

HPFM-HPM[™] Fiber Series

Overview

The AgileSwitch HPFM-HPM Fiber driver provides monitoring and fault reporting information to enable better control and analysis of an IGBT-based power system. The HPFM provides up to 30 Amps of peak current at an operating frequency up to 15 kHz. The driver includes an isolated DC/DC converter and provides a single fault that is reported via the dual channel fiber I/O. All AgileSwitch drivers use automotive temperature grade components and allow for modifying settings of gate resistors and active clamping.

Key Switch Driver Features

- 2-level turn-off time and voltage level
- Soft Shut Down (SSD) time and voltage level
- Desaturation time and voltage level
- Master-Slave capability for parallel operation
- Gate drive voltage +15V/-10V
- Peak gate current +/-30A
- Suitable for IGBTs up to 3300V
- Power supply under-voltage lockout (UVLO)
- 1 X 7W output power

Applications

- Solar/PV Inverters
- Wind Turbines
- UPS
- HEV/EV
- Motor Drives
- High Speed Trains/Traction
- Induction Welding, Cutting and Heating
- Frequency Conversion

System Overview

The basic topology of the driver is shown in Figure 1.

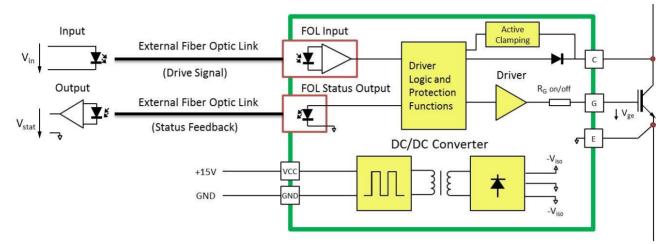


Figure 1: Basic schematic of the HPFM-HPM IGBT driver

Absolute Maximum Ratings

Interaction of maximum ratings is dependent on operating conditions

Parameter	Description	Min	Max	Unit
Supply Voltage	VCC to GND	0	18	V
Peak Gate Current	Note 1	-30	+30	А
Output Power per Gate			7.0	W
Switching Frequency	Note 2	0	15	kHz
Isolation Voltage	Primary to Secondary VAC RMS 1 min		6000	V
Working Voltage	Primary to Secondary, Secondary to Secondary		3800	V
Creepage Distance	Primary to Secondary Side	25		mm
dV/dt	Rate of change input to output		50	kV/µs
Operating Temperature		-40	+85	°C
Storage Temperature		-40	+90	°C

Unit V mA mA V V V

Electrical Characteristics

Conditions: $V_{SUP} = +15.0 \text{ V}$				
Power Supply	Description	Min	Тур	Max
Supply Voltage	VCC to GND	14.5	15	16
Supply Current	Without Load – Note 3		90	110
Average Supply Current	Note 3		170	
UVLO Level	Secondary Side low voltage detect fault level	12	12.8	13.5
UVLO Shut down	Gate Drive Lock Out	8.8	9.0	9.3
Soft Shut Off Voltage(V _{SOFT})		8.2	8.6	9.0

Logic Signal	Description	Min	Тур	Max	Unit
Gate Output Voltage Low		-9	-10	-12	V
Gate Output Voltage High		+14	+15	+16	V
Switching Frequency	Note 2		3	15	kHz

IGBT Short Protection	Description	Min	Тур	Max	Unit
Desat Monitor Voltage	Between Collector and Emitter of IGBT		9		V
$T_{DSAT}*$	Activation after IGBT Turn on		6.1		μs
Response time after Fault			450	500	ns

Note 1: Input signal should not be activated until 20 ms after power is applied to allow on board DC-DC converter to stabilize.

Note 2: Actual maximum switching speed is a function of gate capacitance.

Note 3: Supply Current with load of 1.0Ω and $180 nF C_{INPUT} + 6,000 nC$ dynamic gate charge at an operating frequency of 5 kHz.

Interconnects

Controller/Power to Driver Connectors - Standard

Connector	Туре	Manufacturer Part Number
Mating Ribbon Cable	4 Pin	TE Connectivity 104257-3
Driver Board	4 Pin	TE Connectivity 5-103635-3

Controller/Power to Driver Connectors (Optional - Please specify if required. Replaces Standard)

Connector	Туре	Manufacturer Part Number
Mating Ribbon Cable	4 Pin	ERNI 224398
Driver Board	4 Pin	ERNI 214012
Cable Assemblies	Cable	ERNI 839016 (100 mm, terminated at both ends)
		Contact ERNI for custom cable length

PINOUT

Pin No	Signal
1	GND
2	VCC – +15V Supply Voltage
3	VCC – +15V Supply Voltage
4	GND

Recommended Interface Circuitry Power to Driver Connectors

	GND	J1-1
	vcc	
>		J1-2
•	VCC	J1-3
	GND	J1-4
		J1-4

Figure 2: HPFM Power Connecter 4-Pin

ERNI Cable and Connector Ordering Information

North America, Canada and Mexico	Europe, South America, Africa, Russia, and Japan	Asia (excluding Japan)		
ERNI Electronics, Inc.	ERNI Electronics GmbH	ERNI Asia Holding Pte Ltd.		
2201 Westwood Ave	Seestrasse 9	Blk 4008 Ang Mo Kio Avenue 10		
Richmond, VA 23230	73099 Adelberg	#04-01/02 Techplace I		
USA	Germany	Singapore 569625		
Tel. +1 804 228-4100	Tel. +49 7166 50-0	Tel. +65 6555 5885		
info@erni.us	info@erni.de	info@erni-asia.com		

Interconnects

Controller to Driver Connectors

Connector	Туре	Manufacturer Part Number
Fiber Cable	Fiber	Avago HFBR-4516Z
Driver Board Output	Fiber	Avago HFBR-1522ETZ
Driver Board Input	Fiber	Avago HFBR-2522ETZ

Master to Slave Connectors (Optional – Please specify if required, otherwise not populated)

Connector	Туре	Manufacturer Part Number
Ribbon Cable	5 Pin	TE Connectivity 5-103635-4
Driver Board	5 Pin	TE Connectivity 104257-4

Timing Diagrams

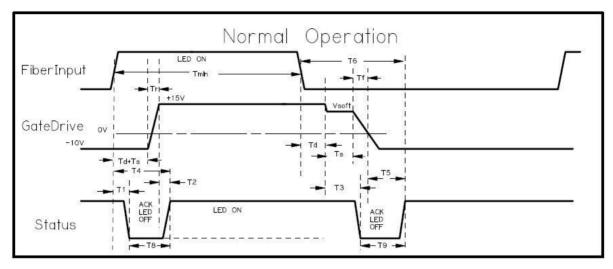


Figure 3: Signal input and output timing diagram

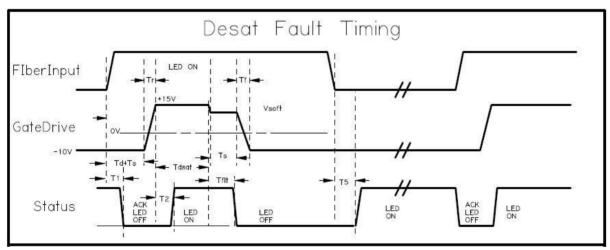


Figure 4: Signal fault timing diagram for Desat.

Note: Application of the Fiber Input to low (LED Off) will clear the Fault signal. If a Desat condition reoccurs the Status/Fault signal will go low again.

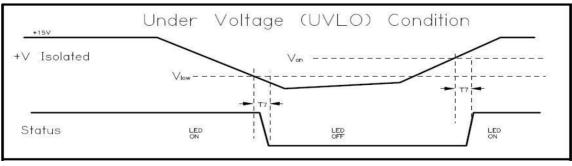


Figure 5: Signal fault timing diagram for UVLO.

Note: Status/Fault Signal will remain low until +V isolated is above specified voltage range of the UVLO Fault. Gate Drive Signal will continue to occur until +V isolated falls below specified voltage range of UVLO Shut Down.

Timing Diagram Values

Description	Symbol	Min	Тур	Max	Units	Notes
Minimum Pulse Width	T _{MIN}	3000			ns	
Delay Time	T _D	420	450	480	ns	
Soft Turn Off Time	Ts	400	450	500	ns	
Rise Time (no load)	T _R		50	60	ns	Measured from 0V to 10V at Rg _{ON}
Rise Time (with load)	T _R		600	650	ns	Measured from 0V to 10V at Rg _{ON} . Timing will vary based on IGBT selection
Fall Time (no load)	T _F		30	60	ns	Measured from Vsoft to 0V at Rg _{OFF}
Fall Time (with load)	T _F		350	400	ns	Measured from Vsoft to 0V at Rg _{OFF} . Timing will vary based on IGBT selection
Fiber Input (LED On) to Status Ack (LED Off) Delay	T ₁		700	800	ns	Measured directly from Fiber Input receiver midpoint to Status Ack (LED Off)
Gate Drive On to Status Ack (LED On) Delay	T ₂	700	750	800	ns	Measured from Gate Drive (Vth) to Status Ack (LED On)
Soft Turn Off to Status Ack (LED Off) Delay	T ₃		150	200	ns	Measured from beginning of Vsoft to Status Ack (LED Off).
Fiber Input (LED On) to Status Ack (LED On) Delay	T ₄	2250	2500	2750	ns	Measured directly from Fiber Input receiver (LED On) midpoint to Status Ack (LED On)
Gate Drive Off to Status Ack (LED On) Delay	T ₅	400	500	600	ns	Measured from Gate Drive at 0V to top of Status Ack (LED On)
Fiber Input (LED Off) to Status Ack (LED On) Delay	T ₆	2600	2700	2800	ns	Measured directly from Fiber Input receiver midpoint to Status Ack (LED On).
Under Voltage Output Delay Time	T ₇		1000	1500	ns	
Status Acknowledge Signal Width (Gate Drive On)	T ₈	1650	1850	2050	ns	Measured at midpoints. Actual width of the Acknowledge Signal (LED OFF) is a function of the actual gate capacitance of the HPM IGBT (gate drive rise and fall times).
Status Acknowledge Signal Width (Gate Drive Off)	Т9	1900	2100	2300	ns	Measured at midpoints. Actual width of the Acknowledge Signal (LED OFF) is a function of the actual gate capacitance of the HPM IGBT (gate drive rise and fall times).
Desaturation Time	T _{DSAT}	5700	6100	6300	ns	Variable dependent on resistor value
Desaturation Fault Status Delay Time	T _{FLT}		250	300	ns	

Conditions: $V_{CC} = +15.0 \text{ V}$, Temp = -40 °C to 85 °C, $R_{g(on)} = 1.5 \Omega$, $R_{g(off)} = 3.0 \Omega$

Generic Sample Factory Settings

- 1. The default equivalent gate resistance for the driver is 1.5 Ω (Rg_{ON}), 1.5 Ω (Rg_{OFF}). This is a safe value for all supported IGBT modules. For optimum performance, the equivalent gate resistance may be changed from 3.0 Ω up to 10.0 Ω .
- 2. Desaturation (T_{DSAT}) monitoring is set for 6.1 µs. This can be adjusted from 1 through 10 µs. The voltage level can be configured to any whole number value between 7V to 13V. The default setting is 9V. If the voltage across the IGBT is greater than the set voltage level, a desaturation fault is detected and the IGBT is turned off and a fault signal is output. Please contact AgileSwitch for requested desaturation monitor time and voltage.

Generic Sample Factory Settings – Fault and Monitoring Conditions

AgileSwitch drivers are designed to provide safe, secure and efficient operation of the IGBT as well as to provide unparalleled information on the condition of the overall system.

Generic samples are set at the factory to perform certain actions and to report that a fault occurred based on IGBT performance parameters that occur outside of default ranges.

Fault Condition/Action	Generic Sample Default Trigger Values	Action on IGBT (if Active)	Lockout	Fiber Output for Fault
UVLO Fault	See Electrical Characteristics	None	No	Light Off
UVLO Shut down	See Electrical Characteristics	Turn Off	Yes	Light Off
Desat	See Electrical Characteristics	Turn Off	No	Light Off
Active Clamping	950V (1200V IGBT) 1350V (1700V IGBT) 2500V (3300V IGBT)	Active Clamping Occurs	No	

Fault/Status Reporting Information

When a UVLO or desaturation fault occurs, the fiber output status feedback is light off. The host controller will attempt to trigger the device when a fault occurs. If the fault clears, it was a DSAT, if it does not clear, it is a UVLO. The driver will perform normal triggering once the UVLO fault clears or is cleared. The UVLO fault does not need a trigger to clear.

Fiber Connectors-Logic

Fiber Direction	Light On	Light Off	
Input (Drive Signal)	On Command	Off Command	
Output (Status Feedback)	No Fault	Fault	

Important Precautions

Caution: Handling devices with high voltages involves risk to life. It is imperative to comply with all respective precautions and safety regulations.

When installing the 4 pin power/controller to driver connector, please make sure that power is turned off. Hot swapping is not recommended.

AgileSwitch assumes that the gate drive board has been mounted on the IGBT prior to start-up testing. It is recommended that the user checks that the IGBT modules are operating inside the Specified Operating Area (SOA) as specified by the IGBT manufacturer including short circuit testing under very low load conditions.

Recommended Start-Up Testing

- 1. Connect dual channel fiber I/O lines to the driver.
- 2. Connect the driver through the 4 pin power header to your drive electronics and supply the driver with +15V.
- 3. Check the gate voltage:
 - a. For the off-state, the nominal gate voltage should be -9V to -12V.
 - b. For the on state, it is +14V to +16V.
 - c. Check that the supply current of the driver is within spec with inactive trigger signals and then at the desired switching frequency.
- 3. The system is now ready for application testing under load conditions.
- 4. Check the Thermal Conditions to verify that the system is operating within the specified temperature range.

Mechanical Dimensions

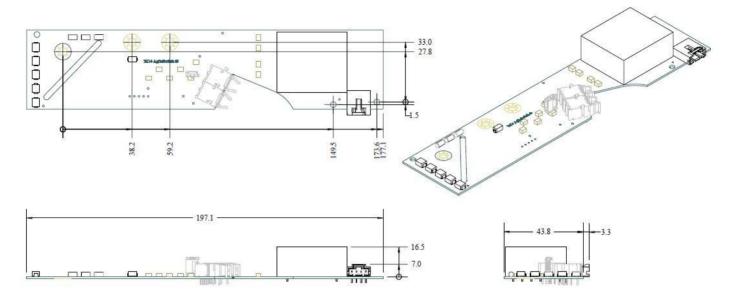


Figure 6: Dimensions of the HPFM-HPM Fiber Series IGBT driver (+/- 0.1mm)

Dimensions are in mm.

Download the full drawing and model on AgileSwitch.com.

Part Numbers & Configuration Details

		Part Number
Hardware Settings	Symbol	HPFM-00117
Rgon (Turn-on Gate Resistance)	R _{GON}	1.5 Ω
Rgoff (Turn-off Gate Resistance)	R _{GOFF}	1.5 Ω
Active Clamping Level	-	1350V
Trigger Acknowledge	-	Enabled
DSAT Monitor Timing	T _{DSAT}	6.1 µs
Soft Turn Off Time	Ts	450 ns

For modification requests, please contact Microchip.

Revisions

Prepared By	Approved By	Version	Date	Description
A. Fender	A. Charpentier	18	5/13/2015	PCB Rev 3
N. Satheesh	A. Charpentier	19	8/17/2016	Changed product image, peak current ratings
A. Fender	A. Fender	20	10/10/2016	Corrected mechanical dimensions
A. Fender		21	6/17/2020	Added Configuration Table, updated Legal

Legal Disclaimer

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.

Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

All Microchip products are sold pursuant to Microchip's terms and conditions of sale.

The Microchip name and logo, the Microchip logo, and AgileSwitch are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

© 2020 Microchip Technology Incorporated. All Rights Reserved <u>www.microchip.com</u>. Any other names are the property of their respective owners.

Information in this document supersedes and replaces all information previously supplied.

Specifications are subject to change without notice.

Patent Notices

Offering	Issued U.S. Patent Numbers
AgileStack TM Power stack	8,984,197
control systems	
Gate drive control system for	9,490,798
SiC and IGBT power devices	
Additional Patents Pending	

Address

Microchip Technology Inc 2355 West Chandler Blvd. Chandler, Arizona, USA 85224-6199 (480) 792-7200

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

 89076GBEST
 00053P0231
 56956
 57.404.7355.5
 LT4936
 57.904.0755.0
 5882900001
 00600P0005
 00-9050-LRPP
 00-9090-RDPP

 5951900000
 01-1003W-10/32-15
 0131700000
 00-2240
 LTP70N06
 LVP640
 5J0-1000LG-SIL
 LY1D-2-5S-AC120
 LY2-US-AC240
 LY3

 UA-DC24
 00576P0020
 00600P0010
 LZN4-UA-DC12
 LZNQ2M-US-DC5
 LZNQ2-US-DC12
 LZP40N10
 00-8196-RDPP
 00-8274-RDPP

 00-8275-RDNP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00-9051-RDPP
 00-9091-LRPP
 00-9291-RDPP
 0207100000
 0207400000

 01312
 0134220000
 60713816
 M15730061
 61161-90
 61278-0020
 6131-204-23149P
 6131-205-17149P
 6131-209-15149P
 6131-218-17149P

 6131-220-21149P
 6131-260-2358P
 6131-265-11149P
 6131-205-17149P
 6131-209-15149P
 6131-218-17149P