Grp0

2.6.1.1 Bit3 Grp3

0 No interrupts in GPIO Group 3

1 Interrupt in at least one of GPIO37-GPIO30

2.6.1.2 Bit2 Grp2

0 No interrupts in GPIO Group21 Interrupt in at least one of GPIO27-GPIO20

2.6.1.3 Bit1 Grp1

0 No interrupts in GPIO Group1

1 Interrupt in at least one of GPIO17-GPIO10

2.6.1.4 Bit0 Grp0

0 No interrupts in GPIO Group0

1 Interrupt in at least one of GPIO07-GPIO00

2.6.2 CLOCK CONTROL

TABLE 2-9:CLOCK CONTROL REGISTER

ADDRESS	FAh			8-bit SIZE				
POWER	VCC1			00h VCC1 POR DEFAULT				ł
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R/W	R/W	R/W	R/W	R/W
BIT NAME	Reserved			ARA	Reserved	OSC Control	Interface	Selection

2.6.2.1 Bit4 ARA

If this bit is 1b and the SMBus interface is enabled (either by setting the Interface Selection field to 11b or by setting the Interface Selection field to 0xb and an SMBus transaction is detected), the ECE1088 will respond to an SMBus Alert Response Address Read Byte command as defined in the SMBus specification. If this bit is 0b, the ECE1088 will ignore the Alert Response Address at all times.

APPLICATION NOTE: Software must insure that the field Interface Selection in this register is '11b' (SMBus Interface enabled) before setting ARA to '1b'.

2.6.2.2 Bit2 OSC Control

Ob Oscillator Enabled (Default)

1b Oscillator Low Power Enable.

The Oscillator may be stopped and once stopped may be restarted by activity on either the bus interface pins or on inputs that are enabled for interrupts. See Section 2.6.3, "Wakeup Control" for conditions that restart the Oscillator

When OSC Control is set to Low Power Enable (1b) the Oscillator will stop only when the SMBus or BC-Link are idle. This means:

No Interrupts are pending

No traffic is on the bus

Transactions on the bus have completed

APPLICATION NOTE: When OSC Control is set to '1b', the ring oscillator will be shut down after every BC-Link or SMBus transaction completes and no interrupts are pending. The oscillator will restart when a wakeup enabled by the Wakeup Control registers occurs. The Wakeup Control register must be configured properly before setting OSC Control to '1b'.

2.6.2.3 Bit[1:0] Interface Selection

0Xb Autodetect Mode (default)

10b BC-Link interface enabled.

11b SMBus interface enabled

APPLICATION NOTE: The first access to the ECE1088 must be a write to the Clock Control register to configure the Interface Selection field to the desired interface type (10b or 11b). This is required so that Oscillator control works properly and so that the bus type does not inadvertently switch during use.

2.6.3 WAKEUP CONTROL

The Wakeup Control Register determines which events restart the Oscillator when the Oscillator is in Low Power Mode.

ADDRESS	FBh					8-bit	SIZE		
POWER	VCC1					00h	h VCC1 POR DEFAULT		
BIT	D7	D6	D5	D4	D3	D2	D1	D0	
BC-LINK TYPE	R R R		R	R	R/W	R/W	R/W		
BIT NAME	Reserved	Reserved	Reserved	Reserved	Reserved	GPIO	BUS_DAT	BUS_CLK	

TABLE 2-10: WAKEUP CONTROL REGISTER

2.6.3.1 Bit2 GPIO

0 GPIO Interrupts do not affect the Oscillator

1 A GPIO interrupt that is requested on any GPIO pin for which GPIO function is selected and a GPIO interrupt is enabled will restart the Oscillator when the Oscillator is stopped in Low Power mode.

In order for edge detection to work on any GPIO pin the pin must be selected for input and the desired edges configured, as described in Table 2-5, "Direction, Level/Edge, Output Type Bit Definition", in the GPIO configuration register.

ECE1088

2.6.3.2 Bit1 BUS_DAT

0 The BUS_DAT signal (BC_DAT or SMB_DAT) does not affect the Oscillator

1 Either a rising edge or a falling edge on the BUS_DAT signal will restart the Oscillator when the Oscillator is stopped in Low Power mode.

2.6.3.3 Bit0 BUS_CLK

0 The BUS_Clk signal (BC_CLK or SMB_CLK) does not affect the Oscillator

1 Either a rising edge or a falling edge on the BUS_Clk signal will restart the Oscillator when the Oscillator is stopped in Low Power mode.

2.6.4 DEVICE ID REGISTER

TABLE 2-11: DEVICE ID REGISTER

ADDRESS	FCH					8-bit	SIZE	
POWER	VCC1			40h VCC1 POR DEFAULT				ł
				•				
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
ECE1088	40h							

TABLE 2-12: DEVICE REVISION REGISTER

ADDRESS	FDh					8-bit	SIZE	
POWER	VCC1					00h	VCC1 POF DEFAULT	2
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
BIT NAME		Current Revision Number						

TABLE 2-13: VENDOR ID (LSB) REGISTER

ADDRESS	FEh					8-bit	SIZE	
POWER	VCC1					55h	VCC1 POF DEFAULT	ł
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
BIT NAME				55	ōh			

TABLE 2-14: VENDOR ID (MSB) REGISTER

ADDRESS	FFh					8-bit	SIZE	
POWER	VCC1			10h VCC1 POR DEFAULT				2
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
BIT NAME				1(Dh			

2.6.5 RESET REGISTER

TABLE 2-15: RESET REGISTER

ADDRESS	F5H			8-bit SIZE				
POWER	VCC1				R			
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	W
BIT NAME				Reserved				Force_ POR

2.6.5.1 Force_POR

Writing this bit with a 1 will force a VCC1 POR. All registers and state machines in the device will be reset to their default power-on values. Writing a 0 to this bit has no effect. This is a self clearing bit.

Note: The Force_POR bit does not affect the **Interface Selection** setting of the Clock Control register. Whichever bus interface is in effect at the time Force_POR is set (BC-Link or SMBus) will remain in effect after the POR.

2.6.6 MCHP TEST REGISTER

TABLE 2-16: MCHP TEST REGISTER

ADDRESS	F6H			8-bit SIZE				
POWER	VCC1			00h			VCC1 POR DEFAULT	
BIT	D7	D6	D5	D4	D3	D2	D1	D0
BC-LINK TYPE	R	R	R	R	R	R	R	R
BIT NAME	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

2.6.6.1 RESERVED

Reserved for Microchip test purposes. Should not be written.

2.7 SMBus / BC-Link Autodetect Circuit

2.7.1 OVERVIEW

For either the SMBus or the BC-Link, by detecting difference in start conditions, the Bus type is indicated. From an idle condition, the device will sample the data line on the first falling edge of the clock. If it is low, a SMBus interface is selected; if it is high, a BC-Link interface is selected. The idle condition is defined as a POR or no activity for 75 ms. To safeguard against glitches selecting the wrong bus and locking the system, the device use time-outs that reload on a start from the respective bus interface. For SMBus, the timeout is 75 ms. For BC-Link, the timeout is 75 µs.

2.8 SMBus Slave Interface

The host processor communicates with the ECE1088 device through a series of read/write registers via the SMBus interface. SMBus is a serial communication protocol between a computer host and its peripheral devices.

The SMBus data rate is 10KHz minimum to 400 KHz maximum.

2.8.1 CLOCKING

The SMBus Slave interface is driven by an internal Ring Oscillator. This oscillator runs at a nominal frequency of 32MHz.

The Ring Oscillator may be started and stopped through firmware interactions. The that controls the operation of the Oscillator is described in Section 2.6.2, "Clock Control" and Section 2.6.3, "Wakeup Control".

2.8.2 SLAVE ADDRESS

Upon power up, the ECE1088 device will be placed into Address Select mode and assign itself an SMBus address according to the Address Select input. The device will latch the address during the first valid SMBus transaction in which the first five bits of the targeted address match those of the ECE1088 address. This feature eliminates the possibility of a glitch on the SMBus interfering with address selection.

TABLE 2-17:SMBUS SLAVE ADDRESS OPTIONS

Address Select	Board Implementation	SMBus Address [7:1]
0	Address Select Pulled to ground through a $10k\Omega$ resistor	0111 000b
1	Address Select pulled to VCC1 through a $10k\Omega$ resistor	0111 001b

2.8.3 SLAVE BUS INTERFACE

The ECE1088 device SMBus implementation is a subset of the SMBus interface to the host. The device is a *slave-only* SMBus device. The implementation in the device is a subset of SMBus since it only supports four protocols.

The Write Byte, Read Byte, Send Byte, and Receive Byte protocols are the only valid SMBus protocols for the device. This part responds to other protocols as described in the Invalid Protocol Section. Reference the System Management Bus Specification, Rev 2.0.

The SMBus interface is used to read and write the registers in the device. The register set is shown in Table 2-1, "Register Summary".

2.8.4 WRITE BYTE

The Write Byte protocol is used to write data to the registers. The data will only be written if the protocol shown in Table 2-18, "SMBus Write Byte Protocol" is performed correctly. Only one byte is transferred at time for a Write Byte protocol.

TABLE 2-18: SMBUS WRITE BYTE PROTOCOL

Field	Start	Slave Addr	Wr	Ack	Reg. Addr	Ack	Reg. Data	Ack	Stop
Bits	1	7	1	1	8	1	8	1	1

2.8.5 READ BYTE

The Read Byte protocol is used to read data from the registers. The data will only be read if the protocol shown in Table 2-19, "SMBus Read Byte Protocol" is performed correctly. Only one byte is transferred at time for a Read Byte protocol.

TABLE 2-19:SMBUS READ BYTE PROTOCOL

Field:	Start	Slave Addr	Wr	Ack	Reg. Addr	Ack	Start	Slave Addr	Rd	Ack	Reg. Data	Nack	Stop
Bits:	1	7	1	1	8	1	1	7	1	1	8	1	1

2.8.6 SEND BYTE

The Send Byte protocol is used to set the Internal Address Register to the correct register in the ECE1088. No data is transferred for a Send Byte protocol. The send byte protocol is shown in Table 2-20, "SMBus Send Byte Protocol".

TABLE 2-20: SMBUS SEND BYTE PROTOCOL

Field:	Start	Slave Addr	Wr	Ack	Reg. Addr	Ack	Stop
Bits:	1	7	1	1	8	1	1

2.8.7 RECEIVE BYTE

The Receive Byte protocol is used to read data from the registers when the register address is known to be at the desired address (using the Internal Address Register). Only one byte is transferred at time for a Receive Byte protocol.

TABLE 2-21: SMBUS RECEIVE BYTE PROTOCOL

Field:	Start	Slave Addr	Rd	Ack	Reg. Data	Nack	Stop
Bits:	1	7	1	1	8	1	1

Note: Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset its communications port after a start or stop condition.

2.8.8 STRETCHING THE SCLK SIGNAL

The ECE1088 supports stretching of the SCLK by other devices on the SMBus.

2.8.9 SMBUS TIMING

The SMBus Slave Interface complies with the SMBus AC Timing Specification. See the SMBus timing diagram shown in Section 4.2, "SMBus Timing".

2.8.10 SMBUS ALERT RESPONSE ADDRESS

This device responds to protocols with the SMBus Alert Response Address of 0001_100 if the ARA bit in the Clock Control register is set.

2.8.11 SMBUS TIME-OUT

The ECE1088 includes an SMBus time-out feature. Following a 30 ms period of inactivity on the SMBus, the device time-out and reset the SMBus interface.

2.9 BC-Link Interface

The BC-Link is a proprietary bus that allows communication between a Master device and a Companion device. The Master device uses this serial bus to read and write registers located on the Companion device.

The bus comprises three signals, BC_CLK, BC_DAT and BC_INT#. The Master device always provides the clock, BC_-CLK, and the Companion device is the source for an independent asynchronous interrupt signal, BC_INT#.

The ECE1088 supports BC-Link speeds up to 24MHz.

3.0 OPERATIONAL DESCRIPTION

3.1 Maximum Ratings

Maximum V _{cc1}	+5V
Negative Voltage on any pin, with respect to Ground	-0.3V
Operating Temperature Range	0°C to +70°C
Storage Temperature Range	55° to +150°C
Lead Temperature Range	

Note: Stresses above those listed above and below could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

3.2 DC Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS $T_A = 0^{O}C - 70^{O}C$, $V_{CC1} = +3.3 V \pm 10\%$ **TABLE 3-1:** Symbol MIN TYP MAX Units Parameter Comments I Type Input Buffer Low Input Level VIII 0.8 V **TTL Levels** 5.5 High Input Level VIHI V 2.0 ISP Type Input Buffer with Note 3-1 90µA Pull-up Schmitt Trigger 0.8 V Low Input Level VILIS Schmitt Trigger High Input Level V_{IHIS} 2.2 5.5 V Schmitt Trigger Hysteresis 100 m٧ V_{HYS} IP/O8 Type Buffer with 90µA Note 3-1 **TTL Levels** Pull-up 0.8 V Low Input Level Vii i 5.5 V VIHI $I_{OL} = 8mA$ High Input Level 2.0 V_{OL} $I_{OH} = -4mA$ Low Output Level 0.4 V High Output Level V_{он} 2.4 $V_{cc1} + 0.3$ V I/O8 Type Buffer TTL Levels Low Input Level 0.8 VILI V 5.5 High Input Level VIHI V 2.0 Low Output Level V_{OL} 0.4 V $I_{OL} = 8mA$ High Output Level VOH 2.4 $V_{cc1} + 0.3$ V $I_{OH} = -4mA$ **O8** Type Buffer V_{OL} Low Output Level 0.4 V $I_{OL} = 8mA$

 $V_{cc1} + 0.3$

V

2.4

V_{он}

High Output Level

 $I_{OH} = -4mA$

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
Leakage Current (ALL – except Buffers)						Note 3-2
Input High Current	ILEAK _{IH}			10	μA	$V_{IN} = V_{cc1}$
Input Low Current	ILEAK _{IL}			-10	μA	$V_{IN} = 0V$
5V Tolerant Pins						V _{cc1} = 3.3V
Input High Current	ILEAK _{IH}			100	μA	V _{IN} =5.5V Max
Input High Current	ILEAK _{IH}			10	μA	$V_{IN} \le V_{cc1}$
Input Low Current	ILEAK _{IL}			-10	μA	$V_{IN} = 0V$
V _{CC1} Supply Current Active	I _{CC}		3	8	mA	measured with SMBus/BC-Link traffic
V _{CC1} Supply Current Active with Ring Oscillator Off	I _{CC}			500	μA	measured with Ring Oscillator off (OCS Control bit set to Oscillator Low Power Enable mode)
Reset Voltage	V _{RST}	1.6	1.8	2.1	V	Device is in internal reset state when V_{cc1} is below min V_{RST}

TABLE 3-1: DC ELECTRICAL CHARACTERISTICS $T_A = 0^{O}C - 70^{O}C$, $V_{CC1} = +3.3 V \pm 10\%$

• Voltages are measured from the local ground potential, unless otherwise specified.

• Typicals are at TA=25°C and represent most likely parametric norm.

• The maximum allowable power dissipation at any temperature is PD = (TJmax - TA) / QJA.

• Timing specifications are tested at the TTL logic levels, VIL=0.4V for a falling edge and VIH=2.4V for a rising edge. TRI-STATE output voltage is forced to 1.4V.

• All pins except power and ground are 5V tolerant.

Note 3-1 90µA Pull-up with +/- 40% variation

Note 3-2 leakage currents are measured with all pins in high impedance.

3.3 AC Timing Specifications

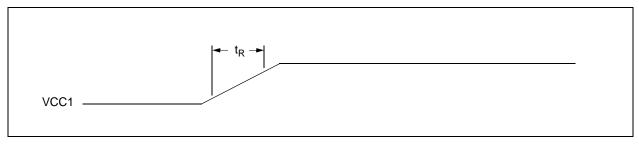
Refer to the LSBC Bus Specification.

3.4 Capacitance Values for Pins

CAPACITANCE $T_A = 25^{\circ}C$; fc = 1MHz; $V_{CC1} = 3.3V \pm 10\%$

TABLE 3-2: CAPACITANCE VALUES FOR PINS

Parameter	Symbol		Limits		Unit	Test Condition
Farameter	Symbol	MIN	TYP	MAX	Unit	Test Condition
Clock Input Capacitance	C _{IN}			20	pF	All pins except pin under test tied to AC ground
Input Capacitance	C _{IN}			10	pF	
Output Capacitance	C _{OUT}			20	pF	


Note 3-3 The input capacitance of a port is measured at the connector pins.

ECE1088

4.0 TIMING DIAGRAMS

4.1 V_{CC1} Power

FIGURE 4-1: V_{CC1} POWER

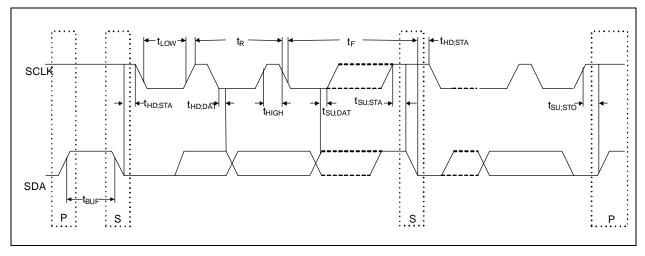


TABLE 4-1: V_{CC1} POWER PARAMETERS

Symbol Parameter		Limit	S	Units	Comments
Symbol	Faiametei	Min	Max	Units	Comments
t _R	V _{CC1} Rise time, 10% to 90%	0.150	30	msec	

4.2 SMBus Timing

FIGURE 4-2: SMBUS TIMING

Symbol	Parameter	Limit	S	Units	Comments
Symbol	Farameter	Min	Max	Units	Comments
Fsmb	SMB Operating Frequency	10	400	KHz	Note 4-1
Tsp	Spike Suppression		50	ns	Note 4-2
Tbuf	Bus free time between Stop and Start Condition	1.3		μS	
Thd:sta	Hold time after (Repeated) Start Condition. After this period, the first clock is generated.	0.6		μS	
Tsu:sta	Repeated Start Condition setup time	0.6		μS	
Tsu:sto	Stop Condition setup time	0.6		μS	
Thd:dat	Data hold time	0.3	0.9	μS	
Tsu:dat	Data setup time	100		ns	Note 4-3
Tlow	Clock low period	1.3		μS	
Thigh	Clock high period	0.6		μS	
Tf	Clock/Data Fall Time	20+0.1C _b	300	ns	
Tr	Clock/Data Rise Time	20+0.1C _b	300	ns	
Cb	Capacitive load for each bus line		400	pF	

TABLE 4-2: SMBUS TIMING PARAMETERS

Note 4-1 The max SMBus timing operating frequency exceeds that specified in the System Management Bus Specification, Rev 1.1, but corresponds to the maximum clock frequency for fast mode devices on the I²C bus (see the I²C Bus Specification).

Note 4-2 At 400kHz, the input filter suppresses spikes of a maximum pulse width of 50ns.

Note 4-3 if using 100 KHz clock frequency, the next data bit output to the SDA line will be 1250 ns (1000 ns (TR max) + 250 ns (Tsu:DAT min) @ 100 kHz) before the SCLK line is released.

ECE1088

5.0 PACKAGE OUTLINE

S.K.ILEV S.K.ILEV S.K.ILEV S.K.ILEV S.K.ILEV 0.5mm PITCH REL. BY S.K.ILEV Ċ SK ALL DIMENSIONS ARE IN MILLIMETER. ALL DIMENSIONS "b" APPLIES TO PLATED TERMINALS AND IT IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL. TIP. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE AREA INDICATED. ROUNDED INNER TIPS ON TERMINALS ARE OPTIONAL. 1 OF see the Microchip Packaging Specification at http://www.microchip.com/packaging Note: For the most current package drawings SHEET OVERALL PACKAGE HEIGHT LEADFRAME THICKNESS 10/7/03 12/1/03 12/14/04 12/20/04 X/Y EXPOSED PAD SIZE MOLD CAP THICKNESS 6/21/05 4/12/2011 4/20/06 DATE X/Y MOLD CAP SIZE **TERMINAL LENGTH** TERMINAL WIDTH TERMINAL PITCH X/Y BODY SIZE 28 TERMINAL QFN, 5x5mm BODY, (3106 PCB FEATURES POD-28QFN-5x5B-05P-3106 STANDOFF REMARK PACKAGE DATA ADDED PARALLELISM TOL, DZ'RZ' MAX, Y(nom) and X(nom), POSITION TOL MOVED TO TOP VIEW. SIDE ANGLE (max) FROM 12 TO 14° DIE and DZ/RZ TOL ROM 40.15 TO 4.10, GD/ED FROM 3.53 TO 3.65 Y(max) NOT SPECIFED NOW JEDEC: MO-220 NEW DRAWING FORMAT AND 3-D VIEW ADDED D2/E2(MIN) FROM 1.25 TO 2.95 & (NOM) ADDED **REVISION HISTORY** RECOMMENDED PCB LAND PATTERN ADDED COMMON DIMENSIONS STD COMPLIANCE REMOVE THE "PRELIMINARY" NOTE DESCRIPTION ADDING "PRELIMINARY" NOTE NOTE 4 ÷ . 1 2 \sim 1 INITIAL RELEASE Ξ CALE MAX 1.00 0.05 0.80 5.10 4.95 3.20 0.75 0.30 10/7/03 10/7/03 10/7/03 DATE 0.20 (REF MON 0.50 BSC 5.00 4.75 3.10 0.60 0.25 0.85 0.02 0.65 \square REV < m ۵ o ш U RAWN S.K.ILIEV S.K.ILEV S.K.ILEV \oplus NAME NΝ 4.55 3.00 0.50 0.18 PROVED 0.80 0.60 4.90 0 HIRD SYMBOL D2/E2 D1/E1 ANGULAR ±1° D/E Ł A2 A3 p Ф ∢ _ NOTES: UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS AND TOLERANCES ARE: INTERPRET DIM AND TOL PER ASME Y14.5M - 1994 PRINT WITH "SCALE TO FIT DO NOT SCALE DRAWING . DECIMAL XX ±0.1 XXX ±0.05 XXXX±0.025 -TERMINAL #1 IDENTIFIER AREA (D/2 X E/2) EXPOSED PAD (ePAD) 28X L 🔬 \leq BOTTOM VIEW **3-D VIEWS** πυπόλητα MAX 0.28 0.10 0.05 **NAAAA** 0.1000 C A B LAND PATTERN DIMENSIONS \triangleleft MON -D2 3 10 0 24 0 89 0 50 UUUUU MIM 65 28X k (DATUM B) SYMBOL ⊕ 0.10 m C A B (DATUM A) // 0.10 C PCB LAND PATTERN MAXIMUM THERMAL AND ELECTRICAL PACKAGE PEFFORMANCE IS ACHIEVED WHEN AN ARRAY OF SOLD VIAS IS INCORPORATED IN THE CENTER LAND PATTERN THE USER MAY MODIFY THE PCB LAND PATTERN TERMINAL #1 IDENTIFIER AREA A3. -ON THEIR EXPERIENCE 4X 45°X0.6MAX (OPTIONAL) SIDE VIEW TOP VIEW שששששם 4X 0°-14° DIMENSIONS BASED ON THEIR AND/OR PROCESS CAPABILITY ġ - D2'ì 0

FIGURE 5-1: PACKAGE OUTLINE: 28-PIN QFN BODY 5X5 MM BODY

APPENDIX A: DATA SHEET REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction				
DS00002623A (01-15-18)	Public Release, REV A replaces previous SMSC version Rev. 1.6 (02-2					

TABLE A-1: REVISION HISTORY

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. ⁽¹⁾ Device	- <u>XXX</u> ⁽²⁾ - <u>[X]</u> ⁽³⁾ Package Tape and Reel Option	Exam a) E	ple: CE1088-DZK = 28-pin QFN
Device:	ECE1088 ⁽¹⁾	Note 1:	These products meet the halogen maximum concentration values per IEC61249-2-21.
Package:	DZK = 28 pin QFN ⁽²⁾ Blank = Tray packaging	Note 2:	All package options are RoHS compliant. For RoHS compliance and environmental information, please visit <u>http://www.micro- chip.com/pagehandler/en-us/aboutus/</u> ehs.html.
Option:	TR = Tape and Reel ⁽³⁾	Note 3:	Tape and Reel identifier only appears in the catalog part number description. This identi- fier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 9781522425663

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 63-2-634-9065

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Singapore Tel: 65-6334-8870

Taiwan - Taipei

Thailand - Bangkok Tel: 66-2-694-1351

Tel: 886-7-213-7830

Tel: 886-2-2508-8600

Netherlands - Drunen Tel: 31-416-690399

> Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - I/O Expanders category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

PCA9654EDR2G LC709006V-E LC709006V-TLM-E PM8004C-F3EI PM8005C-F3EI PI4IOE5V9554LEX PI4IOE5V9555LEX PI4IOE5V6534Q2ZLWEX PI4IOE5V6416Q2LEX 41700-100 MCP25050-E/P PCA9554PW.112 PCF8575TS/1.112 PCA9555PW.112 MIC74YQS ADP5585ACBZ-00-R7 ADP5585ACBZ-04-R7 EM4095HMSO16A HTRC11001T/02EE ADP5587ACPZ-1-R7 ADP5587ACPZ-R7 ADP5585ACPZ-01-R7 ADP5586ACBZ-00-R7 PCF8574P XD8574AP XD8574P XD8255-2 XD82C55-5 EM4095HMSO16B KTS1620EWA-TR MAX7311AWG+ MCP25025-ISL MCP25020-I/SL MAX7300ATL+ MAX7301ATL+T MCP23009T-E/SS MCP23008-E/SS MCP23009-E/SS MAX7325ATG+T MCP23016-I/SO MCP23S17-E/SO MAX7300AAI+ MAX7301AAI+ MAX7312AUG+ MAX7315AEE+ MAX7317AEE+ MAX7321AEE+ MCP25020-I/P PCA9554APW,118 MAX7310AUE+