

ECE1200

eSPI to LPC Bridge

Features

- Detects and Supports Modern Standby State (S0ix) with Low Standby Current
- · ACPI 6.1 Compliant
- · Configuration Register Set
 - Compatible with ISA Plug-and-Play Standard
 - Host-Programmable Base Address
- Supports LPC-based SIO and EC devices such as:
 - SCH555x, SCH5347B
 - SCH311x, SCH322x
- eSPI Peripheral Channel Cycles in 64K I/O Space will pass through as LPC I/O cycles, except for the local Plug-and-Play INDEX/DATA portal registers
- eSPI Peripheral Channel Cycles in Memory Space will all pass through as LPC Memory Cycles
- · Enhanced Serial Peripheral Interface (eSPI)
 - 1.8V Operation
 - Intel eSPI Base Specification 1.0 compliant

- Supports the Peripheral Channel and Virtual Wire Channel interfaces
- Supports up to 50 MHz maximum operating frequency
- · LPC Master Interface
 - 3.3V operation
 - Generates LPC Clock on two output pins
 - Provides 24 MHz nominal bus clock frequency
 - Provides CLKRUN# clock control interface
 - LPC Specification 1.1 Compatible
 - LPC I/O and Memory Cycles Supported
- Supports Serial IRQ Interface, both Continuous and Quiet modes
- · XNOR Board Test Mode
- Package Options
 - 40-pin VQFN RoHS Compliant Package (LDX)
- · Industrial Temperature Range
 - -40°C to +85°C

Products

Catalog Part Number	Package	Temperature Range	Initial Register Portal Address	Delivery Packaging
ECE1200-I/LD	40-VQFN, sawn (LDX)	Industrial	8Ch	Tray

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Table of Contents

1.0 General Description	4
2.0 Pin Configuration	10
3.0 Power, Clocks, and Resets	16
4.0 LPC Interface	20
5.0 Enhanced Serial Peripheral Interface (eSPI)	25
6.0 Device Register Set and Initialization	33
7.0 Test Mechanisms	58
8.0 Electrical Specifications	60
9.0 Timing Diagrams	
Appendix A: Data Sheet Revision History	

1.0 GENERAL DESCRIPTION

The ECE1200 is a device designed to implement a Bridge function from an eSPI-configured Intel Chipset to a legacy downstream system, providing Master interfaces for an LPC bus, Serial IRQ and CLKRUN# features.

The ECE1200 is directly powered by two Suspend (S5) supply planes, at 3.3V and 1.8V nominal. The 1.8V supply is provided on two sets of pins: VTR_18 for I/O pins, and VTR_18_CORE for internal logic. The 3.3V supply VTR_33 is for 3.3V I/O pins only.

The ECE1200 senses a Runtime power plane (VCC) using the pin LPC_EN, which is intended to come from the PCH_PWROK signal supplied from the system. It uses this to emulate VCC-powered functionality on the appropriate pins in order to avoid backdrive in the system.

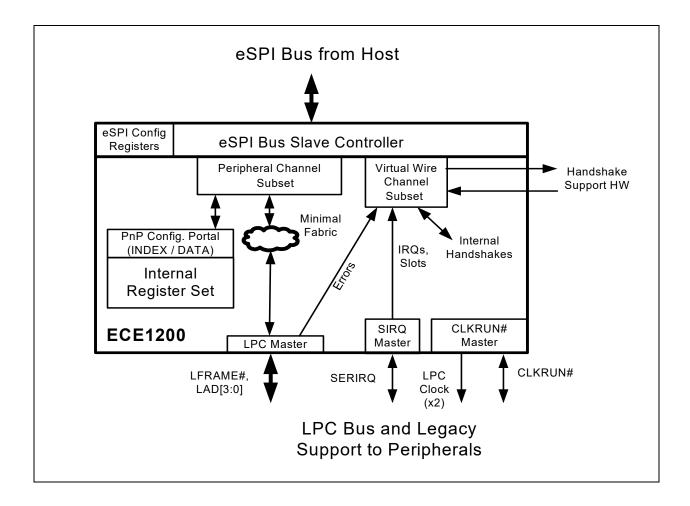


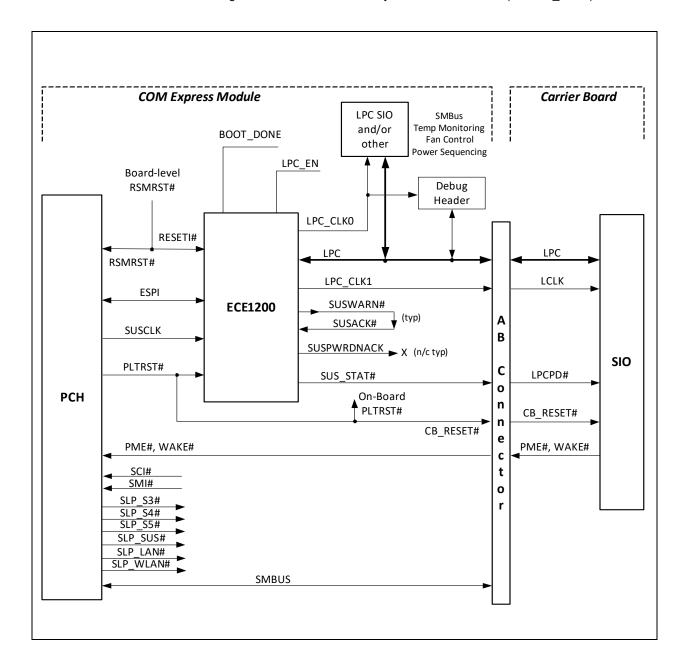
TABLE 1-1: GENERAL TERMINOLOGY

Term	Definition
System Host, or Host Chipset	Refers to the complex of the System CPU and surrounding elements, from which originates the I/O and Memory traffic to the ECE1200 over the eSPI Interface.
PCH	The specific element of the Host Chipset that connects to the ECE1200 from the Host side, serving as the Master in the eSPI protocol, and controlling the pins that serve as Host-side sideband signals to the ECE1200.

1.1 System Block Diagrams

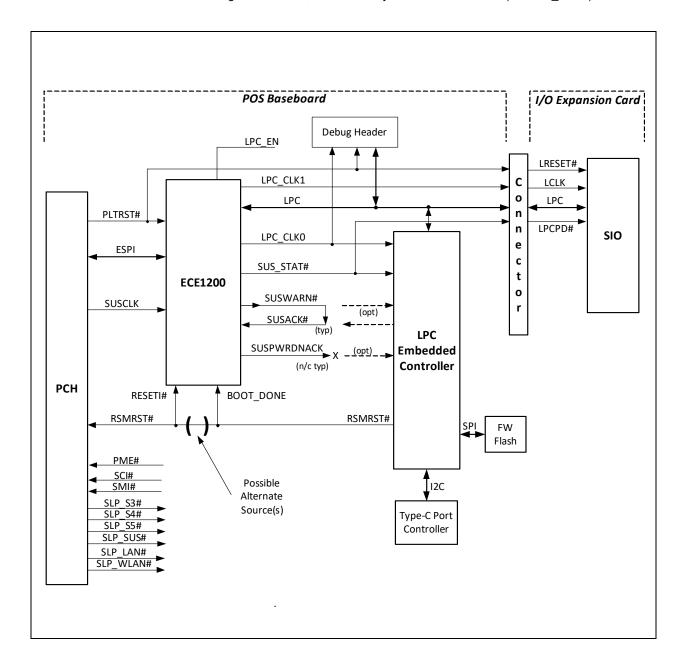
1.1.1 GENERAL SYSTEM BLOCK DIAGRAM

The ECE1200 is shown here as a single eSPI Slave, or the Primary Slave of two or more (on eSPI CS0#).

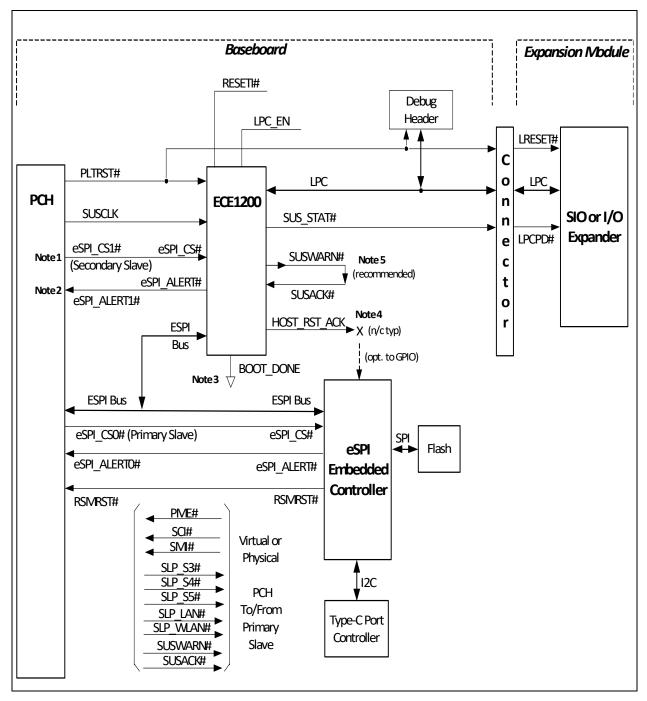


Note 1: SMI# can instead be presented on SER_IRQ pin (time slot 2) and propagated to the PCH as a Virtual Wire.

- 2: RCIN# is not supported as a PCH pin in eSPI configuration, and should be exercised internal to the PCH.
- **3:** SUSPWRDNACK is an output extracted from a Virtual Wire, because some eSPI Chipsets do not provide it as a physical signal. If the LPC device can use this signal for support of the "Chipset G3" Deep Power-Down mechanism, then make the connection as shown. Otherwise, the pin may be left open.
- **4:** SUSWARN# and SUSACK# pins provide a **mandatory** handshake, propagated using Virtual Wires that may not be present as physical signals in all eSPI Chipsets. If the LPC device, or board HW, supports this handshake for the "DSW" Deep Sleep mechanism, then it may be connected to these pins for this purpose. Otherwise, the SUSWARN# and SUSACK# pins **must be connected** directly to each other at the ECE1200 as shown. Without some form of handshake connection between them, the system **will not boot**.


1.1.2 SYSTEM BLOCK DIAGRAM, COM EXPRESS

The ECE1200 is shown here as a single eSPI Slave, or the Primary Slave of two or more (on eSPI_CS0#).



1.1.3 SYSTEM BLOCK DIAGRAM, POS

The ECE1200 is shown here as a single eSPI Slave, or the Primary Slave of two or more (on eSPI_CS0#).

1.1.4 SYSTEM BLOCK DIAGRAM, ECE1200 AS SECONDARY ESPI SLAVE

Note 1: This configuration has two eSPI Slaves. The ECE1200 is the Secondary Slave device, with some limitations imposed by the Host PCH. It can receive any of the fixed Legacy decodes, but may have only one Generic I/O decode range and one Generic Memory decode range available to it from the PCH.

- 2: Each eSPI Slave has an individual eSPI_CS# input, and will be configured by the PCH hardware (as directed by its Soft-Straps) to present its ALERT# events on its individual eSPI_ALERT# output pin.
- **3:** The Primary eSPI Slave device will have the EC functionality, and will provide the mandatory eSPI hand-shaking. The pin BOOT_DONE, strapped permanently low, inhibits these actions by the ECE1200.

- 4: In this configuration, the ECE1200 presents the output HOST_RST_ACK to indicate that its LPC bus has become idle after the last transfer from the Host CPU, before an LRESET# event. This may optionally be used by the Primary eSPI Slave device to delay its Virtual Wire handshake HOST_RST_WARN/HOST_RST_ACK with the Host Chipset.

 This signal is not a requirement, but may assist in this eSPI-specific handshake feature if desired. Although the ECE1200 receives the HOST_RST_WARN Virtual Wire, it does not have direct authority to send the HOST_RST_ACK handshake response itself, and is required to go through the Primary Slave instead. Without this connection, there is no concern in legacy LPC systems. Historically, the LPC bus does not need to be idle before it gets reset. Neither the ECE1200 nor its downstream devices will be disrupted without it.
- 5: The SUSWARN# and SUSACK# signals are shown connected together. This is not strictly required in this configuration, but is harmless and inexpensive, and is recommended for uniformity since all other configurations do require some connection. If this cannot be done, then tie the SUSACK# pin to a valid digital state, low or high. SUSWARN# is an output, and may be left unconnected.

2.0 PIN CONFIGURATION

2.1 Description

The Pin Configuration chapter defines the Pin List and the Package.

2.2 Pin List

Pins are listed in Section 2.2.1 below.

Note: The column **Emulated Power Well** indicates when signals are enabled:

VCC means that the LPC_EN pin must be high, meaning that Main (S0) power rails in the system are valid, before these pins are allowed to drive high.

VTR means that they may drive (high or low) as soon as all VTR power is present and RESETI# is high.

This behavior is ensured only if the TEST pin remains low.

2.2.1 PIN ASSIGNMENTS, 40-PIN VQFN

40-pin VQFN	Pin Name	Direction (Other than Test Modes)	Pin Type	Signal Power Well	Emulated Power Well	Back- drive Protect
	VSS (Pad on Underside)		GND	0V		
1	ESPI_ALERT#	0	eSPI	VTR_18	VTR	
2	VTR_18		PWR	1.8V		
3	ESPI_IO2	IO	eSPI	VTR_18	VTR	
4	ESPI_IO0	IO	eSPI	VTR_18	VTR	
5	ESPI_CLK	1	eSPI	VTR_18	VTR	
6	ESPI_IO1	Ю	eSPI	VTR_18	VTR	
7	ESPI_IO3	IO	eSPI	VTR_18	VTR	
8	VTR_18		PWR	1.8V		
9	TEST	I	DIO	VTR_33	VTR	
10	LPC_EN	I	DIO	VTR_33	VTR	
11	VTR_33		PWR	3.3V		
12	BOOT_DONE	I	DIO	VTR_33	VTR	
13	PLTRST#	I	DIO	VTR_33	VTR	
14	VTR_CORE_18		PWR	1.8V	1	
15	SUSCLK	I	DIO	VTR_33	VTR	Υ
16	SUS_STAT#	0	PCI	VTR_33	VTR	
17	SUSACK#	I	DIO	VTR_33	VTR	
18	RESETI#	I	DIO	VTR_33	VTR	
19	SUSWARN#	0	DIO	VTR_33	VTR	
20	ESPI_STRAP_0	Ι	DIO	VTR_33	VTR	
21	ESPI_STRAP_1	I	DIO	VTR_33	VTR	
22	VTR_33		PWR	3.3V	-	
23	LPC_CLK0	0	LCLK	VTR_33	VCC	
24	LPC_CLK1	0	LCLK	VTR_33	VCC	
25	LAD0	Ю	PCI	VTR_33	VCC	
26	LAD1	Ю	PCI	VTR_33	VCC	
27	LAD2	Ю	PCI	VTR_33	VCC	
28	LAD3	Ю	PCI	VTR_33	VCC	
29	LFRAME#	0	PCI	VTR_33	VCC	
30	VTR_33		PWR	3.3V		
31	SER_IRQ	Ю	PCI	VTR_33	VCC	
32	CLKRUN#	Ю	PCI_24	VTR_33	VCC	
33	No Connect					
34	No Connect				-	
35	SUSPWRDNACK / HOST_RST_ACK	0	DIO	VTR_33	VTR	
36	ESPI_RESET#	I	eSPI	VTR_18	VTR	
37	No Connect				-	
38	No Connect					
39	No Connect					
40	ESPI_CS#	I	eSPI	VTR_18	VTR	

2.3 Strapping Options

2.3.1 TEST PIN

The pin named TEST must be kept permanently low in normal operation. It may be pulled high only for test purposes, and when high it redefines all pin functions. See Section 7.0, "Test Mechanisms," on page 58.

2.3.2 ESPI_STRAP_0, ESPI_STRAP_1 PINS

These pins should remain open (N/C) except for test purposes. They are included as inputs to the XNOR Chain test mode.

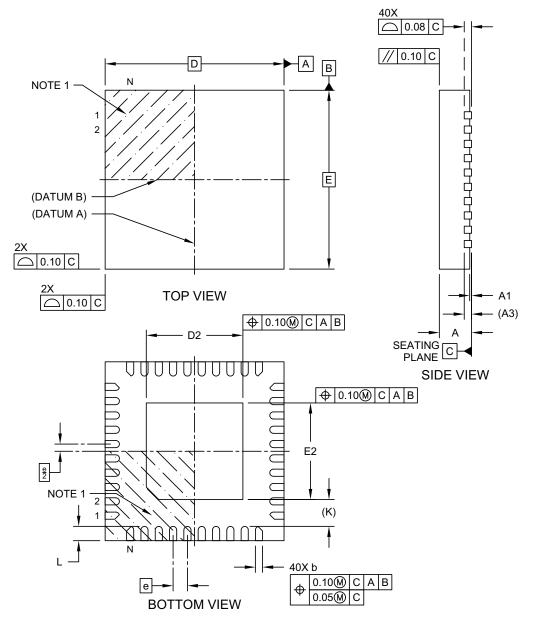
2.3.3 BOOT_DONE PIN

This pin defines whether the eSPI role of the ECE1200 is as a Primary Slave or a Secondary Slave. It may be strapped in the system, or it may be dynamically changed (once) in the power-on sequence.

The state of BOOT_DONE selects the multiplexed output function of pin SUSPWRDNACK / HOST_RST_ACK:

- BOOT DONE=1: SUSPWRDNACK
- BOOT_DONE=0: HOST_RST_ACK

See Section 5.5.2, "BOOT_DONE," on page 27 for details of its usage. See also the figures in Section 1.1, "System Block Diagrams," on page 5 for connection examples and notes for application.

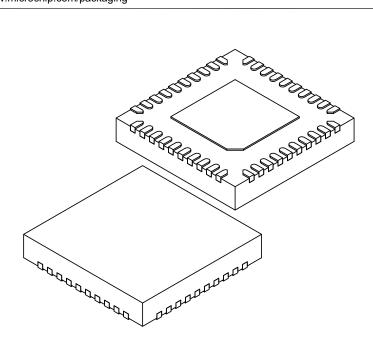

2.4 Package

Note: For the most current package drawings, see the Microchip Packaging Specification at http://www.microchip.com/packaging.

2.4.1 40-PIN VQFN PACKAGE OUTLINE

40-Lead Very Thin Plastic Quad Flat, No Lead Package (LDX) - 5x5 mm Body [VQFN] With 2.7x2.7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-496 Rev A Sheet 1 of 2

© 2018 Microchip Technology Inc.

40-Lead Very Thin Plastic Quad Flat, No Lead Package (LDX) - 5x5 mm Body [VQFN] With 2.7x2.7 mm Exposed Pad

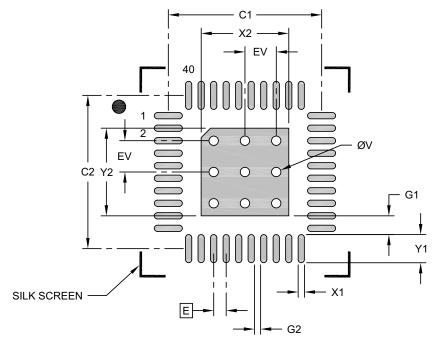
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	Ν	40		
Pitch	е		0.40 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3 0.20 REF			
Overall Length	D	5.00BSC		
Exposed Pad Length	D2	2.60 2.70 2.80		2.80
Overall Width	Е	5.00BSC		
Exposed Pad Width	E2	2.60	2.70	2.80
Terminal Width	b	0.15	0.20	0.30
Terminal Length	Ĺ	0.30	0.40	0.50
Terminal-to-Exposed-Pad	minal-to-Exposed-Pad K 0.75 REF			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated

Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-496 Rev A Sheet 2 of 2

© 2018 Microchip Technology Inc.

40-Lead Very Thin Plastic Quad Flat, No Lead Package (LDX) - 5x5 mm Body [VQFN] With 2.7x2.7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	/ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	X2			2.80
Optional Center Pad Length	Y2			2.80
Contact Pad Spacing	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Width (X40)	X1			0.20
Contact Pad Length (X40)	Y1			0.90
Contact Pad to Center Pad (X40)	G1	0.60		
Contact Pad to Contact Pad (X36)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2496 Rev A

© 2018 Microchip Technology Inc.

3.0 POWER, CLOCKS, AND RESETS

3.1 Introduction

This Power, Clocks, and Resets (PCR) chapter identifies all the power supplies, clock sources, and reset inputs to the chip and defines all the derived power, clock, and reset signals. In addition, this section identifies Power, Clock, and Reset events that may be used to generate an interrupt event, as well as, the Chip Power Management Features.

3.2 References

No references have been cited for this chapter.

3.3 Interrupts

The Power, Clocks, and Resets logic generates no interrupt events to the Host system.

3.4 Power

3.4.1 POWER SOURCES

Table 3-1 lists the pins from which the ECE1200 draws current. These current values are defined in Section 8.3, "Power Consumption," on page 63.

Timing sequences between these power rails are given in Section 9.5.1, "VTR Sequencing and RESETI# Timing," on page 70.

TABLE 3-1: POWER SOURCE DEFINITIONS

Power Well	Nominal Voltage	Description	Source
VTR_33	3.3V	3.3V I/O Power Supply This supply is used to power the 3.3V I/O pins.	Pin Interface
		It is to be connected to the "Always-on" / "Suspend" / "S5" supply rails in system. There is no need to connect it to a deeper power well, such as the Deep Sleep Well, even if that is what powers the downstream LPC device(s).	
		This supply must be on prior to the RESETI# signal being deasserted (system RSMRST#).	
VTR_18	1.8V	1.8V I/O Power Supply This supply is used to power the 1.8V I/O pins.	Pin Interface
		It is to be connected to the 1.8V "Always-on" / "Suspend" / "S5" supply rails in system. There is no need to connect it to a deeper power well, such as the Deep Sleep Well, even if that is what powers the downstream LPC device(s).	
		This supply must be on prior to the RESETI# signal being deasserted (system RSMRST#).	

TABLE 3-1: POWER SOURCE DEFINITIONS (CONTINUED)

Power Well	Nominal Voltage	Description	Source
VTR_CORE_18	1.8V	1.8V Core Logic Power Supply This supply is used to power the internal logic. It is to be connected to the 1.8V "Always-on" / "Suspend" / "S5" supply rails in system. It is on its own pin in order to allow isolation and decoupling from the VTR_18 pin, otherwise it is identical. There is no need to connect it to a deeper power well, such as the Deep Sleep Well, even if that is what powers the downstream LPC device(s). This supply must be on prior to the RESETI# sig- nal being deasserted (system RSMRST#).	Pin Interface

Note: The

The VTR_33 supply must always be at or above the voltage on the 1.8V supply pins, including during power-on and power-off sequences, otherwise excessive current may occur. VTR_18 and VTR_CORE_18 must turn on at the same time as, or after, the VTR_33 supply is powered. VTR_18 and VTR_CORE_18 must come from the same system well, rising and falling together.

3.4.2 POWER GOOD SIGNALS

The Power Good timing is defined in the Section 9.5, "Voltage Sequencing and Power Good Timing," on page 70.

TABLE 3-2: POWER GOOD SIGNAL DEFINITIONS

Power Good Signal	Description	Source
RESETI#	This is the Power-On Reset (POR) input for all the VTR input wells.	RESETI# is to be held low initially, and set high following a delay after all of the VTR power pins have reached their valid levels. RESETI# is to be pulled low as soon as either of these voltages drop below this threshold. At no time may this signal glitch during power transitions. It is strongly recommended that this pin be connected to the system RSMRST# signal, which will assure these needs.
LPC_EN	This input is used to indicate when the Main (S0) power rail voltages are on and stable.	LPC_EN indicates to the ECE1200 when the downstream resources (LPC, Serial IRQ and CLKRUN#) are powered. The low state prevents these pins from driving high, avoiding backdrive of the other components. At no time may this signal glitch during power transitions. It is strongly recommended that this pin be connected to the system PCH_PWROK signal, which will assure these needs.

3.4.3 SYSTEM POWER SEQUENCING

See Section 9.7, "System Power State Transition Diagrams," on page 70 for behavior under system power state changes.

3.5 Clocks

The following section defines the clocks that are generated and derived.

3.5.1 CLOCK SOURCES

The table defines raw clocks that are either generated externally or via an internal oscillator.

TABLE 3-3: SOURCE CLOCK DEFINITIONS

Clock Name	Frequency	Description	Source
SUSCLK	32.768 kHz	32.768 kHz Suspend Well Clock input. Used to generate 48MHz internal clocking, and the 24MHz LPC Clock.	From Host Chipset. Note that this clock may be running before VTR voltages are present.
eSPI_CLK	2050 MHz	eSPI Transfer Clock, asynchronous to all others. Only runs during active transfers.	From Host Chipset.

Note 3-1 The SUSCLK input from the Chipset may not be at a valid 32 kHz frequency until some period of time after the deassertion of RSMRST#. See chipset specification for the actual timing.

Note 3-2 The internal 48 MHz Ring Oscillator acquires a frequency lock referenced to the external 32kHz clock source. It is not externally presented, but it is the basis of the LPC_CLK outputs when they are enabled.

3.5.2 GENERATED CLOCK OUTPUTS

This section describes clocks generated by the ECE1200 that may be used by the external system.

TABLE 3-4: GENERATED CLOCK DEFINITIONS

Clock Name	Frequency	Description	Source
48 MHz Ring Oscillator	48 MHz	Multiplied up from 32KHz input	SUSCLK
LPC_CLK[1:0]	24 MHz	System clock outputs for LPC, Serial IRQ and CLKRUN#	48 MHz Ring Oscillator

3.6 Resets

TABLE 3-5: DEFINITION OF RESET SIGNALS

Reset	Description	Source
RESETI#	External Pin that serves as the VTR POR event when pulsed low. Resets the entire device.	Pin Input Intended to come from system RSMRST#.
eSPI_RESET#	Reset signal associated with the eSPI interface. Restarts the eSPI interface if pulsed low. Will be held low by the system while RESETI# (RSMRST#) is low, and rises after the rising edge of RESETI#.	Pin Input Intended to come from system eSPI_RESET#.
PLTRST#	Platform Reset.	Pin Input Intended to come from system PLTRST#, serving also as system LRESET# / PCI_RESET#.

3.7 Chip Power Management Features

Various mode bits in the register set may be set in order to save power. Some of these are the standard LPC features (Serial IRQ Quiet Mode, CLKRUN#), and some are added in order to place the part into deeper sleep states internally. See Section 6.6, "Low Power Modes," on page 35.

Sleep states generally involve only gating clocking internally, and exiting them is nearly immediate. Waking from a Sleep state only takes any significant amount of time if the ECE1200's own Deep Sleep mode is selected (VW_C10_STOPOSC in the Power Save Register) and the Host CPU is waking from the C10 power state. In this case a delay in response happens until the 48 MHz Ring Oscillator restarts and locks again to its frequency. Note that this delay may in turn be bypassed using the FORCE_OSC_LOCK bit, but this will provide an inaccurate (and slower) clock until a true lock has been achieved.

A Wake from Deep Sleep may also be triggered by the CLKRUN# pin, generally because of the Quiet Mode mechanism. It is necessary for the requesting device to tolerate the lack of LPC clocks during the Frequency Lock delay. The ECE1200 also responds by pulling CLKRUN# low itself at this time, enabling clocks, since the interface is no longer idle.

When there is a delay involved in exiting Deep Sleep, any I/O instruction from the Host CPU will be held using the Deferred Completion mechanism of eSPI until frequency lock has been acquired. Note that eSPI I/O traffic is not a Wake mechanism, since the CPU has to have awakened already for it to do this. The eSPI interface will already have transmitted the new HOST C10 Virtual Wire state, which performs the Wake.

4.0 LPC INTERFACE

4.1 Introduction

The Low Pin Count (LPC) Interface provides the Master end of the LPC Bus Interface, by bridging from the eSPI Interface (Section 5.0, "Enhanced Serial Peripheral Interface (eSPI)," on page 25). Generated LPC transfer cycles are defined in Table 4-2, "LPC Cycle Types Generated".

Also provided are the Master end of the legacy Serial IRQ interface for interrupts, and the legacy Clock Control interface via the CLKRUN# signal.

4.2 References

- Intel® Low Pin Count (LPC) Interface Specification, v1.1
- PCI Local Bus Specification, Rev. 2.2
- Serial IRQ Specification for PCI Systems Version 6.0
- PCI Mobile Design Guide Rev 1.0

4.3 Interface

4.3.1 SIGNAL DESCRIPTION

TABLE 4-1: LPC LEGACY SIGNAL DESCRIPTION TABLE

Name	Direction	Description
LAD[3:0]	Input/Output	The 4-bit LPC multiplexed command, address, and data bus.
LFRAME#	Output	Active low signal indicates start of new cycle and termination of broken cycle.
PLTRST#, used as LRESET#	Input	LRESET# is the LPC legacy name of the active low signal PLTRST# used as LPC Interface Reset. It is received from the Chipset's PLTRST# output, in parallel with all LPC slaves. Also called PCI Reset in system.
LPC_CLK_[1:0], each used as an LCLK	Outputs (2)	Provided as a 24-MHz frequency. Two pins are provided for distribution of loading, and may be individually enabled, disabled or controlled by CLKRUN#.
SER_IRQ	Input/Output	Serial IRQ pin used with the LCLK signal to transfer interrupts.
CLKRUN#	Input/Output	Clock Control for LCLK outputs
SUS_STAT#, used as LPCPD#	Output	LPC Power Down: Indicates that the device should prepare for power to be removed from the LPC I/F. This is propagated from the Virtual Wire named SUS_STAT#.

4.3.2 REGISTER INTERFACES

The register set providing control for the LPC block is defined in Section 6.0, "Device Register Set and Initialization," on page 33. Initialization of registers is not required in order to propagate bridged I/O or Memory traffic to LPC, but is required for initializing and enabling SER IRQ and CLKRUN# features.

4.4 Power, Clocks and Reset

This section defines the Power, Clock, and Reset parameters of the block.

4.4.1 POWER DOMAINS

Name	Description
LPC_EN from PCH_PWROK (VCC / Main / S0 On)	The LPC Interface block is powered by VTR_33 and VTR_CORE_18. However, these features are active only while LPC_EN is high, indicating that system Main (VCC / S0) power is also good. This is "Emulated VCC" behavior.

4.4.2 CLOCKING

The LPC Interface runs from a 48MHz internal reference, 48 MHz Ring Oscillator, which is derived from the SUSCLK input. In turn, it generates the 24MHz timebase for the LPC clocks.

4.4.3 RESETS

Name	Description	
RESETI#	Power on Reset to the entire chip, externally provided.	
PLTRST# (as LRESET#)	This is the Platform Reset, used to reset internal LPC resources.	

For the sequences of Power and Reset state transitions, see Section 9.7, "System Power State Transition Diagrams," on page 70.

4.5 LPC Controller Description

The LPC Controller is compliant with the Intel® Low Pin Count (LPC) Interface Specification, v1.1. Section 4.5.1, "Cycle Types Generated" further clarifies which LPC Interface features have been implemented and qualifies any system specific requirements.

The LPC Controller accepts all eSPI I/O and Memory traffic that is directed to it from the Chipset, and passes it to the LPC bus except for the two I/O addresses used for accessing its internal register set (see Section 6.0, "Device Register Set and Initialization," on page 33). Traffic that is unclaimed or rejected on the LPC bus may optionally be detected and reported to the Chipset by selectable eSPI mechanisms.

Slave devices on LPC may use the SER_IRQ mechanism to notify the host of an event.See Section 4.7, "Serial IRQ," on page 23.

The CLKRUN# feature is provided, allowing negotiation with LPC slave devices to turn off the LPC clock(s) as desired.

4.5.1 CYCLE TYPES GENERATED

The following cycle types are generated by the LPC Interface Controller. Note that they are all 1 byte in length. eSPI I/O or Memory cycles that are larger than 1 byte are allowed, and are broken down into individual bytes, transferred least-significant byte first.

TABLE 4-2: LPC CYCLE TYPES GENERATED

Cycle Type	Transfer Size
I/O Read	1 byte
I/O Write	1 byte
Memory Read	1 byte
Memory Write	1 byte

4.5.2 SYNC FIELD HANDLING

The SYNC field in an LPC transfer provides status for each byte transferred. The LPC Interface recognizes only the following SYNC encodings:

TABLE 4-3: SYNC FIELD ENCODINGS RECOGNIZED

SYNC Code	Interpretation		
0000	Ready		
0101	Short Wait		
0110	Long Wait		
1010	Error		
other	Unrecognized, considered Reserved		

4.5.2.1 Wait SYNCs on LPC

Both Long Wait and Short Wait SYNC responses are handled identically, expecting either the Ready or Error SYNC code to appear. The ECE1200 device does not impose a time-out, leaving that to the Host Chipset.

4.5.2.2 Unclaimed LPC Cycle

An unclaimed LPC cycle is detected if no recognized SYNC code is seen after 3 clocks, or if an unrecognized SYNC code is detected after Wait SYNCs. This will terminate the current byte by the ABORT mechanism, and all subsequent byte transfers from the same eSPI transfer will be abandoned. The result reported over eSPI will be determined based on the type of eSPI transfer:

Non-Posted (I/O Read, I/O Write or Memory Read):

UNSUCCESSFUL COMPLETION, and other reporting as programmed in the Unclaimed Non-Posted Error Handling Register, Section 6.9.4, on page 40.

Posted (Memory Write only):

as programmed in the Unclaimed Posted Error Handling Register, Section 6.9.8, on page 42.

UNSUCCESSFUL COMPLETION is not a possible response to a Posted transfer.

See Section 4.8, "Error Reporting and Logging Registers," on page 24 for details of error posting and logging within the ECE1200.

4.5.2.3 Error (Abort) SYNC

An LPC cycle that is claimed, but is then terminated by the Error SYNC code, will terminate the current byte, and all subsequent byte transfers from the same eSPI transfer. The result reported over eSPI will be determined based on the type of eSPI transfer:

Non-Posted (I/O Read, I/O Write or Memory Read):

UNSUCCESSFUL COMPLETION, and other reporting as programmed in the Sync Abort Non-Posted Error Handling Register, Section 6.9.5, on page 41

Posted (Memory Write only):

as programmed in the Sync Abort Posted Error Handling Register, Section 6.9.9, on page 42.

UNSUCCESSFUL COMPLETION is not a possible response to a Posted transfer.

See Section 4.8, "Error Reporting and Logging Registers," on page 24 for details of error posting and logging within the ECE1200.

4.6 LPC Clock Run Control CLKRUN#

The CLKRUN# pin is used to indicate the status of the LPC Clock(s) as well as to request that stopped clocks be restarted. The standard for CLKRUN# operation is in the document PCI Mobile Design Guide Rev 1.0.

There is only one CLKRUN# control, but it can be associated with either or both of the LPC Clock pins. A disabled Clock is not affected by CLKRUN#, and remains disabled.

CLKRUN# Support is off by default, meaning that CLKRUN# is driven permanently low and LPC clocks are not gated. This remains the initial state of CLKRUN# by default when the feature is enabled as well. If the Serial IRQ feature is in Quiet Mode and idle, and the LPC bus has been idle for a defined period of time, CLKRUN# will be driven high by the ECE1200, and then parked high using an external pull-up resistor. Any LPC Slave device that requires clocks still to be running will pull CLKRUN# back low itself, and clocks will then continue uninterrupted. If however no Slave device pulls CLKRUN# low, then the ECE1200 will stop the LPC clocks, holding them low.

Once clocks are off, activating CLKRUN# low will re-start them. This may happen by Slave device action, or by the ECE1200 internally upon detecting a request for LPC traffic from the Host Chipset.

When clocks are stopped by CLKRUN# activity, other power saving modes may be engaged. See Section 6.6, "Low Power Modes," on page 35 and Section 3.7, "Chip Power Management Features," on page 19.

4.6.1 ENABLING THE CLKRUN# FUNCTION

See Section 6.8.6, "Set Up Optional CLKRUN# Clock Gating," on page 38.

4.7 Serial IRQ

The ECE1200 device supports Serial IRQ as the Master controller, adhering to the Serial IRQ Specification for PCI Systems Version 6.0. Both Continuous Mode and Quiet Mode operation are supported. The full 21-slot frame format is presented, as has been common practice in LPC-based Southbridge devices.

Serial IRQ inputs are bridged to the equivalent eSPI Virtual Wire traffic. See Section 6.8.4, "Set Up Serial IRQ," on page 37 for the detail and programmable options of the Serial IRQ feature. The Serial IRQ Master supports the following serial inputs:

Legacy Interrupts:

- IRQ1
- IRQ[3:7]
- IRQ[9:12]
- IRQ[14:15]

PCI-Derived Interrupts, mappable to selected IRQ levels, including those above IRQ15:

- INTA#
- INTB#
- INTC#
- INTD#

Discrete signals:

- SMI#
- · IOCHCK# (IOCHK#)

Other inputs are considered deprecated vestiges according to common practice, and are ignored.

The SMI# input on Serial IRQ is considered a signal from downstream sources, and is not captured in the ECE1200 internal register set. Polling for it in the internal register set will fail, and it will appear only in the LPC source device.

The IOCHCK# (IOCHK#) input is treated as an error condition, and three situations may be detected

The IOCHK Non-Posted Error Handling Register, Section 6.9.5, on page 41 defines the action to be taken if the IOCHK# input is activated during the Wait phase of a Non-Posted LPC transfer (I/O Read or Write, or Memory Read).

ECE1200

The IOCHK Posted Error Handling Register, Section 6.9.10, on page 42 defines the action to be taken if the IOCHK# input is activated during the Wait phase of a Posted LPC transfer (Memory Write).

These situations above do not by themselves terminate the LPC transfer, and the peripheral device must terminate the transfer itself (by a SYNC code other than Wait).

The IOCHK Idle Error Handling Register, Section 6.9.7, on page 41 defines the action to be taken if the IOCHK# input is activated outside of an LPC transfer.

4.7.1 ENABLING THE SERIAL IRQ FUNCTION

The Serial IRQ feature is disabled by default, and must be enabled. To enable Serial IRQ channel the host must initialize it as described in Section 6.8.4, "Set Up Serial IRQ," on page 37. This may be done either before or after LPC sources have been initialized.

4.8 Error Reporting and Logging Registers

4.8.1 VIRTUAL WIRE STATES AND CLEARING

Four eSPI Virtual Wires are available for reporting LPC errors or the IOCHK# event, as programmed in the various Error Handling registers mentioned above. Each Virtual Wire, once posted and signaled to the Chipset, can be polled and cleared by register accesses. The Virtual Wires are:

- ERROR FATAL
- ERROR NONFATAL
- SMI#
- · SCI#

The Virtual Wires ERROR_FATAL and ERROR_NONFATAL are polled and cleared in the eSPI Virtual Wire Errors Register, Section 6.9.11, on page 43. They are also cleared by an eSPI_RESET# event.

The Virtual Wires SMI# and SCI# are polled and cleared in the eSPI Virtual Wire Error Events Register, Section 6.9.12, on page 43. These Virtual Wires are cleared by PLTRST# events as well as eSPI_RESET# events (eSPI_RESET# low asserts PLTRST# low as well).

The SMI# Virtual Wire is not recorded in the ECE1200 if it is the result of a Serial IRQ report. In that case, it will be recorded in the originating device, and can be polled and cleared there, propagating through the ECE1200 as it changes state on the Serial IRQ port. A PLTRST# event will clear it in the ECE1200, as well as at the originating device.

4.8.2 LPC CYCLE ERROR LOGGING

The various error conditions occurring during an LPC transfer are logged as individual bits in two registers:

- The LPC Error Log Non-Posted Register, Section 6.11.8, on page 56 holds errors detected in Non-Posted transfers.
- The LPC Error Log Posted Register, Section 6.11.9, on page 56 holds errors detected in Posted transfers.

In addition, the address and type of LPC access are captured on each error:

- The Error Cycle Attributes Register, Section 6.11.14, on page 57 holds the type of access: Read vs.Write and I/O vs. Memory.
- The four Error Cycle Address registers, starting at Section 6.11.10, on page 57, hold the address captured from the LPC bus on an error. I/O addresses load only the low-order two bytes of the address; Memory addresses load all four bytes.

5.0 ENHANCED SERIAL PERIPHERAL INTERFACE (ESPI)

5.1 Introduction

The Intel® Enhanced Serial Peripheral Interface (eSPI) in the ECE1200 is a hard-wired subset of the eSPI functionality, dedicated to bridging I/O and Memory traffic with LPC, and Serial IRQ traffic. It also implements Virtual Wires, by which it restores legacy signals and supports new eSPI requirements internally.

5.2 References

- 1. Intel Doc #327432, Enhanced Serial Peripheral Interface (eSPI): Interface Base Specification
- 2. Intel Doc #562633, Enhanced Serial Peripheral Interface (eSPI) Compatibility Specification

5.3 Terminology

This table defines specialized terms localized to this feature.

TABLE 5-1: TERMINOLOGY

Term	Definition
System Host	Refers to the external Chipset that originates the I/O and Memory traffic over the eSPI Interface.
Master / Slave	Following the SPI convention, the System Host is the eSPI Master and the ECE1200 is the eSPI Slave. The Slave can request the Master's attention using the ALERT# functionality, but all traffic is driven by the Master.
Virtual Wire / Virtual Wire Channel	A Virtual Wire is a 1-bit digital state that is transferred between the System Host and the ECE1200. Some Virtual Wires are translated to/from physical pins by the ECE1200. Other Virtual Wires present IRQs to the Host System from the Serial IRQ feature, participate in handshakes for system power state transitions, or signal exceptions to the Host System. The eSPI Virtual Wire Channel is a category of eSPI traffic that is multiplexed onto the eSPI pins for transferring Virtual Wires.
Peripheral Channel	This is a category of eSPI traffic that is multiplexed onto the eSPI pins for performing I/O and Memory traffic originating from the System Host.
eSPI Configuration Registers	A set of registers that are dedicated to initial low-level setup of the eSPI bus by the System Host. They are accessible only using the eSPI GET_CONFIGURATION and SET_CONFIGURATION commands, and are separate from the internal register set that is accessed by I/O traffic.

5.4 Bus Interface

5.4.1 BUS PINS

Table 5-2, "eSPI Bus Signal Description Table" lists the eSPI bus signals on the pin interface. These are documented by Intel specifications.

TABLE 5-2: ESPI BUS SIGNAL DESCRIPTION TABLE

Signal Name	Direction	Description
eSPI_CS#	Input	eSPI Chip Select, Low-Active
eSPI_CLOCK	Input	eSPI Clock
eSPI_ALERT#	Output	eSPI Alert signal, Low-Active. Exercised only if the Host System specifically enables it, which it will do if there are other eSPI Slaves in the system. Otherwise the default configuration is to present ALERT# events on the eSPI_IO1 pin.
eSPI_RESET#	Input	POR for eSPI domain, and the Global Reset exercised by the Host System for serious errors. Low-Active.
eSPI_IO0	Input/Output	eSPI Data Bus, bit 0. Input (MOSI) in x1 Bus Mode. In wider bus modes it holds the LS data bit.
eSPI_IO1	Input/Output	eSPI Data Bus, bit 1. Output (MISO) in x1 Bus Mode. Also, by default and if there is only a single Slave in a point-to-point configuration, it presents the ALERT# state while the eSPI bus is idle.
eSPI_IO2	Input/Output	eSPI Data Bus, bit 2. Used only in x4 mode.
eSPI_IO3	Input/Output	eSPI Data Bus, bit 3. Used only in x4 mode, as MS bit.

5.5 Sideband Support Interface

5.5.1 ESPI SIDEBAND SUPPORT PIN LIST

Table 5-3, "eSPI Sideband Signal Description Table" lists a set of signals that are typically needed for supporting (or bypassing) certain features of eSPI that are propagated as Virtual Wires.

TABLE 5-3: ESPI SIDEBAND SIGNAL DESCRIPTION TABLE

Signal Name	Direction	Description
BOOT_DONE	Input	Selects eSPI Slave role as Primary (high) vs. Secondary (low). Also allows a delayed assumption of the Primary Slave role. See Section 5.5.2, "BOOTDONE," on page 27
SUSWARN#	Output	Presents the state of the Virtual Wire SUS_WARN#, restoring the legacy PCH pin function. Connect to the SUSACK# pin for a mandatory handshake, as per Section 1.1.1, "General System Block Diagram," on page 5, Figure Note 4. See also Section 5.5.3, "SUSWARN#," on page 28.
SUSACK#	Input	Edges on this pin are transmitted to the PCH as the Virtual Wire SUS_ACK#. Connect to the SUSWARN# pin for a mandatory handshake, as per Section 1.1.1, "General System Block Diagram," on page 5, Figure Note 4. See also Section 5.5.4, "SUSACK#," on page 28.
SUSPWRDNACK / HOST_RST_ACK	Output	In the Primary Slave role, presents the state of the Virtual Wire SUSPWRDNACK, restoring the legacy PCH pin function. See Section 1.1.1, "General System Block Diagram," on page 5, Figure Note 3. In the Secondary role, presents the HOST_RST_ACK state as a physical signal. See Section 1.1.4, "System Block Diagram, ECE1200 as Secondary eSPI Slave," on page 8, Figure Note 4. See also.Section 5.5.5, "SUSPWRDNACK / HOST_RST_ACK," on page 28

5.5.2 BOOT DONE

The BOOT_DONE option selects the eSPI Slave role (Primary or Secondary) that the ECE1200 should assume. The Secondary Slave role is more passive than the Primary Slave role, in that it does not participate in Virtual Wire handshake responses over eSPI. It does receive the initial Virtual Wire, but for information only. For examples of system configurations and BOOT_DONE connections for them, see the figures in Section 1.1, "System Block Diagrams," on page 5.

BOOT_DONE is not sampled at any one time, but has its effect continuously, and may either be strapped to a static value or be changed once, as explained below.

- BOOT_DONE = permanently High means that the ECE1200 serves as the Primary eSPI slave. This means that the Chipset has only one ESPI_CS# pin, or that there are two eSPI slaves and the ESPI_CS# on the ECE1200 is connected to the Chipset's ESPI_CS0# pin.
 - The output pin SUSPWRDNACK/HOST_RST_ACK is driven as the SUSPWRDNACK function, and the internal HOST_RST_ACK state is transmitted as a Virtual Wire.
 - At the first opportunity, the Virtual Wires SLAVE_BOOT_LOAD_DONE and SLAVE_BOOT_LOAD_STATUS are both transmitted as '1' to the Chipset, freeing the system to boot above the S5 state.
- BOOT_DONE = permanently Low means that the ECE1200 serves as a Secondary eSPI slave of two or more in the system (that is, it is connected to ESPI_CS1# or higher from the Chipset).
- The SLAVE_BOOT_LOAD_DONE and SLAVE_BOOT_LOAD_STATUS Virtual Wires are not transmitted, and instead come from the Primary Slave, which is required to be present also.
- The output pin SUSWARN# is driven from its Virtual Wire, but is not expected to be used by the system. The input pin SUSACK# has no function in this configuration, and its state will be ignored.
- The output pin SUSPWRDNACK/HOST RST ACK is driven as the HOST RST ACK function.
- BOOT_DONE = Low then High is a way of delaying booting of the system, by an ECE1200 wired as the Primary Slave, if some system consideration requires a further delay after RSMRST# has gone high. While BOOT_DONE remains low, the Virtual Wires SLAVE_BOOT_LOAD_DONE and SLAVE_BOOT_LOAD_STATUS are not yet transmitted to the Chipset. On the rising edge of BOOT_DONE, these Virtual Wires are transmitted as '1' values, and the ECE1200 assumes its Primary eSPI Slave role from this time onward. No Virtual Wire traffic is lost in this sequence, because it does not commence until the SLAVE_BOOT_LOAD_xxx Virtual Wires have been sent from a Primary slave.

The output pin SUSPWRDNACK/HOST_RST_ACK is initially driven low (as HOST_RST_ACK, temporarily), then driven as the SUSPWRDNACK function (also initially low) when BOOT DONE rises.

TABLE 5-1: BOOT_DONE

BOOT_DONE	Description
0	ECE1200 assumes the Secondary eSPI Slave role. Certain Virtual Wire interactions will not occur, deferring to another Primary device for this traffic. SUSPWRDNACK/HOST_RST_ACK pin = HOST_RST_ACK
1	ECE1200 assumes the Primary eSPI Slave role. At the first opportunity, it will transmit VWires SLAVE_BOOT_LOAD_DONE and SLAVE_BOOT_LOAD_STATUS as '1' to the Chipset. SUSPWRDNACK/HOST_RST_ACK pin = SUSPWRDNACK
0 then 1	ECE1200 assumes the Primary eSPI Slave role at the rising edge. It will transmit VWires SLAVE_BOOT_LOAD_DONE and SLAVE_BOOT_LOAD_STATUS as '1' to the Chipset, either immediately or at the first opportunity provided by the eSPI Master in the Chipset. SUSPWRDNACK/HOST_RST_ACK pin = SUSPWRDNACK
1 then 0	Undefined action, and not allowed. It may lead to undefined operation in the system.

5.5.3 SUSWARN#

This pin restores a pin that may no longer be available on an eSPI-configured Chipset. It presents the state of the Virtual Wire replacement.

Usage:

This output serves as the PCH-driven request to enter DSW Deep Sleep mode. When configured as the Primary eSPI Slave, the SUSWARN# pin must be connected to provide a handshake with the SUSACK# pin. This connection may be direct, or it may involve external circuitry and/or the EC to provide a gating delay, as required by the DSW needs of the system.

A connection between SUSWARN# and SUSACK# should be considered mandatory regardless of whether DSW Deep Sleep is being used in the system. Each edge presented on SUSWARN# must be followed by a corresponding edge on the SUSACK# pin, or else the system may hang and fail to boot.

See Section 1.1.1, "General System Block Diagram," on page 5, and Note 4 below it.

5.5.4 SUSACK#

This input restores a pin that may no longer be available on an eSPI-configured Chipset. Edges on this pin are transmitted as Virtual Wire events to the Chipset.

Usage

It is intended to accept edges coming ultimately from the SUSWARN# pin. See Section 5.5.3, "SUSWARN#" above.

5.5.5 SUSPWRDNACK / HOST RST ACK

This pin is multiplexed by the state of the BOOT DONE pin. See Section 5.5.2, "BOOT DONE," on page 27.

5.5.5.1 Primary Slave Role: SUSPWRDNACK

In the Primary Slave role (BOOT_DONE = 1), this pin presents the state of the Virtual Wire SUSPWRDNACK, replacing a physical signal no longer presented by some eSPI-mode PCH devices. It may be used by the EC or external circuitry as permission to remove Chipset Primary power for Deep Sleep (Chipset G3 mechanism).

In this role, the HOST RST ACK state is transmitted over eSPI as a Virtual Wire, and does not involve a physical signal.

5.5.5.2 Secondary Slave Role: HOST_RST_ACK

This pin is provided to supply optional support for an eSPI-specific handshake (HOST_RST_WARN/HOST_RST_ACK), which is performed separately by the Primary eSPI Slave (EC or SIO), to grant permission for the Chipset to issue an LRESET# event. A Secondary Slave cannot respond to this handshake over eSPI directly, though it does see the HOST_RST_WARN Virtual Wire.

The HOST_RST_ACK pin output goes high in response to the rising edge of Virtual Wire HOST_RST_WARN, delayed until the LPC and Serial IRQ interfaces have become idle in response. If the Primary Slave can make use of this signal to delay its own Virtual Wire HOST_RST_ACK response, this signal may be connected to it. Otherwise, this pin may be left unconnected.

The Virtual Wire SUSPWRDNACK is irrelevant to a Secondary Slave, intended to be processed by the Primary Slave instead.

5.6 Register Interface

The registers associated with eSPI itself are only the eSPI Configuration Registers. They are accessed only for initialization of eSPI communication parameters, by Chipset hardware after removal of the eSPI_RESET# signal. See Section 5.8, "eSPI Configuration Registers," on page 30 for details of these special registers.

Other registers, used for controlling the Bridging functionality between eSPI and LPC, are described in Section 6.0, "Device Register Set and Initialization," on page 33.

5.7 Description

5.7.1 OPERATING FREQUENCY

The part supports standard eSPI specifications up to the 50MHz operating frequency. It does not, however, enforce a limit to the Host Chipset, which remains in full control of the frequency selection. See the Intel Compatibility Specification document listed in Section 5.2, "References" for the "Soft-Straps" that declare this for the system.

Any additional eSPI Slave may have its own independent frequency setting, including the maximum 66MHz, and its traffic will have no effect on this device.

5.7.2 PERIPHERAL CHANNEL SUBSET

The eSPI Peripheral Channel supports I/O and Memory traffic initiated by the Host System. It does not support eSPI Memory Mastering emulation to Host DRAM, nor the associated LTR command.

It therefore does not attempt to re-create legacy LPC DMA or Mastering.

5.7.3 VIRTUAL WIRE CHANNEL SUBSET

As referenced to the Intel Compatibility Specification document listed in Section 5.2, "References", a subset of Virtual Wires is implemented as shown in Table 5-4. "RFU" represents a Virtual Wire that is implemented for future use only.

In Table 5-4, the following notations are used:

- IDX is the Virtual Wire Index number for the group of 4 Virtual Wires.
- Dir is the Virtual Wire direction for that Index: "Dn" (Down) is Master to Slave, "Up" is Slave to Master.

TABLE 5-4: VIRTUAL WIRES IMPLEMENTED

SLP_S5# OOB_RST_ WARN WAKE# ERROR_	SLP_S4# PLTRST# X	SLP_S3# SUS_STAT# OOB_RST	x000 x000	eSPI_RESET# eSPI_RESET#
WARN WAKE#		_	x000	eSPL RESET#
	Х	OOR PST	1	COLI_NEOLI#
ERROR_		ACK	11x0	eSPI_RESET#
NONFATAL	ERROR_ FATAL	SLAVE_BOOT_ LOAD_DONE	0000	eSPI_RESET#
RCIN#	SMI#	SCI#	0111	PLTRST#
Х	X	HOST_RST_ WARN	xxx0	PLTRST#
Х	RFU	SUS_ACK#	xx00	eSPI_RESET#
Х	SUS_PWRDN_ ACK	SUS_WARN#	0x00	eSPI_RESET#
Х	SLP_WLAN#	SLP_LAN#	xx00 eSPI_RESET#	
("Generi	c" Down)		0000	eSPI_RESET#
("Generic" Down)			0000	eSPI_RESET#
("Generic" Up from Primary Slave CS0#)			0000	eSPI_RESET#
("Generic" Up from Primary Slave CS0#)		0#)	0000	eSPI_RESET#
X	X	HOST_C10	xxx0	PLTRST#
eric" Up from Se	econdary Slave C	S1#)	0000	eSPI_RESET#
eric" Up from Se	econdary Slave C	S1#)	0000	eSPI_RESET#
X	RFU	X	xx0x eSPI_RESET#	
Yellow: Sent Up only if BOOT_DONE pin is high	Orange: Sent up as '1' if BOOT_DONE pin is high.	Gray: Not implemented. X = Undefined	Blue: Generated internally. Sent Up as the Virtual Wire if BOOT_DONE == 1 or presented on the physical pin if BOOT_DONE == 0	
	ent Up only if OOT_DONE	ent Up only if OOT_DONE pin is high OOT_DONE OOT_DONE OOT_DONE	ent Up only if OOT_DONE pin is high Sent up as '1' if implemented. BOOT_DONE pin is high. X = Undefined	ent Up only if OOT_DONE pin is high Sent up as implemented. Sent Up a if BOOT_DONE pin is high. Sent Up a if BOOT_DONE pin is high. Sent Up a if BOOT_DONE pin is high.

5.8 eSPI Configuration Registers

The eSPI Configuration Register Set is only accessible using the low-level eSPI protocol commands GET_CONFIGURATION and SET_CONFIGURATION. These are typically issued only by Chipset hardware state machines, as directed by its own Soft-Straps, for initialization of eSPI communication parameters. These commands include a Location field in order to designate which register is being accessed, but this Location does not reside within the Memory or I/O space visible to CPU software.

These registers are accessible to Host software using a specialized portal in the PCH. However, accessing them is neither required nor recommended, even during BIOS POST. They are shown here only to support interpretation of eSPI traffic for debug. See Intel's specifications (Section 5.2) for full detail of their content and usage.

Note that the ECE1200 does not enforce a clock speed limit using these registers. It is designed to operate at a maximum frequency of 50MHz, and this is what must be declared in the Chipset's Soft-Strap settings for eSPI communication with this device. Any additional eSPI Slave may have its own frequency setting, including 66MHz, and its traffic will have no effect on this device.

TABLE 5-5: ESPI CONFIGURATION REGISTER SUMMARY

Location	Register Name	
04h	eSPI Device Identification Register	
08h	eSPI General Capabilities and Configurations Register	
10h	eSPI Channel 0 (Peripheral) Capabilities and Configurations Register	
20h	eSPI Channel 1 (Virtual Wire) Capabilities and Configurations Register	

5.8.1 ESPI DEVICE IDENTIFICATION REGISTER

Location	04h			
Bits	Description	Туре	Default	Reset Event
31:8	Reserved	R	0h	-
7:0	Version ID	R	01h	-

5.8.2 ESPI GENERAL CAPABILITIES AND CONFIGURATIONS REGISTER

Location	08h			
Bits	Description	Туре	Default	Reset Event
31	CRC Checking Enable	R/W	0	eSPI
30	Response Modifier Enable	R/W	0	eSPI
29	Reserved	R	0	-
28	Alert Mode	R/W	0	eSPI
27:26	IO Mode Select	R/W	00b	eSPI
25:24	IO Mode Support	R	11b	-
23	Open Drain ALERT# Select	R/W	0	eSPI
22:20	Operating Frequency Select	R/W	000b	eSPI
19	Open Drain ALERT# Supported	R	1	-
18:16	Max Operating Frequency Supported (No limit declared)	R	100b	-
15:12	Max WAIT States Allowed	R/W	0000b	eSPI
11:8	Reserved	R	0000b	-
7:0	Channels Supported (Only Peripheral and Virtual Wire channels)	R	03h	-

ECE1200

5.8.3 ESPI CHANNEL 0 (PERIPHERAL) CAPABILITIES AND CONFIGURATIONS REGISTER

Location	10h			
Bits	Description	Туре	Default	Reset Event
31:15	Reserved	R	0h	-
14:12	Max Read Request	R/W	001b	PLTRST
11	Reserved	R	0	-
10:8	Max Payload Size Selected	R/W	001b	PLTRST
7	Reserved	R	0	-
6:4	Max Payload Size Supported	R	001b	-
3	Reserved	R	0	-
2	Bus Master Enable	R/W	0	PLTRST
1	Ready (follows Enable bit)	R	1	PLTRST
0	Enable	R/W	1	PLTRST

5.8.4 ESPI CHANNEL 1 (VIRTUAL WIRE) CAPABILITIES AND CONFIGURATIONS REGISTER

Location	20h			
Bits	Description	Туре	Default	Reset Event
31:22	Reserved	R	0h	-
21:16	Operating Maximum VWire Count	R/W	0h	eSPI
15:14	Reserved	R	0	-
13:8	Max VWire Count Supported	R	3Fh	eSPI
7:2	Reserved	R	0h	-
1	Ready (follows Enable bit)	R	0	eSPI
0	Enable	R/W	0	eSPI

6.0 DEVICE REGISTER SET AND INITIALIZATION

6.1 Introduction

This chapter defines the register set of the ECE1200 device, and the mechanism used to access them.

All accesses to ECE1200 internal registers use the Plug-and-Play Configuration Port mechanism, which occupies only two contiguous bytes in an otherwise unused section of the Host I/O addressing space. All other I/O and Memory traffic directed to the ECE1200 is transparently presented on the LPC bus, and this happens immediately without any requirement for setup. This includes passing other Plug-and-Play traffic directly and immediately to other devices' Configuration Ports, such as 2Eh/2Fh and 4Eh/4Fh, allowing them to be initialized first.

It is, however, necessary eventually to access the internal register set, because this is where the Master resources associated with the Serial IRQ and CLKRUN# features are configured and enabled, and where optimizations for additional power saving may be selected. The ECE1200 device uses the same Plug-and-Play Configuration Port to provide access to registers that have Runtime as well as Configuration purposes.

Initially the Configuration Port resides at I/O addresses 008Ch (INDEX) and 008Dh (DATA), chosen so that it is reliably out of the way of legacy I/O traffic. But it can be moved to any other desired address at a 2-byte boundary, where the first ("even") address is the INDEX byte, followed by the DATA byte at the next ("odd") byte address.

6.2 Terminology

According to Plug-and-Play standards, registers fall into regions defined as "Global" or "Logical Device".

TABLE 6-1: TERMINOLOGY

Term	Definition
Global Registers	Registers that are always accessible via the Configuration Port.
Logical Device Registers	Registers belonging to a "Logical Device" in the device. These registers are bank-selected into a shared region, using one of the Global Registers to make the selection.

6.3 Register Interface

The Host-accessible Plug-and-Play Configuration port is the means of accessing internal registers, which are organized as shown in FIGURE 6-1: on page 34.

The INDEX I/O location is written with an "Index" value to select the register to be accessed. The DATA I/O location is then used with 8-bit I/O Read or Write instructions to access the selected register.

There is a single Global region which resides at Index values of 00h through 2Fh. As defined above, these registers are not subject to bank selection, and are therefore accessible at all times.

Within the Global region, there is a register called "Logical Device Number", residing at Index 07h. Writing an 8-bit value here selects a Logical Device bank of registers, which may then be accessed using Indexes 30h through FFh.

In this device, there are two Logical Devices:

- · Logical Device number 00h is the "eSPI Logical Device", holding registers that manage the Host CPU interface.
- Logical Device number 01h is the "LPC Logical Device", holding registers that manage the LPC, SERIRQ and CLKRUN# functionality.

Sequence to Access a Logical Device Register:

- a) Select the Logical Device using the Logical Device Number Register, by writing 07h into the INDEX Port and then the Logical Device number value (00h or 01h) to the DATA Port.
- b) Write the address of the desired Logical Device register to the INDEX Port and then write or read the value of the register itself through the DATA Port.
 - **Note 1:** If accessing a Global Register, step (a) is not required.
 - 2: Any write to an undefined or Reserved register is terminated normally on the eSPI bus without any modification of state in the ECE1200. Any read to a Reserved register returns 00h.

Global Index = 00h - 2FhRegisters Logical Device 0 Logical Device 1 Index = 30h - FFhRegisters Registers

FIGURE 6-1: BLOCK DIAGRAM OF REGISTER SET

6.3.1 REGISTER INTERFACE ENABLE / DISABLE

The Configuration Port is disabled by default and must be enabled by placing the device into CONFIG MODE. This is done by writing the value 55h into the INDEX location. Any Reset event to the device, including PLTRST#, will again disable the interface, requiring it to be re-enabled by this method.

The Configuration Port can also be disabled explicitly by writing the value AAh to the INDEX location. Register accesses will be disabled until the value 55h is again written to the INDEX location. The Configuration Port still claims I/O transfers even while disabled, so the Disabled state does not cause these transfers to be propagated to LPC.

6.4 Register Reset Domains

This section defines the Reset events that affect the register set.

Name	Description
PLTRST	Activation of the PLTRST# input pin by the Chipset. This is a CPU Reset, also called "PCI Reset". This same signal goes from the Chipset, in parallel, to LPC devices as "LRESET#.
eSPI_RESET	Activation of the eSPI_RESET# input pin by the Chipset. This happens on every Power On Reset of this chip, and also on certain error conditions detected by the Chipset that do not remove power to the device. This reset state also activates the PLTRST reset.
RESETI	Reset In: Power On Reset to the device, signaled by activation of the RESETI# input pin low. This signal comes to both the ECE1200 device and the Chipset from the system as the RSMRST# signal. This signal resets all the registers and logic in this block to its default state, and also activates the eSPI_RESET and PLTRST resets.

6.5 Interrupts

IRQ interrupts are asserted through the Serial IRQ feature only.

The SMI# Virtual Wire may be configured to come from its dedicated Serial IRQ slot.

IRQs, and SMI# from Serial IRQ, are acknowledged only at the source, requiring no separate interaction with the ECE1200 device.

Error exceptions may be configured to be transmitted on detection of certain LPC errors, These consist of the eSPI Virtual Wires ERROR_FATAL, ERROR_NONFATAL, SMI# or SCI#. Where provided for in the eSPI protocol, the UNSUCCESSFUL COMPLETION response is also sent for these errors, unconditionally.

The IOCHK# (or IOCHCK#) slot in the Serial IRQ frame may also be configured to generate one of the error exceptions above. This may be made conditional on whether an LPC transfer was in progress at the time.

Error exceptions on LPC, or IOCHK# activation, are reported in local registers, and are to be acknowledged there.

6.6 Low Power Modes

By default, the ECE1200 device operates at full power. There are the following options, which may be selected by initialization after each PLTRST reset event:

- One of the two LPC Clock pins may be disabled. This is done in the Clock Enable Register. By default, both LPC Clock pins are enabled.
- The Serial IRQ feature may be placed in Quiet Mode. This is done in the SERIRQ Enable and Mode Register.
- A Serial IRQ clock gating mode may be selected to stop internal clocking of the Serial IRQ Master whenever it is idle and in Quiet Mode. This is done in the SERIRQ Enable and Mode Register.
- The CLKRUN# feature may be enabled to gate either or both LPC clocks while both the LPC and Serial IRQ interfaces are idle. This requires the Serial IRQ Quiet Mode to be selected also. The CLKRUN# functionality is configured using the Clock Enable Register, the CLKRUN Control Register and the CLKRUN Idle Clocks Register.
- Internal clocking as well as external clocking may be gated while LPC clocks are idle (typically due to the CLKRUN# feature). This is called Light Sleep, and is enabled using the IDLE_GATEOSC bit in the Power Save Register.
- Deep Sleep mode may be selected. In this mode, whenever the LPC and Serial IRQ features are idle and the CLKRUN# feature has turned the LPC clocks off, the HOST_C10 Virtual Wire will be monitored from the Chipset. If HOST_C10 is high under these conditions, the ECE1200 device will turn off its internal oscillator, entering its Deep Sleep state. Recovery from this state takes a period of time to establish a new frequency lock against the SUSCLK input. Deep Sleep is enabled using the VW_C10_STOPOSC bit in the Power Save Register. To avoid the recovery delay, the FORCE_OSC_LOCK bit may also be set to '1', and the tradeoff is that the clocking in the device (including the LPC Clocks) will be slower than specified until the full lock is achieved.

6.7 System Settings

The following items constitute a list of Chipset options to be addressed in the design process.

6.7.1 SET UP SOFT-STRAPS FOR ESPI

The ECE1200 device is capable of operating at the 50MHz eSPI DC and AC specifications. However, it does not itself enforce this limit. The Chipset's PCH Soft-Strap settings (in Flash) must select this, or a lower frequency, as the maximum for correct operation.

Other Soft-Strap selections will choose such eSPI options as the bus width and the number of Slave devices. These selections are communicated to the Slave(s) by Chipset hardware actions, and do not involve any software setup.

6.7.2 DEFER PCH SUSWARN# AND SUSACK# PINS TO ECE1200

The earliest eSPI-capable PCH devices have lost the SUSWARN# and SUSACK# pins in the trade-off to support eSPI, requiring that these pins be implemented as Virtual Wires instead. For this reason, these pins are re-created on the ECE1200 pinout. SUSWARN# and SUSACK# represent a mandatory handshake in any system that uses the Intel Deep Sleep Well (DSW) state. SUSWARN# is an output pin, and the SUSACK# input pin must follow it, both rising and falling edges, with an optional system-imposed external delay if necessary. It is acceptable to tie these pins together in the simplest case.

In later PCH devices, these pins may again be provided on the PCH itself. In at least one case (IceLake), these pins are provided, but multiplexed with the SMBus "SMLink1" pins, with SUSWARN# / SUSACK# being the default. If the SMLink1 capability is needed (for Chipset Temperature and RTC Register access) then it must be selected, and the SUSWARN# / SUSACK# functionality can still come from the ECE1200 device as Virtual Wires instead. For pre-boot configuration of the PCH pins, see the Intel documentation.

If, however, it is desired to keep the SUSWARN# / SUSACK# pin functionality on the PCH pins, then it is recommended that the SUSACK# pin on the ECE1200 device be tied permanently low (its expected default state) so that Virtual Wire traffic from it does not get transmitted to the Chipset.

If the ECE1200 device is connected to eSPI Chip Select #1 (with the BOOT_DONE pin held low), then it does not participate in the SUSWARN# / SUSACK# handshakes, though it will still present the SUSWARN# state on its own output pin. This handshake, and considerations for providing it, become instead a system design decision between the "Primary" eSPI device on Chip Select #0 and the PCH.

6.8 Initialization Steps

Listed below are the recommendations for establishing communication with the ECE1200 and performing setup.

6.8.1 LPC SETUP (NONE)

There is no setup of the ECE1200 required to begin LPC traffic. The LPC bus receives all I/O and Memory traffic that is routed to the ECE1200 by the Chipset, except for two bytes at its I/O Base Address for internal register access.

6.8.2 BASE ADDRESS RE-ASSIGNMENT (OPTIONAL)

From its reset state, the ECE1200 device's access portal for internal registers is configured to occupy I/O addresses 008Ch and 008Dh in order to avoid addressing conflict with other legacy devices. In nearly all system configurations, it is accessible immediately at these addresses, requiring no special routing considerations within the Host Chipset. But the ECE1200 may also be re-configured, if desired, in order to move it into another I/O region.

The default addresses reside in an unused section of the Host Chipset's Port 80h region (also called the "Debug Port region" or "RPR region") of the Host I/O space, where 8Ch is the INDEX location and 8Dh is the DATA location. The I/O address of the INDEX location is called the ECE1200 device's "Base Address".

Re-assignment of this default Base Address is only required if the system's Port 80h display function is not located on the LPC bus, downstream of the ECE1200. See Section 6.8.2.1, "Routing Within the Host Chipset," on page 37, for a brief application note on possible system routing variations.

If it is desired to perform a Base Address re-assignment, use the following steps:

- According to Section 6.8.2.1, "Routing Within the Host Chipset," on page 37, set up the Host Chipset to ensure that Port 80h / RPR traffic is routed to the ECE1200, if only temporarily.
- 2. According to Section 6.3.1, write the value 55h to the INDEX I/O location at 8Ch to enable register access.
- 3. If it is possible that this sequence is happening without a previous PLTRST# reset assertion, ensure that Logical Device 0 is selected, by doing the following:
 - a) Write 07h to the INDEX location 8Ch, designating the global Logical Device Number Register.
 - b) Write 00h to the DATA location 8Dh.
- 4. Designate a new Base Address:
 - a) Write 36h to the INDEX location 8Ch, designating the I/O BAR Address LS Register.
 - b) Write the LS byte of the new Base Address to the DATA location 8Dh.
 - c) Write 37h to the INDEX location 8Ch, designating the I/O BAR Address MS Register.
 - d) Write the MS byte of the new Base Address to the DATA location 8Dh.

Note that all four Writes must be performed, and in this order, even if they do not change a value that is already in one of the registers. Until this sequence is done completely, none of the 16-bit value changes internally.

5. If routing in the Chipset for Step 1 above was intended to be temporary, it may now be restored.

From this point onward, the ECE1200 will recognize only the new Base Address, and no longer 8Ch/8Dh, for accesses to its internal registers.

6.8.2.1 Routing Within the Host Chipset

The initial default routing within the Host Chipset directs the Port 80h I/O region (including Ports 8Ch/8Dh) to the eSPI bus, on eSPI Chip Select #0 (CS0#).

In eSPI Chipsets supporting more than one device on separate Chip Selects, the ECE1200 may reside on a different Chip Select (for example CS1#). A bit is provided in these Chipsets to re-route the Port 80h / RPR region to one of these other Chip Selects. As an example, for eSPI CS1# in the C620 series Chipset's PCH, this is the DPCS1RE bit, at bit position [14] of register PCCS1IORE.

Another available routing selection in most Chipsets is to map the Port 80h / RPR region onto the PCIe bus instead of eSPI. Since that routes the region away from eSPI entirely, the ECE1200 will need to have its Base Address re-assigned elsewhere unconditionally. Within the PCH, this routing is controlled by the RPR bit in register GCR, but note that this bit's default state still routes to eSPI initially.

6.8.3 ENABLE REGISTER ACCESS

If not already done as part of Section 6.8.2, "Base Address Re-Assignment (Optional)," on page 36, then write the value 55h to the INDEX I/O location to enable register access according to Section 6.3.1.

6.8.4 SET UP SERIAL IRQ

The SERIRQ Enable and Mode Register must be initialized in order to set up and start Serial IRQ traffic. It is in the Logical Device 01h register region.

When starting the Serial IRQ function, it is necessary to set the SIRQ_EN bit and the SIRQ_MD bit both to '1' in the same Write transfer. This starts the Serial IRQ traffic in Continuous Mode initially. Quiet Mode may be selected optionally at a later time.

IRQ slots are propagated over eSPI using their legacy IRQ numbers by default, but may be re-designated if desired using registers in Logical Device 00h, at indexes ACh through B7h.

ECE1200

The slots INTA# through INTD# are disabled by default, but may be assigned an IRQ number over eSPI using registers in Logical Device 00h, at indexes B8h through BBh. Levels on these slots are simply propagated to the PCH on the designated eSPI IRQ Virtual Wires, and the processing of them is left to the APIC block of the PCH and the ISRs attached to them.

The SMI# and IOCHK# slots are optional and disabled by default, but may be enabled as desired.

- SMI# will be transmitted over eSPI always as the SMI# Virtual Wire. Use SERIRQ Exception Enables Register in Logical Device 01h to enable the Serial IRQ slot.
- The IOCHK# slot can be attached to any one of four Virtual Wires for error handling. Use SERIRQ Exception
 Enables Register in Logical Device 01h to enable the slot, and Global registers IOCHK Non-Posted Error Handling Register, IOCHK Posted Error Handling Register and IOCHK Idle Error Handling Register to configure the
 handling for IOCHK# occurring within a Non-Posted transfer, a Posted transfer, or neither (LPC idle), respectively.

6.8.5 SELECT LPC CLOCK OUTPUTS

By default, both LPC Clock outputs are running. To save power, it is possible to turn off an Enable bit provided for each output. A disabled clock is unaffected by the CLKRUN# feature, and remains held low. See the Clock Enable Register in the Logical Device 01h register space.

6.8.6 SET UP OPTIONAL CLKRUN# CLOCK GATING

By default, any LPC Clock pin that remains enabled (above) is free-running. To optionally allow the CLKRUN# function to gate them during idle LPC and SERIRQ times, it is necessary to:

- Designate whether each pin will be controlled by CLKRUN#, using bits in the Clock Enable Register in the Logical Device 01h register space.
- 2. Enable the CLKRUN# feature itself in the CLKRUN Control Register in the Logical Device 01h register space. Until this is done, the CLKRUN# pin is held low, and the designated LPC clock output(s) will not be gated.

For CLKRUN# gating to operate, it is also necessary for the Serial IRQ feature to be set to Quiet Mode. Until this is done, the CLKRUN# pin will remain low and clocks will not be gated.

6.8.7 SET UP OPTIONAL LPC ERROR HANDLING

The various errors that may be signaled in LPC traffic may be routed over eSPI. These are "Unclaimed" (which includes invalid SYNC codes) and "SYNC Abort", which is an error occurring in a Claimed cycle.

In eSPI terms, "Non-Posted" traffic (I/O Read or Write, and Memory Read) will unconditionally provide the eSPI UNSUC-CESSFUL COMPLETION response on these errors, and this may be enough.

However, "Posted" traffic (Memory Write) does not have the opportunity to respond this way. If error indications are required, this must be done asynchronously using a Virtual Wire.

Therefore, an LPC error condition may be attached to a Virtual Wire for reporting of Posted errors. Non-Posted errors may also be attached to Virtual Wires in addition to the UNSUCCESSFUL COMPLETION response. The Virtual Wire may be selected as either ERROR FATAL, ERROR NONFATAL, SMI# or SCI#.

See the Global register set, indexes 08h through 10h for these settings. By default, no Virtual Wire handlings are selected.

Errors are reported in the Global registers at indexes 12h and 13h. These registers are where polling for errors occurs and where they can be acknowledged / cleared.

In addition, there is a group of logging registers in Logical Device 01h, indexes F2h through F8h, where the LPC error type, the LPC address and the access type (Read vs.Write, and I/O vs. Memory) are captured. These registers are not cleared on PLTRST events, so they may be read after a system restart.

6.9 Global Register Set

Registers for the Global Register region are shown in the following summary table, according to the INDEX value used to select them. This region, from INDEX values 00h through 2Fh, is accessible regardless of the setting of the Logical Device Number Register.

TABLE 6-2: GLOBAL REGISTER SUMMARY

IABLE 0-2.	GLOBAL REGIOTER COMMAN	
Index	Register Name	
00h	Test	
01h	Test	
02h	Test	
03h	Reserved	
04h	Reserved	
05h	Reserved	
06h	Reserved	
07h	Logical Device Number Register	
08h	Unclaimed Non-Posted Error Handling Register	
09h	Sync Abort Non-Posted Error Handling Register	
0Ah	Reserved	
0Bh	IOCHK Non-Posted Error Handling Register	
0Ch	IOCHK Idle Error Handling Register	
0Dh	Unclaimed Posted Error Handling Register	
0Eh	Sync Abort Posted Error Handling Register	
0Fh	Reserved	
10h	IOCHK Posted Error Handling Register	
11h	Reserved	
12h	eSPI Virtual Wire Errors Register	
13h	eSPI Virtual Wire Error Events Register	
14h	Test	
15h	Test	
16h	Test	
17h	Test	
18h	Test	
19h	Test	
1Ah	Test	
1Bh	Test	
1Ch	Device Revision Register	
1Dh	Device Sub ID Register	
1Eh	Device ID LS Register	
1Fh	Device ID MS Register	
20h	Legacy Device ID Register	
21h	Legacy Device Rev Register	
22h	Test	
23h	Test	
24h	Test	
25h	Test	
26h	Test	
27h	Test	

ECE1200

TABLE 6-2: GLOBAL REGISTER SUMMARY (CONTINUED)

Index	Register Name
28h	Test
29h	Test
2Ah	Power Save Register
2Bh	Test
2Ch	Test
2Dh	Reserved
2Eh	Test
2Fh	Test

6.9.1 RESERVED

Reserved Register locations are unused for any purpose. Writes are ignored, and Reads return "0".

6.9.2 TEST

Test Registers are reserved for Microchip use in testing. Contents of these registers are unspecified and may change dynamically. Writing these locations, even to rewrite their contents, may cause behavior that is unspecified: do not write them at all, except as directed by Microchip customer support.

6.9.3 LOGICAL DEVICE NUMBER REGISTER

Index	07h			
Bits	Description	Type	Default	Reset Event
7:0	Logical Device Number	R/W	00h	PLTRST

6.9.4 UNCLAIMED NON-POSTED ERROR HANDLING REGISTER

Index	08h			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
3:0	Handling selected for Unclaimed Non-Posted LPC transfers, in addition to UNSUCCESSFUL COMPLETION eSPI response: 0h = No additional action 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	Oh	PLTRST

6.9.5 SYNC ABORT NON-POSTED ERROR HANDLING REGISTER

Index	09h			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
	Handling selected for explicit ABORT Sync code on Non-Posted LPC transfers, in addition to UNSUCCESSFUL COM-PLETION eSPI response: 0h = No additional action 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	Oh	PLTRST

6.9.6 IOCHK NON-POSTED ERROR HANDLING REGISTER

Index	0Bh			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
3:0	Handling selected for IOCHK# received during Non-Posted LPC transfers. The LPC transfer will continue, and may succeed or fail on its own. 0h = No additional action 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	Oh	PLTRST

6.9.7 IOCHK IDLE ERROR HANDLING REGISTER

Index	0Ch			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
	Handling selected for IOCHK# received while no LPC transfer is in progress: 0h = No action (ignore) 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	Oh	PLTRST

6.9.8 UNCLAIMED POSTED ERROR HANDLING REGISTER

Index	0Dh			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
3:0	Handling selected for an unclaimed Posted LPC transfer (Memory Write). 0h = No action (ignore) 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	0h	PLTRST

6.9.9 SYNC ABORT POSTED ERROR HANDLING REGISTER

Index	0Eh			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
3:0	Handling selected for an explicit ABORT Sync code received during a Posted LPC transfer (Memory Write). 0h = No action (ignore) 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	0h	PLTRST

6.9.10 IOCHK POSTED ERROR HANDLING REGISTER

Index	10h			
Bits	Description	Type	Default	Reset Event
7:4	Reserved	R	0h	-
3:0	Handling selected for IOCHK# received during a Posted LPC transfer (Memory Write). 0h = No action (ignore) 1h = Post VWire ERROR_NONFATAL 2h = Post VWire ERROR_FATAL 3h = Post VWire SMI# 4h = Post VWire SCI#	R/W	0h	PLTRST

6.9.11 ESPI VIRTUAL WIRE ERRORS REGISTER

Index	12h			
Bits	Description	Туре	Default	Reset Event
7	Reserved	R	0	-
6	Reserved	R	0	-
5	CLEAR_NFE Write '1' to clear the NFE_STATUS bit. Reads as '0' always.	WO	0	eSPI_RESET
4	NFE_STATUS Current state of the ERROR_NONFATAL Virtual Wire. Cleared by the CLEAR_NFE bit.	RO	0	eSPI_RESET
3	Reserved	R	0	-
2	Reserved	R	0	-
1	CLEAR_FE Write '1' to clear the FE_STATUS bit. Reads as '0' always.	W	0	eSPI_RESET
0	FE_STATUS Current state of the ERROR_FATAL Virtual Wire. Cleared by the CLEAR_FE bit.	RO	0	eSPI_RESET

6.9.12 ESPI VIRTUAL WIRE ERROR EVENTS REGISTER

Index	13h			
Bits	Description	Туре	Default	Reset Event
7	Reserved	R	0	-
6	Reserved	R	0	-
5	CLEAR_SCIE Write '1' to clear the SCIE_STATUS bit. Reads as '0' always.	W	0	PLTRST
4	SCIE_STATUS Current state of the SCI Error ('1' = forcing SCI# low). Cleared by the CLEAR_SCIE bit.	RO	0	PLTRST
3	Reserved	R	0	-
2	Reserved	R	0	-
1	CLEAR_SMIE Write '1' to clear the SMIE_STATUS bit. Reads as '0' always.	W	0	PLTRST
0	SMIE_STATUS Current state of the SMI Error ('1' = forcing SMI# low). Cleared by the CLEAR_SMIE bit.	RO	0	PLTRST

6.9.13 DEVICE REVISION REGISTER

Index	1Ch			
Bits	Description	Type	Default	Reset Event
7:0	Device Revision	R	-	-

ECE1200

6.9.14 DEVICE SUB ID REGISTER

Index	1Dh			
Bits	Description	Type	Default	Reset Event
7:0	Device Sub ID	R	65h	-

6.9.15 DEVICE ID LS REGISTER

Index	1Eh			
Bits	Description	Type	Default	Reset Event
	Device ID	R	21h	-
	(Least-Significant 8 bits)			

6.9.16 DEVICE ID MS REGISTER

Index	1Fh			
Bits	Description	Type	Default	Reset Event
7:0	Device ID (Most-Significant 8 bits)	R	00h	-

6.9.17 LEGACY DEVICE ID REGISTER

Index	20h			
Bits	Description	Type	Default	Reset Event
	Legacy Device ID 8 bits only: This encoding defers to the 16-bit Device ID.	R	FEh	-

6.9.18 LEGACY DEVICE REV REGISTER

Index	21h			
Bits	Description	Type	Default	Reset Event
7:0	Legacy Device Revision	R	-	-

6.9.19 POWER SAVE REGISTER

Index	2Ah			
Bits	Description	Туре	Default	Reset Event
7	OSC_LOCKED '1' in this bit indicates that the on-chip oscillator is locked to the 32KHz SUSCLK input.	R	-	PLTRST
6	FORCE_OSC_LOCK Writing '1' into this bit forces the oscillator output to be used for all activity regardless of whether it is locked. The LPC clocks will be slower than specified if not locked.	R/W	0	PLTRST
5	Reserved	R	0	-
4	Reserved	R	0	-
3	Reserved	R	0	-
2	Reserved	R	0	-
1	IDLE_GATEOSC A '1' written into this bit will save power by gating off internal clocking to some chip functions whenever they are idle.	R/W	0	PLTRST
0	VW_C10_STOPOSC Connected Standby support to save internal power. A '1' written into this bit will enable Deep Sleep Mode to be entered whenever the HOST_C10 Virtual Wire is high while all the device interfaces (eSPI, LPC, SERIRQ and LPC Clocks) are already idle. In Deep Sleep Mode the internal oscillator is turned off.	R/W	0	PLTRST

6.10 eSPI Register Set, Logical Device 00h

Registers in the eSPI Register region are used in managing the Host interface functions over eSPI. They are shown in the following summary table, according to the INDEX value used to select them. This region is accessible from INDEX values 30h through FFh while the value 00h is held in the Logical Device Number Register.

TABLE 6-3: ESPI REGISTER SUMMARY

Index	Register Name
30h	Test
31h - 33h	Reserved
34h	Test
35h	Test
36h	I/O BAR Address LS Register
37h	I/O BAR Address MS Register
38h 54h	Reserved
55h	Inaccessible (INDEX=55h is Enable Configuration Mode code)
56h A9h	Reserved
AAh	Inaccessible (INDEX=AAh is Disable Configuration Mode code)
ABh	Reserved
ACh	Map SERIRQ IRQ1 Slot Register
ADh	Map SERIRQ IRQ3 Slot Register
AEh	Map SERIRQ IRQ4 Slot Register
AFh	Map SERIRQ IRQ5 Slot Register
B0h	Map SERIRQ IRQ6 Slot Register
B1h	Map SERIRQ IRQ7 Slot Register
B2h	Map SERIRQ IRQ9 Slot Register
B3h	Map SERIRQ IRQ10 Slot Register
B4h	Map SERIRQ IRQ11 Slot Register
B5h	Map SERIRQ IRQ12 Slot Register
B6h	Map SERIRQ IRQ14 Slot Register
B7h	Map SERIRQ IRQ15 Slot Register
B8h	Map SERIRQ INTA# Slot Register
B9h	Map SERIRQ INTB# Slot Register
BAh	Map SERIRQ INTC# Slot Register
BBh	Map SERIRQ INTD# Slot Register
BCh BFh	Test
C0h EFh	Reserved
F0h	Test
F1h FFh	Reserved

6.10.1 I/O BAR ADDRESS LS REGISTER

This register holds the least-significant half of the I/O address of the Configuration Port used to access the internal register set. The I/O address provided here is the address of the INDEX byte, and the DATA byte occupies this address plus one. Initially these registers select the default locations: INDEX at 008Ch and DATA at 008Dh.

Both of these registers must be written, LS first and then MS, before the new I/O address is used, otherwise unspecified behavior may result.

Bit[0] of this register must always be written as '0' (expressing an Even address).

Index	36h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	I/O Address of the Configuration Port, Least-Significant 8 bits. The written value is not used internally until the associated MS register is subsequently written.	R/W	8Ch	PLTRST

6.10.2 I/O BAR ADDRESS MS REGISTER

This register holds the most-significant half of the I/O address of the Configuration Port used to access the internal register set. Upon writing this byte, all further accesses must use the newly-written I/O address for the INDEX and DATA locations.

Index	37h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	I/O Address of the Configuration Port, Most-Significant 8 bits. The new I/O address is used immediately after this register is written. The LS register must have been written first.	R/W	00h	PLTRST

6.10.3 MAP SERIRQ IRQ1 SLOT REGISTER

Index	ACh of Logical Device 00h			
Bits	Description	Туре	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 2. By default it selects the legacy IRQ1 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	01h	PLTRST

6.10.4 MAP SERIRQ IRQ3 SLOT REGISTER

Index	ADh of Logical Device 00h			
Bits	Description	Туре	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 4. By default it selects the legacy IRQ3 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	03h	PLTRST

6.10.5 MAP SERIRQ IRQ4 SLOT REGISTER

Index	AEh of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 5. By default it selects the legacy IRQ4 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	04h	PLTRST

6.10.6 MAP SERIRQ IRQ5 SLOT REGISTER

Index	AFh of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 6. By default it selects the legacy IRQ5 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	05h	PLTRST

6.10.7 MAP SERIRQ IRQ6 SLOT REGISTER

Index	B0h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 7. By default it selects the legacy IRQ6 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	06h	PLTRST

6.10.8 MAP SERIRQ IRQ7 SLOT REGISTER

Index	B1h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 8. By default it selects the legacy IRQ7 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	07h	PLTRST

6.10.9 MAP SERIRQ IRQ9 SLOT REGISTER

Index	B2h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 10. By default it selects the legacy IRQ9 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	09h	PLTRST

6.10.10 MAP SERIRQ IRQ10 SLOT REGISTER

Index	B3h of Logical Device 00h			
Bits	Description	Туре	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 11. By default it selects the legacy IRQ10 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	0Ah	PLTRST

6.10.11 MAP SERIRQ IRQ11 SLOT REGISTER

Index	B4h of Logical Device 00h			
Bits	Description	Туре	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 12. By default it selects the legacy IRQ11 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	0Bh	PLTRST

6.10.12 MAP SERIRQ IRQ12 SLOT REGISTER

Index	B5h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 13. By default it selects the legacy IRQ12 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	0Ch	PLTRST

6.10.13 MAP SERIRQ IRQ14 SLOT REGISTER

Index	B6h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 15. By default it selects the legacy IRQ14 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	0Eh	PLTRST

6.10.14 MAP SERIRQ IRQ15 SLOT REGISTER

Index	B7h of Logical Device 00h			
Bits	Description	Туре	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 16. By default it selects the legacy IRQ15 function. FFh written in this register disconnects this slot from any IRQ; otherwise, any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	0Fh	PLTRST

6.10.15 MAP SERIRQ INTA# SLOT REGISTER

Index	B8h of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 18. By default it is disconnected by its initial FFh value, but any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	FFh	PLTRST

6.10.16 MAP SERIRQ INTB# SLOT REGISTER

Index	B9h of Logical Device 00h			
Bits	Description	Туре	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 19. By default it is disconnected by its initial FFh value, but any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	FFh	PLTRST

6.10.17 MAP SERIRQ INTC# SLOT REGISTER

Index	BAh of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
7:0	Programs the eSPI IRQ to be connected to SERIRQ Slot 20. By default it is disconnected by its initial FFh value, but any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	FFh	PLTRST

6.10.18 MAP SERIRQ INTD# SLOT REGISTER

Index	BBh of Logical Device 00h			
Bits	Description	Type	Default	Reset Event
	Programs the eSPI IRQ to be connected to SERIRQ Slot 21. By default it is disconnected by its initial FFh value, but any IRQ number recognized by the Chipset may be selected by placing its number here.	R/W	FFh	PLTRST

6.11 LPC Register Set, Logical Device 01h

Registers in the LPC Register region are used for managing the downstream interfaces: LPC, Serial IRQ and CLKRUN#. They are shown in the following summary table, according to the INDEX value used to select them. This region is accessible from INDEX values 30h through FFh while the value 01h is held in the Logical Device Number Register.

TABLE 6-4: LPC REGISTER SUMMARY

Index	Register Name
30h	Test
31h 37h	Reserved
38h	Clock Enable Register
39h	Reserved
3Ah	Reserved
3Bh	Clock Control Lock Register
3Ch	CLKRUN Control Register
3Dh	CLKRUN Idle Clocks Register
3Eh	Test
3Fh	Reserved
40h	SERIRQ Enable and Mode Register
41h 54h	Reserved
55h	Inaccessible (INDEX=55h is Enable Configuration Mode code)
56h 5Fh	Reserved
60h	Test
61h 63h	Reserved
64h	Test
65h	Test
66h	Test
67h	Test
68h	Test
69h	Test
6Ah A9h	Reserved
AAh	Inaccessible (INDEX=AAh is Disable Configuration Mode code)
ABh EFh	Reserved
F0h	SERIRQ Exception Enables Register
F1h	SERIRQ Clocking Register
F2h	LPC Error Log Non-Posted Register
F3h	LPC Error Log Posted Register
F4h	Error Cycle Address 0 Register

ECE1200

TABLE 6-4: LPC REGISTER SUMMARY (CONTINUED)

Index	Register Name
F5h	Error Cycle Address 1 Register
F6h	Error Cycle Address 2 Register
F7h	Error Cycle Address 3 Register
F8h	Error Cycle Attributes Register
F9h FFh	Reserved

6.11.1 CLOCK ENABLE REGISTER

Index	38h of Logical Device 01h			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0	-
3	CLKRUN_CTL_EN_1 '1' = LPC_CLK1 pin may be turned off by CLKRUN#. '0' = LPC_CLK1 pin is free-running. (default) This bit is lockable in the Clock Control Lock Register.	R/W	0	PLTRST
2	CLKRUN_CTL_EN_0 '1' = LPC_CLK0 pin may be turned off by CLKRUN#. '0' = LPC_CLK1 pin is free-running. (default) This bit is lockable in the Clock Control Lock Register.	R/W	0	PLTRST
1	CLK1_EN '1' = LPC_CLK1 pin may present LPC clocks. (default) '0' = LPC_CLK1 pin is held low. This bit is lockable in the Clock Control Lock Register.	R/W	1	PLTRST
0	CLK0_EN '1' = LPC_CLK0 pin may present LPC clocks. (default) '0' = LPC_CLK0 pin is held low. This bit is lockable in the Clock Control Lock Register.	R/W	1	PLTRST

6.11.2 CLOCK CONTROL LOCK REGISTER

Index	3Bh of Logical Device 01h			
Bits	Description	Туре	Default	Reset Event
7:5	Reserved	R	0	-
4	CLKRUN_EN_LK '1' = The CLKRUN_EN bit in the CLKRUN Control Register is locked Read-Only in its current state. The '1' value written here remains, read-only, until the next reset event. '0' = The CLKRUN_EN bit is Read/Write. (default)	R/W/L	0	PLTRST
3	CLKRUN_CLK1_LK '1' = The CLKRUN_CTL_EN_1 bit in the Clock Enable Register is locked Read-Only in its current state. The '1' value written here remains, read-only, until the next reset event. '0' = The CLKRUN_CTL_EN_1 bit is Read/Write. (default)	R/W/L	0	PLTRST
2	CLKRUN_CLK0_LK '1' = The CLKRUN_CTL_EN_0 bit in the Clock Enable Register is locked Read-Only in its current state. The '1' value written here remains, read-only, until the next reset event. '0' = The CLKRUN_CTL_EN_0 bit is Read/Write. (default)	R/W/L	0	PLTRST
1	CLK1_EN_LK '1' = The CLK1_EN bit in the Clock Enable Register is locked Read-Only in its current state. The '1' value written here remains, read-only, until the next reset event. '0' = The CLK1_EN bit is Read/Write. (default)	R/W/L	0	PLTRST
0	CLK0_EN_LK '1' = The CLK0_EN bit in the Clock Enable Register is locked Read-Only in its current state. The '1' value written here remains, read-only, until the next reset event. '0' = The CLK0_EN bit is Read/Write. (default)	R/W/L	0	PLTRST

6.11.3 CLKRUN CONTROL REGISTER

Index	3Ch of Logical Device 01h			
Bits	Description	Type	Default	Reset Event
7:1	Reserved	R	0	-
	CLKRUN_EN '1' = The CLKRUN# feature is enabled. '0' = The CLKRUN# feature is disabled and cannot stop the LPC_CLK0 or LPC_EN1 clock. (default) This bit is lockable in the Clock Control Lock Register.	R/W/L	0	PLTRST

ECE1200

6.11.4 CLKRUN IDLE CLOCKS REGISTER

Index	3Dh of Logical Device 01h			
Bits	Description	Туре	Default	Reset Event
7:2	Number of Idle Clocks This is the minimum number of clocks after CLKRUN# goes high before LPC clocks get turned off. Zero represents the CLKRUN# compliant minimum. (default) A Non-Zero value increases this time by 4 clocks per unit.	R/W	00h	PLTRST
1	Reserved	R	0	-
0	Reserved.	R	0	-

6.11.5 SERIRQ ENABLE AND MODE REGISTER

Index	40h of Logical Device 01h			
Bits	Description	Туре	Default	Reset Event
7	SIRQ_EN '1' = The Serial IRQ feature is enabled. When writing '1' to this bit initially, it is required to write '1' to the SIRQ_MD bit also. '0' = The Serial IRQ feature is disabled. (default)	R/W	0	PLTRST
6	SIRQ_MD '1' = Serial IRQ is in Continuous Mode. '0' = Serial IRQ is in Quiet Mode. (This is the hardware default, but it must be overwritten temporarily to '1' when enabling Serial IRQ.)	R/W	0	PLTRST
5:2	FORMAT This field permanently selects the 21-slot format, and is presented Read-Only for legacy purposes.	R	0100b	PLTRST
1:0	START_PW '00' = Start Pulse is 4 clocks wide. (default) '01' = Start Pulse is 6 clocks wide. '10' = Start Pulse is 8 clocks wide. '11' = Reserved	R/W	00b	PLTRST

6.11.6 SERIRQ EXCEPTION ENABLES REGISTER

Index	F0h of Logical Device 01h			
Bits	Description	Type	Default	Reset Event
7:6	Reserved	R	00b	-
5	IOCHK_N_SERIRQ_EN_LOCK '1' = The IOCHK_N_SERIRQ_EN bit in this register is locked Read-Only in its written state. The '1' value written here also remains, read-only, until the next reset event. '0' = The IOCHK_N_SERIRQ_EN bit is Read/Write. (default)	R/W/L	0	PLTRST
4	SMI_N_SERIRQ_EN_LOCK '1' = The SMI_N_SERIRQ_EN bit in this register is locked Read-Only in its written state. The '1' value written here also remains, read-only, until the next reset event. '0' = The SMI_N_SERIRQ_EN bit is Read/Write. (default)	R/W/L	0	PLTRST
3:2	Reserved	R	00b	-
1	IOCHK_N_SERIRQ_EN '1' = The IOCHK# slot (Slot 17) in the SERIRQ frame is sampled and allowed to propagate to the eSPI interface. '0' = The IOCHK# slot does not propagate. (default)	R/W/L	0	PLTRST
0	SMI_N_SERIRQ_EN '1' = The SMI# slot (Slot 3) in the SERIRQ frame is sampled and allowed to propagate to the eSPI interface as the SMI# Virtual Wire. '0' = The SMI# slot does not propagate. (default)	R/W/L	0	PLTRST

6.11.7 SERIRQ CLOCKING REGISTER

Index	F1h of Logical Device 01h			
Bits	Description	Type	Default	Reset Event
7:1	Reserved	R	00h	-
0	SERIRQ CLK_GATE_CTL '1' = Enables internal clocking at all times to the Serial IRQ circuits. (default) '0' = Allows internal clocking to be shut off to Serial IRQ circuits when idle.	R/W	1	PLTRST

ECE1200

6.11.8 LPC ERROR LOG NON-POSTED REGISTER

Index	F2h of Logical Device 01h			
Bits	Description	Туре	Default	Reset Event
7:4	Reserved	R	0h	-
3	IORM_CHKIDL '1' = An IOCHK# event has occurred while the LPC bus is idle. '0' = No IOCHK# event has occurred during LPC idle, since this bit was last cleared.	R/W1C	0	eSPI_RESET
2	IORM_CHK_ACTIVE '1' = An IOCHK# event has occurred during a Non-Posted transfer on LPC (I/O Read or Write, or Memory Read). '0' = No IOCHK# event has occurred during a Non-Posted LPC transfer, since this bit was last cleared.	R/W1C	0	eSPI_RESET
1	IORM_ABTSYN '1' = An Abort SYNC event has occurred during a Non-Posted transfer on LPC (I/O Read or Write, or Memory Read). '0' = No Abort SYNC event has occurred during a Non-Posted LPC transfer, since this bit was last cleared.	R/W1C	0	eSPI_RESET
0	IORM_UNCL '1' = An Unclaimed or Invalid SYNC event has occurred during a Non-Posted transfer on LPC (I/O Read or Write, or Memory Read). '0' = No Unclaimed or Invalid SYNC event has occurred during a Non-Posted LPC transfer, since this bit was last cleared.	R/W1C	0	eSPI_RESET

6.11.9 LPC ERROR LOG POSTED REGISTER

Index	F3h of Logical Device 01h			
Bits	Description	Type	Default	Reset Event
7:3	Reserved	R	00h	-
2	MW_CHK_ACTIVE '1' = An IOCHK# event has occurred during a Posted transfer on LPC (Memory Write). '0' = No IOCHK# event has occurred during a Posted LPC transfer, since this bit was last cleared.	R/W1C	0	eSPI_RESET
1	MW_ABTSYN '1' = An Abort SYNC event has occurred during a Posted transfer on LPC (Memory Write). '0' = No Abort SYNC event has occurred during a Posted LPC transfer, since this bit was last cleared.	R/W1C	0	eSPI_RESET
0	MW_UNCL '1' = An Unclaimed or Invalid SYNC event has occurred during a Posted transfer on LPC (Memory Write). '0' = No Unclaimed or Invalid SYNC event has occurred during a Posted LPC transfer, since this bit was last cleared.	R/W1C	0	eSPI_RESET

6.11.10 ERROR CYCLE ADDRESS 0 REGISTER

Index	F4h of Logical Device 01h						
Bits	Description	Туре	Default	Reset Event			
	Byte 0 of the LPC address that was being presented on the occurrence of the last error. This is the least-significant byte of any address.	R/W	00h	eSPI_RESET			

6.11.11 ERROR CYCLE ADDRESS 1 REGISTER

Index	-5h of Logical Device 01h					
Bits	Description	Type	Default	Reset Event		
	Byte 1 of the LPC address that was being presented on the occurrence of the last error. In I/O accesses, this is the most-significant address byte.	R/W	00h	eSPI_RESET		

6.11.12 ERROR CYCLE ADDRESS 2 REGISTER

Index	F6h of Logical Device 01h						
Bits	Description	Type	Default	Reset Event			
	Byte 2 of the LPC address that was being presented on the occurrence of the last error. Valid in Memory accesses only.	R/W	00h	eSPI_RESET			

6.11.13 ERROR CYCLE ADDRESS 3 REGISTER

Index	F7h of Logical Device 01h					
Bits	Description	Type	Default	Reset Event		
	Byte 3 of the LPC address that was being presented on the occurrence of the last error. Valid in Memory accesses only, as the most-significant address byte.	R/W	00h	eSPI_RESET		

6.11.14 ERROR CYCLE ATTRIBUTES REGISTER

Index	F8h of Logical Device 01h			
Bits	Description	Туре	Default	Reset Event
7:2	Reserved	R	00h	-
1	RD_NWR '1' = The last LPC error occurred on a Read access. '0' = The last LPC error occurred on a Write access.	R/W	0	eSPI_RESET
0	IO_NMEM '1' = The last LPC error occurred on an I/O access, and the low-order two bytes of the Error Cycle Address registers hold the I/O space address. '0' = The last LPC error occurred on a Memory access, and all four bytes of the Error Cycle Address registers are used to hold the Memory address.	R/W	0	eSPI_RESET

7.0 TEST MECHANISMS

7.1 Introduction

This device has the following test mechanism:

· XNOR Chain for board connectivity test

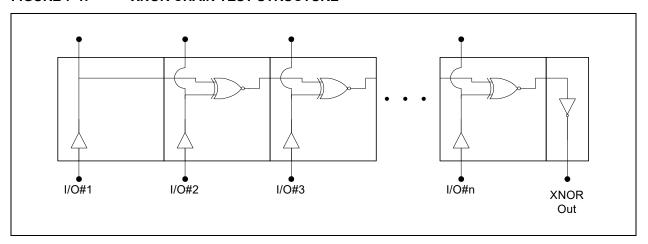
7.2 References

No references have been cited for this chapter.

7.3 Terminology

Terms are defined in the text below.

7.4 XNOR Chain


7.4.1 OVERVIEW

The XNOR Chain test mode provides a means to confirm that all ECE1200 pins are in contact with the motherboard during assembly and test operations.

An example of an XNOR Chain test structure is illustrated below in Figure 7-1, "XNOR Chain Test Structure". When the XNOR Chain test mode is enabled all pins, except for those listed in Section 7.4.2, "Excluded Pins", are disconnected from their internal functions and routed as inputs to the XNOR Chain. This allows a single input pin to toggle the XNOR Chain output if all other input pins are held high or low. The XNOR Chain output is the pin SUSWARN#.

The tests that are performed when the XNOR Chain test mode is enabled require the board-level test hardware to control the device pins and observe the results at the XNOR Chain output pin; e.g., as described in Section 7.4.3, "Test Procedure," on page 59.

FIGURE 7-1: XNOR CHAIN TEST STRUCTURE

7.4.2 EXCLUDED PINS

All pins are included in the XNOR chain, except the following:

- Power Pins (VTR 33, VTR 18, VTR CORE 18)
- · Ground Pad (VSS), on underside
- · Pin RESETI#, which is the Chip Reset.
- · Pin TEST, which is the Test Enable.
- Pins LAD[2:0], which are the Test Mode Selection code.
 NOTE that pin LAD3 is still part of the XNOR chain.
- · Pin SUSWARN#, which is the XNOR Test Output
- All pins listed as "n/c" in Section 2.2.1, "Pin Assignments, 40-Pin VQFN".
 These need not be connected to anything, even for test purposes.

7.4.3 TEST PROCEDURE

7.4.3.1 Setup

Warning: Ensure power supply is off during Setup.

- 1. Connect the VSS pad to ground.
- 2. Connect the VTR 33, VTR 18 and VTR CORE 18 pins to their unpowered power source.
- 3. Connect the VREF_CPU pin to an unpowered 1.8V power source.
- 4. Connect an oscilloscope or voltmeter to the Test Output pin.
- 5. All other pins should be pulled to ground.

7.4.3.2 Testing

- 1. Turn on the 3.3V power source to VTR 33 pins first.
- 2. Turn on the 1.8V power source to the VTR_18 and VTR_CORE_18 pins.
- 3. Enable the XNOR Chain as defined in Section 7.4.3.3, "Procedure to Enable the XNOR Chain".
- 4. Bring one input pin in the XNOR Chain high. The output on the SUSWARN# pin should toggle within 30ns. Then individually toggle each of the remaining pins in the chain. Each time a single input pin is toggled either high or low the SUSWARN# output pin should toggle.
- 5. Once the XNOR test is completed, exit the XNOR Chain Test Mode by the following:
 - a) set pin RESETI# low,
 - b) remove power to VTR_18 and VTR_CORE_18, then
 - c) remove power to VTR 33.

7.4.3.3 Procedure to Enable the XNOR Chain

Perform the following with at least 1 microsecond between steps.

- 1. Set the RESETI# pin high.
- 2. Set the pins LAD[2:0] to the binary value 001.
- 3. Set the TEST pin high.
- 4. Bring the pins LAD[2:0] to the binary value 111.
- 5. Bring all XNOR input pins (Section 7.4.2) low.
- 6. The XNOR output on SUSWARN# should be seen as low.

8.0 ELECTRICAL SPECIFICATIONS

8.1 Maximum Ratings*

*Stresses exceeding those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied.

Note:

When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

8.1.1 ABSOLUTE MAXIMUM THERMAL RATINGS

TABLE 8-1: ABSOLUTE MAXIMUM THERMAL RATINGS

Parameter	Maximum Limits
Operating Temperature Range	-40°C to +85°C (Industrial)
Storage Temperature Range	-55° to +150°C
Lead Temperature Range	Refer to JEDEC Spec J-STD-020B

8.1.2 ABSOLUTE MAXIMUM SUPPLY VOLTAGE RATINGS

TABLE 8-2: ABSOLUTE POWER SUPPLY RATINGS

Symbol	Parameter	Maximum Limits
VTR_CORE_18	1.8V Logic Power Supply with respect to ground	-0.3V to +1.98V
VTR_18	1.8V I/O Power Supply with respect to ground	-0.3V to +1.98V
VTR_33	3.3V I/O Power Supply with respect to ground	-0.3V to +3.63V

8.1.3 ABSOLUTE MAXIMUM I/O VOLTAGE RATINGS

Parameter	Maximum Limits
Voltage with respect to ground on SUSCLK input pin while device is powered off. (Backdrive Tolerance)	-0.5V to +3.63V
Voltage with respect to ground on any signal pin other than SUSCLK.	-0.5V to ([Power Well of pin] + 0.5V) (Note 8-1)

Note 8-1 The Power Supply used to power the buffer is shown in the Signal Power Well column of Section 2.0 "Pin Configuration".

8.2 Operational Specifications

8.2.1 POWER SUPPLY OPERATIONAL CHARACTERISTICS

TABLE 8-3: POWER SUPPLY OPERATING CONDITIONS

Symbol	Parameter	MIN	TYP	MAX	Units
VTR_CORE_18	1.8V Core Logic Power Supply with respect to ground	1.71	1.80	1.89	V
VTR_18	1.8V I/O Power Supply with respect to ground	1.71	1.80	1.89	V
VTR_33	3.3V I/O Power Supply with respect to ground	3.135	3.3	3.465	V

Note: The specification for the VTR_CORE_18, VTR_18 and VTR_33 supplies represents +/- 5% from nominal.

8.2.2 PCI AND PCI-24 PIN TYPE DC ELECTRICAL CHARACTERISTICS

The specifications for the PCI-compliant pins are listed here from the PCI Standard directly, to include only those specifications that are relevant to LPC, SER_IRQ and CLKRUN# pin functions. The PCI-24 pin type is the same as the rest of the PCI pins for these specifications.

Note: Weak pull-up/pull-down functionality is not provided internally for these pins. They must be provided externally, as specified in the relevant LPC and PCI standards. See Section 4.2, "References," on page 20.

TABLE 8-4: PCI AND PCI-24 DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	MIN	MAX	Units	Notes
Input High Voltage	V _{ih}		0.7 x VTR_33	VTR_33 + 0.5	V	
Input Low Voltage	V _{il}		-0.5	0.3 x VTR_33	V	
Input Pull-up Voltage	V _{ipu}		0.7 x VTR_33		V	Voltage guaranteed to avoid internal Receiver leakage.
Input Leakage Current	I _{il}	Vin > 0V and Vin < VTR_33		+/- 10	uA	Applies both to inputs and to hi-Z output states of I/O pins.
Output High Voltage	V _{oh}	l _{out} = -500 uA	0.9 x VTR_33		V	
Output Low Voltage	V _{ol}	l _{out} = 1500 uA		0.1 x VTR_33	V	
Input Pin Capacitance	C _{in}			10	pF	

8.2.3 LCLK PIN TYPE DC ELECTRICAL CHARACTERISTICS

The specifications for the LPC Clocks are listed here. These pin characteristics are not part of the PCI specification, since they are outputs instead of inputs.

TABLE 8-5: LCLK DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	MIN	TYP	MAX	Units	Notes
Output High Voltage	V _{OH}	I _{OH} = -16mA	2.4			V	
Output Low Voltage	V _{OL}	I _{OL} = 16mA			0.4	V	

8.2.4 ESPI PIN TYPE DC ELECTRICAL CHARACTERISTICS

The DC specifications for eSPI pins are found in the Intel eSPI Interface Base Specification. See Section 5.2, "References," on page 25 for the eSPI document references.

8.2.5 DIO PIN TYPE DC ELECTRICAL CHARACTERISTICS

The specifications for the DIO Digital 3.3V I/O pins are listed here.

TABLE 8-6: DIO DC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	MIN	TYP	MAX	Units	Notes
Input High Voltage	V _{IHI}		2.0			V	
Input Low Voltage	V _{ILI}				0.8	V	
Input Leakage Current	I _{IH}				+/- 10	uA	Note 8-2
Schmitt Hysteresis	V _{HYS}			400		mV	
Output High Voltage	V _{OH}	$I_{OH} = -8mA$	2.4			V	
Output Low Voltage	V _{OL}	I _{OL} = 8mA			0.4	V	
Input Pin Capacitance	C _{IN}				20	pF	

Note 8-2 The Input Leakage specification applies both to inputs and to hi-Z outputs.

8.2.5.1 Backdrive Tolerance

Only the SUSCLK input is specified as Backdrive Tolerant, and its characteristic is given below.

TABLE 8-7: SUSCLK BACKDRIVE CHARACTERISTIC

 $(TA = 0^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
Input Leakage	I _{IL}	-2		+12.3	μA	VIN=3.47V, and all VTR=0V

8.2.6 THERMAL CHARACTERISTICS

Note: These values are PRELIMINARY, pending characterization.

TABLE 8-8: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Device					
Operating Junction Temperature Range	TJ	_	_	+125	°C
Operating Ambient Temperature Range - Industrial	TA	-40	_	+85	°C
Internal Chip Power Dissipation (using VTR = VTR_CORE_18 pin): PINT = VTR x IVTR from Table 8-10 and Table 8-3 (e.g., 1.89V x 0.9mA = 1.7mW)	PD	I	PINT + PI/C)	W
I/O Pin Power Dissipation (each pin using its VTR level VTR_33 or VTR_18): I/O = Sum (({VTR- VOH} x IOH) + Sum (VOL x IOL))					
Maximum Allowed Power Dissipation (considering ambient air only)	PDMAX	(ΓJ – TA)/θJ	A	W

TABLE 8-9: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 40-pin VQFN (LDX)	θ_{JA}	50.0	_	°C/W	1, 2
	θ_{JC}	9.4	_	°C/W	1
	θ_{JB}	31.0	_	°C/W	1

Note 1: Thermal resistance values are determined by packaging simulations.

2: θ_{JA} as listed here assumes airflow of 0 m/s.

8.3 Power Consumption

Note: These values are PRELIMINARY, pending characterization.

TABLE 8-10: SUPPLY CURRENT

Case	Device State	Supply Rail	Typical (nom V, 25° C)	Max (max V, 70° C)	Max (max V, 85° C)	Units
1	Full On, Active LPC Traffic, with both LPC Clocks Running	VTR_33	11.45			mA
		VTR_18	25			uA
		VTR_CORE_18	1.25			mA
2	Full On, Active LPC Traffic, with one LPC Clock Running	VTR_33	TBD			mA
		VTR_18	25			uA
		VTR_CORE_18	1.25			mA
3	LPC Idle, Clocks Off: due to CLKRUN# High or	VTR_33	2.0			uA
	Clocks explicitly turned off	VTR_18	2.3			uA
		VTR_CORE_18	0.9			mA
4	LPC On and Reset: LPC EN High, PLTRST# Low,	VTR_33	11.1			mA
	Both LPC Clocks Running (forced). (Transient State during Host Boot)	VTR_18	2.2			uA
	(manoloni otalio dalinig nicol 2001)	VTR_CORE_18	1.06			mA
5	Light Sleep LPC Clocks off and	VTR_33	2.0			uA
	Gated Clock mode selected (IDLE GATEOSC bit on).	VTR_18	2.3			uA
		VTR_CORE_18	0.44			mA
6	Deep Sleep Host C10 / S0ix State with	VTR_33	2.0			uA
	Disabled Internal Oscillator mode selected	VTR_18	2.3			uA
	(VW_C10_STOPOSC bit on).	VTR_CORE_18	3.6			uA

ECE1200

TABLE 8-10: SUPPLY CURRENT (CONTINUED)

Case	Device State	Supply Rail	Typical (nom V, 25° C)	Max (max V, 70° C)	Max (max V, 85° C)	Units
7	LPC Unpowered; Sub-S0 state: LPC EN low, eSPI Active.	VTR_33	0.0			uA
		VTR_18	2.3			uA
		VTR_CORE_18	1.0			mA
8	LPC Unpowered, eSPI Reset: eSPI RESET# low and RESETI# high	VTR_33	0.0			uA
	(Transient State)	VTR_18	2.3			uA
		VTR_CORE_18	3.2			mA
9	Full Chip Reset (RESETI# low)	VTR_33	0.0			uA
		VTR_18	0.0			uA
		VTR_CORE_18	2.7			uA

9.0 TIMING DIAGRAMS

Note: Timing values are preliminary and may change after characterization.

9.1 SUSCLK Input Timing

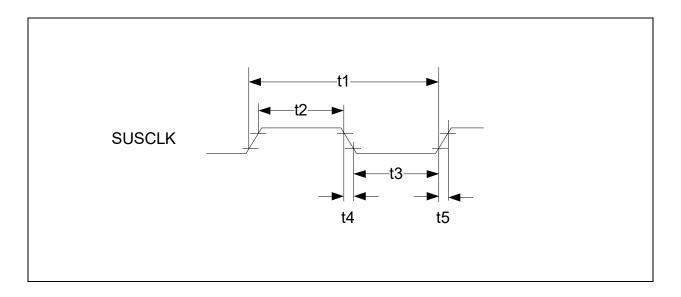


TABLE 9-1: SUSCLK TIMING PARAMETERS

Parameter	Symbol	MIN	TYP	MAX	Unit	Notes
Period	t1		30.52		us	1
High Time	t2	10				2
Low Time	t3					2
Rise Time	t4			1		2
Fall Time	t5					2
Frequency	1 / t1		32.768		kHz	1

Note 1: Period is required to be accurate within +/- 100ppm.

2: High, Low, Rise and Fall times use reference points of 20% and 80% of the full voltage swing, as shown.

9.2 LPC Interface Timing

9.2.1 LPC_CLK[1:0] OUTPUT TIMING

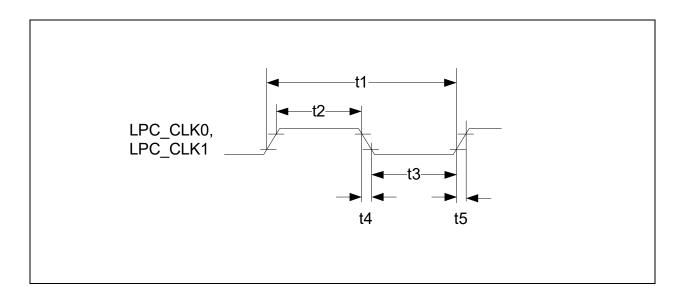


TABLE 9-2: LPC CLOCK TIMING PARAMETERS

Parameter	Symbol	MIN	TYP	MAX	Unit	Notes
Period	t1	40	41.7	44	ns	1, 2
High Time	t2	15				3
Low Time	t3					3
Rise Time	t4			3		3
Fall Time	t5					3

Note 1: Nominal period (TYP) reflects 24MHz frequency.

2: When allowed to operate without frequency lock, the maximum period does not apply.

3: High, Low, Rise and Fall times use reference points of 20% and 80% of the full voltage swing, as shown.

9.2.2 PCI, PCI_24 PIN TYPE OUTPUT TIMING

See the table in Section 2.2.1, "Pin Assignments, 40-Pin VQFN," on page 11 for the pin types.

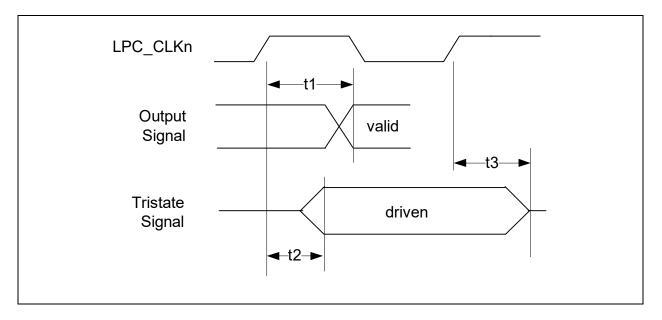


TABLE 9-3: PCI, PCI_24 PIN TYPE OUTPUT TIMING PARAMETERS

7.6522 0 0. 1 01,1 01_2 7 1 1 1 1 1 2 0 0 1 0 1 1 1 1 1 1 1 1 1 1									
Parameter	Symbol	Pin Type	MIN	TYP	MAX	Unit	Notes		
Clock to Valid	t1	PCI	2		11	ns			
		PCI_24	3		15		1		
Clock to Actively Driven	t2	PCI	2		11				
		PCI_24	3		15		1		
Clock to Floating	t3	PCI, PCI_24			28				

Note 1: PCI_24 pin specs are slightly de-rated for 24MHz operation instead of original 33MHz PCI standard.

9.2.3 PCI, PCI_24 PIN TYPE INPUT TIMING

See the table in Section 2.2.1, "Pin Assignments, 40-Pin VQFN," on page 11 for the pin types. PCI and PCI_24 pin types have identical input characteristics.

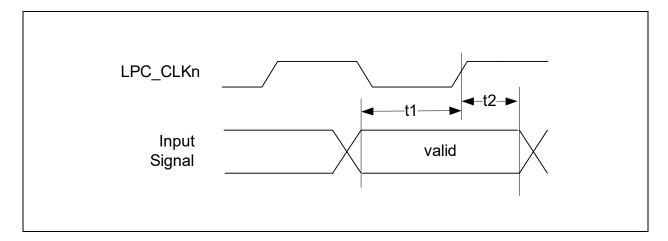


TABLE 9-4: PCI, PCI_24 PIN TYPE INPUT TIMING PARAMETERS

Parameter	Symbol	MIN	TYP	MAX	Unit	Notes
Valid Input Setup to Clock	t1	7			ns	1
Valid Input Hold From Clock	t2	0				1

Note 1: PCI and PCI_24 pin input specs are identical.

9.3 eSPI Interface Timing

The eSPI Interface conforms to the timings specified by Intel for 50MHz eSPI operation. See the eSPI reference documents listed in Section 5.2, "References," on page 25.

The frequency is selected strictly using Soft-Strap settings for the Intel Chipset, and the ECE1200 does not itself negotiate to limit it. During initialization of the eSPI bus, the frequency used is 20MHz max, until the Soft-Strap options take effect

The clock frequency actually provided by the Intel Chipset may be documented as 48MHz instead. See the relevant Intel specifications.

9.4 Wake Timing

9.4.1 WAKE FROM DEEP SLEEP STATE BY ESPI ACCESS

Note: Timing values are preliminary and may change after characterization.

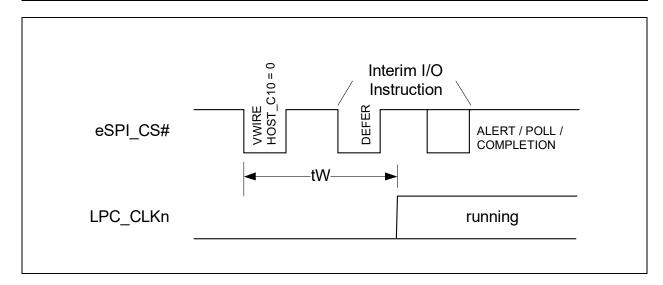


TABLE 9-5: WAKE DELAY FROM DEEP SLEEP BY ESPI ACCESS

Parameter	Symbol	MIN	TYP	MAX	Unit	Notes
Wake from Deep Sleep	tW			3.0	ms	

Note: Other Wake scenario timings are TBD.

9.5 Voltage Sequencing and Power Good Timing

9.5.1 VTR SEQUENCING AND RESETI# TIMING

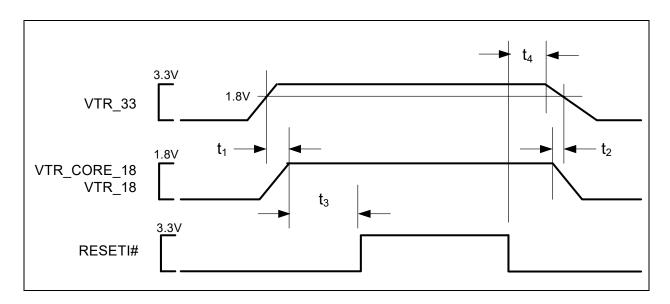


TABLE 9-6: VTR TIMING

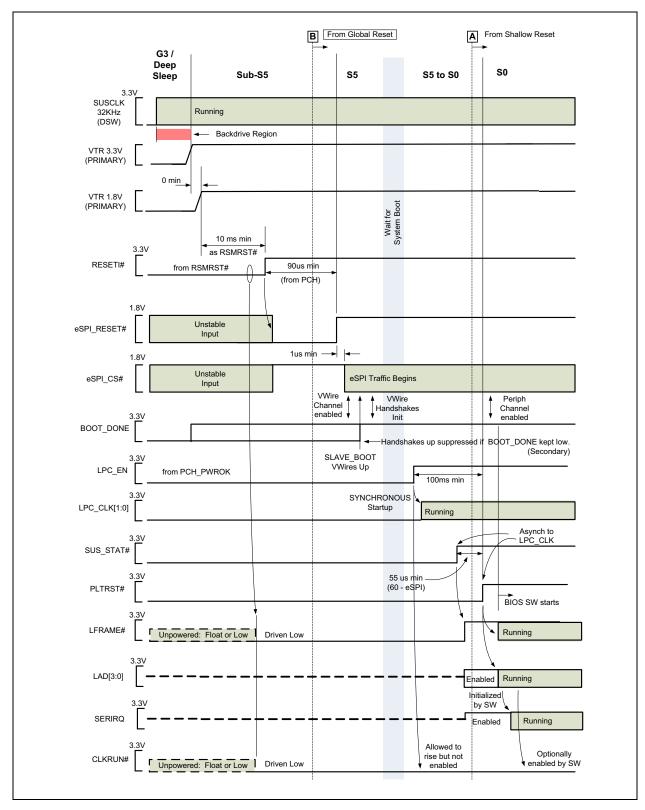
Parameters	Symbol	MIN	TYP	MAX	Unit	Notes
VTR_33 > 1.8V to VTR_18 or VTR_CORE_18 On	t1	0			ns	
VTR_18 and VTR_CORE_18 Off to VTR_33 < 1.8V	t2	0			ns	
All VTR voltages valid to RESETI# high	t3	10			ms	Note:
RESETI# low to any VTR voltage invalid	t4	0			ns	Note:

Note: RESETI# must remain low and must not glitch during VTR power presentation / removal.

9.6 Strap Option Sampling Timing

The ESPI_STRAP_0 and ESPI_STRAP_1 pins are sampled and latched internally for test purposes. It is recommended that they be left floating or N/C except in XNOR Chain test mode, so that internal weak pull-ups can pull them high to the VTR_33 level.

TABLE 9-7: GENERIC STRAP OPTION SAMPLING TIMING


Parameters	Symbol	MIN	TYP	MAX	Units	Notes
ESPI_STRAP_[1:0] pins setup to RESETI# Rising Edge	t _{STRAPSET}	500			us	
ESPI_STRAP_[1:0] pins hold from RESETI# Rising Edge	t _{STRAPHOLD}	0			us	

9.7 System Power State Transition Diagrams

The following set of diagrams illustrates the behavior of the ECE1200 during transitions in the system-level power state.

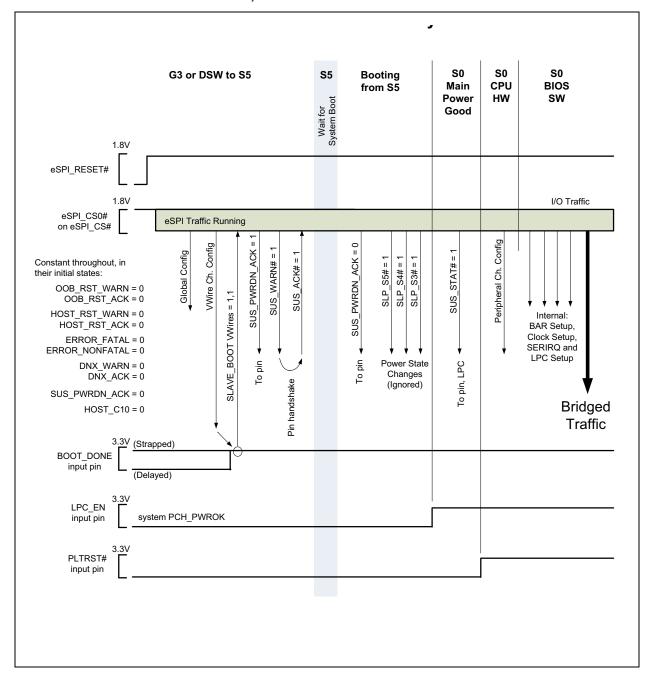

9.7.1 INITIAL BRING-UP FROM SYSTEM G3 TO S0

FIGURE 9-1: INITIAL BRING-UP FROM SYSTEM G3 TO S0

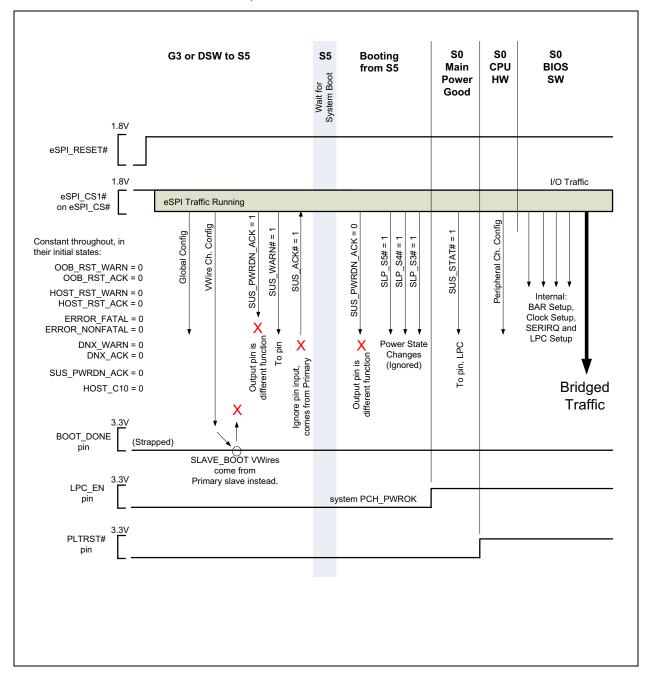

9.7.2 G3 TO S0 VIRTUAL WIRE DETAIL AS PRIMARY ESPI SLAVE

FIGURE 9-2: G3 TO S0 VWIRES, PRIMARY SLAVE

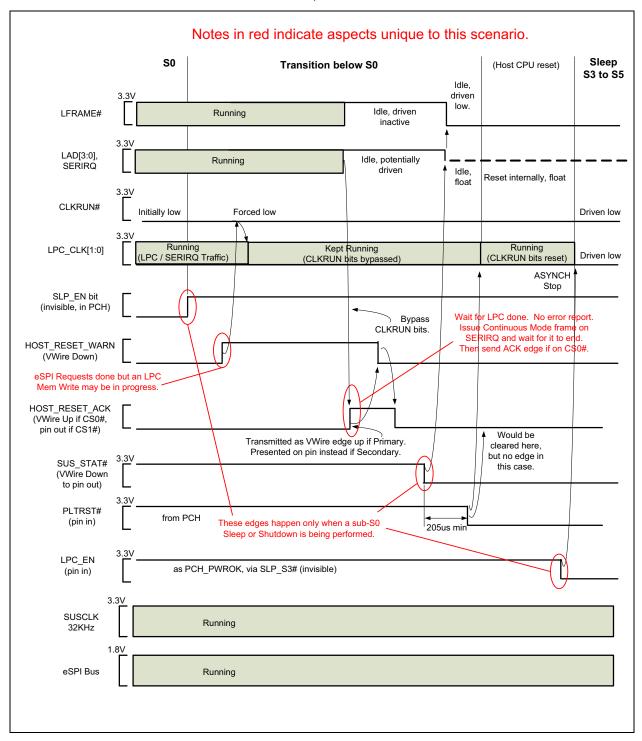

9.7.3 G3 TO S0 VIRTUAL WIRE DETAIL AS SECONDARY ESPI SLAVE

FIGURE 9-3: G3 TO S0 VWIRES, SECONDARY SLAVE

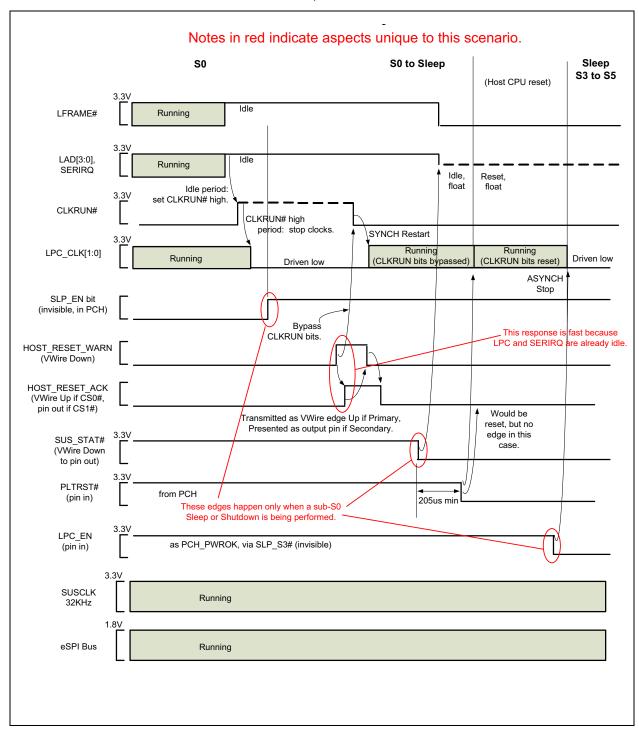

9.7.4 TEARDOWN FROM S0 TO S5, LPC CLOCKS RUNNING

FIGURE 9-4: TEARDOWN FROM S0 TO S5, LPC CLOCKS RUNNING

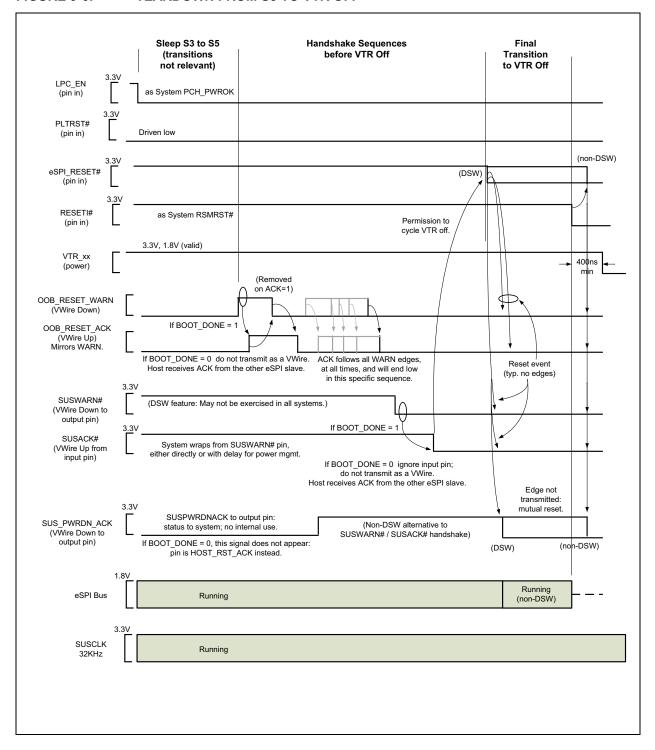

9.7.5 TEARDOWN FROM S0 TO S5, LPC CLOCKS OFF

FIGURE 9-5: TEARDOWN FROM S0 TO S5, LPC CLOCKS OFF

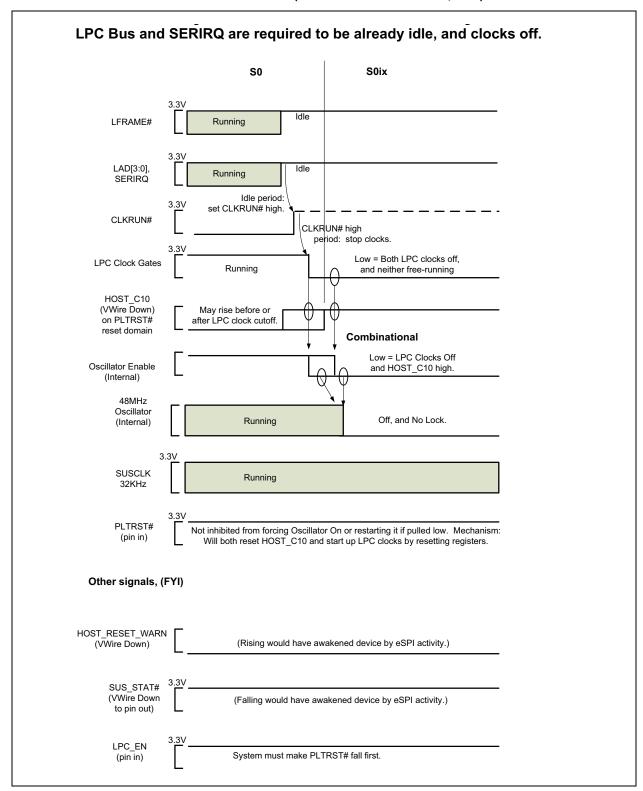

9.7.6 TEARDOWN FROM S5 TO VTR OFF

FIGURE 9-6: TEARDOWN FROM S5 TO VTR OFF

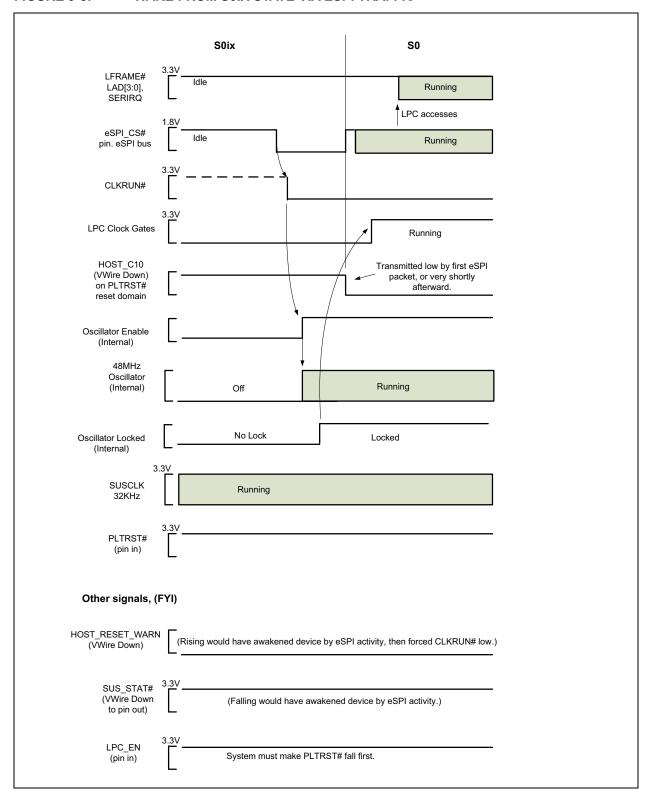

9.7.7 ENTRY INTO SOIX STATE (CONNECTED STANDBY, C10)

FIGURE 9-7: ENTRY INTO SOIX STATE (CONNECTED STANDBY, C10)

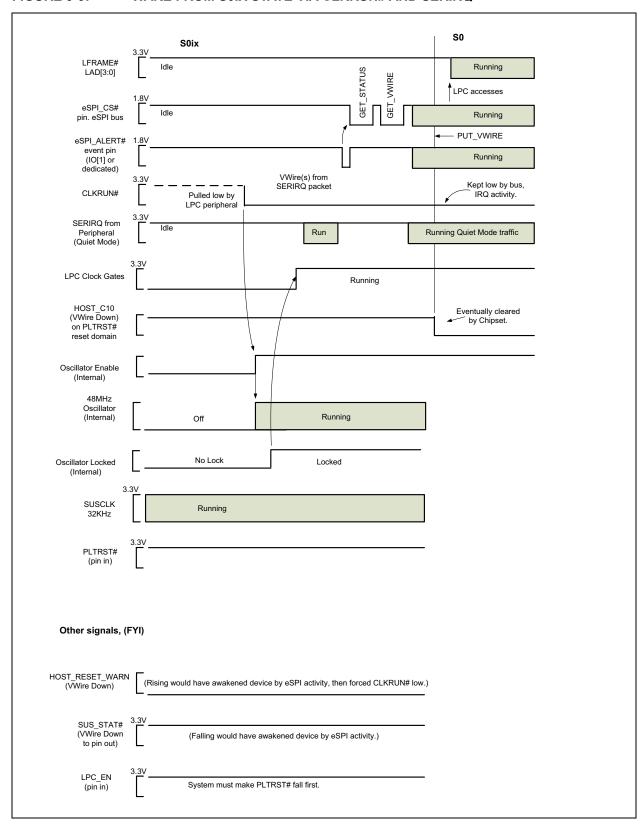

9.7.8 WAKE FROM SOIX STATE VIA ESPI TRAFFIC

FIGURE 9-8: WAKE FROM SOIX STATE VIA ESPI TRAFFIC

9.7.9 WAKE FROM SOIX STATE VIA CLKRUN# AND SERIRQ

FIGURE 9-9: WAKE FROM SOIX STATE VIA CLKRUN# AND SERIRQ

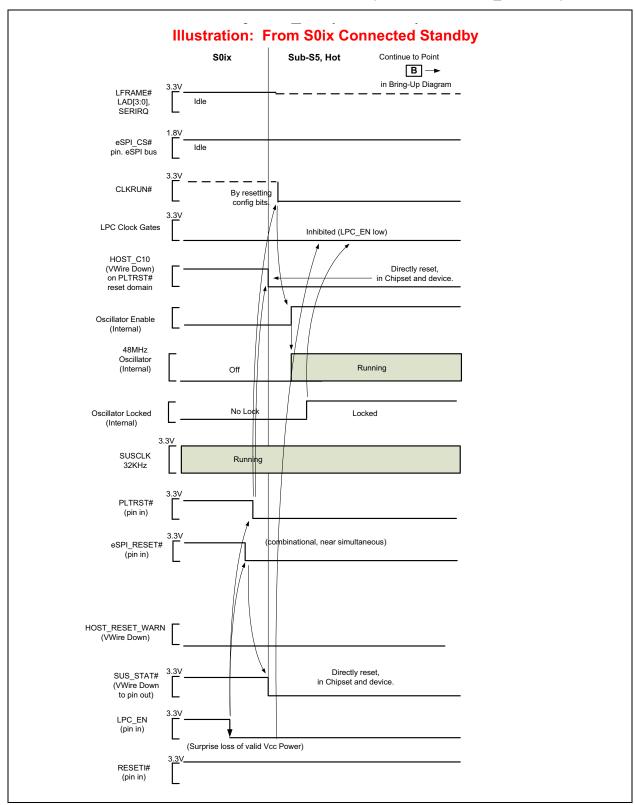

9.7.10 TEARDOWN DUE TO GLOBAL RESET (OTHER THAN BROWNOUT)

FIGURE 9-10: TEARDOWN DUE TO GLOBAL RESET (OTHER THAN BROWNOUT)

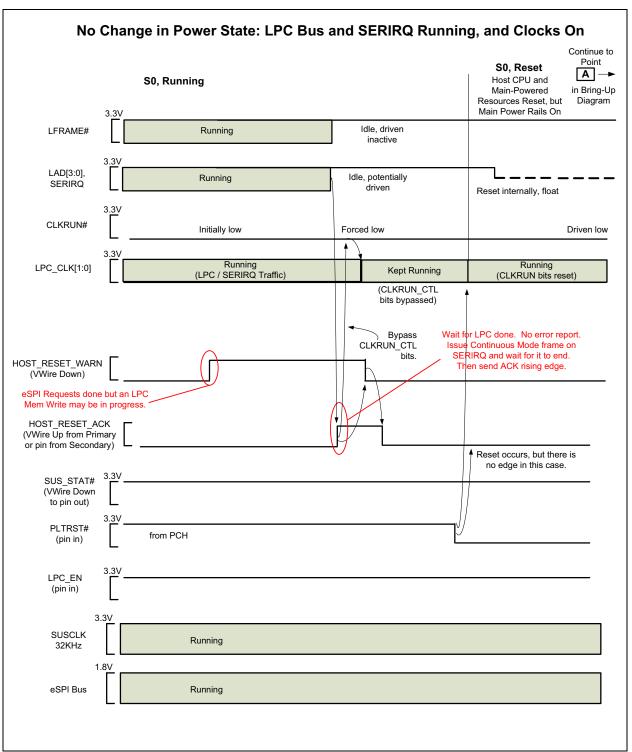

9.7.11 TEARDOWN DUE TO GLOBAL RESET (BROWNOUT / LPC_EN LOSS)

FIGURE 9-11: TEARDOWN DUE TO GLOBAL RESET (BROWNOUT / LPC_EN LOSS)

9.7.12 SHALLOW PLTRST# RESET (WITHOUT POWER CYCLE)

FIGURE 9-12: SHALLOW PLTRST# RESET (WITHOUT POWER CYCLE)

APPENDIX A: DATA SHEET REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level/Date	Section/Figure/Entry	Correction
DS00003093C (06-16-21)	Various	Adds that LPC weak pull-up/pull-down devices are not present internally, in Electrical Specs section.
		Clarifies functions and connections to pins SUSWARN#, SUSACK#, SUSPWRDNACK and HOST_RST_ACK. Still applies only to Functional Rev. B.
DS00003093B (07-10-19)	All	Defines Functional Rev. B silicon. Changes Default Base Address, eSPI_STRAP pins' function.
DS00003093A (05-21-19)	Data Sheet Release	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

Not all of the product variants defined by the Product Identification System may be offered for sale or released to production. To order or obtain information on availability, pricing or delivery, please visit MicrochipDirect.com or contact your Microchip sales representative or authorized distributor.

PART NO.(1) -	[X/]	XXX ⁽²⁾ -	[XX]	- [X] ⁽³⁾	
	nperature Range	Package	Version/ Revision	Tape and Reel Option	
Note: [] indicate designators that have blank options					
Devices:	ECE1200 ⁽¹⁾)			
Temperature Range Option:	I/ = -	-40°C to +85°C (In	ndustrial)		
Package:	LD =	40 pin VQFN ⁽²⁾			
Version/Revision:	Blank = S	Standard Version:	no other version	ons at this time.	
Packaging Option:	Blank = 1	Tray packaging ^(3)			

Example:

- a) ECE1200-I/LD = Industrial temperature,
 40 VQFN, Standard version, Tray packaging
- **Note 1:** These products meet the halogen maximum concentration values per IEC61249-2-21.
 - 2: All package options are RoHS compliant. For RoHS compliance and environmental information, please visit http://www.microchip.com/page-handler/en-us/aboutus/ehs.html.
 - **3:** Packaging Option identifier, if present, only appears in the cat-

ECE1200

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018-2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 9781522483830

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta
Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523

Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC

Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200 **Malaysia - Kuala Lumpur** Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for I/O Controller Interface IC category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

DSL4510 S R15X DSL5110 SR1TY EC-GAV SEC1210I-CN-02 LPC47M107S-MS LPC47M102S-MS 70M-OAC15A IS31IO7326-QFLS4-EB PM8001C-F3EI SLO24IRA LPC47B277-MS BU92747GUW-E2 IDC5Q FDC37B787-NS PCI1520IPDVEP PCI1520PDV MCP2140A-I/P CQM1-LK501 IDC-24F OAC15 ODC15 OAC24 OAC24A MCP2140A-ISO OAC5A 70G-IAC15 70M-ODC15B DSL2310 S LJ3W JHL6240 S LLNG JHL7340 S LMHX JHL7540 S LMHR JHL7440 S LMHZ JHL8540 S RH4Q JHL8340 S RH4N NH82801IB S LA9M MCP2140A-ISS MCP2150-I/SS MCP2155-I/SS MCP2140AT-I/SS MCP2140-I/SS DS2484R+T LPC47N217N-ABZJ MCP2140-IP MCP2150-I/SO MCP2155-I/SO MEC1701Q-C2-TN MEC1703Q-B2-I/TN MEC1703Q-B2-TN MEC1725N-B0-I/LJ MCP2140-ISO